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Abstract: Many important parts of tool machines all have the important smaller-the-better (STB)
quality characteristics. The important STB quality characteristics will impact on the quality of the
end-product. At the same time, supplier quality influences the quality and functionality of the
end-product, so suppliers must be selected with caution. The six sigma quality index for the STB
quality characteristics can directly reflect process quality levels. Besides, this index possesses a
mathematical relationship with process yield. Nevertheless, the point estimation will cause the risk
of misjudgment, due to sampling errors. As a result, this study applies the confidence interval of the
index to a two-tailed fuzzy testing method, in order to select appropriate suppliers. Now that this
method is on the basis of the confidence interval, the possibility of misjudgment caused by sampling
errors will be reduced, while the precision of the selection will be enhanced. The method can help
companies increase product quality, as well as the competitiveness of the industry chain as a whole.
Finally, a numerical example is presented to show how to approach this method and its efficacy.

Keywords: fuzzy test method; quality characteristic; membership function; process quality level;
process yield

1. Introduction

Many important parts of tool machines all have important smaller-the-better (STB) quality
characteristics, such as roundness, concentricity and verticality of gears, bearings and axle centers,
etc. The important smaller-the-better (STB) quality characteristics will decide the quality of the end
product [1–3]. Process capability indices (PCIs) are commonly adopted by companies to measure
process quality. PCIs not only help manufacturers evaluate process quality during production, but
are also viewed as a useful tool of communication between engineers working for the same company.
This has been confirmed by extensive research [4–10].

The project of six sigma quality improvement led by Motorola can effectively help companies
enhance quality as well as reduce defect rates for production processes [11,12]. According to
Linderman et al. [13], six sigma assessment helped Motorola achieve its quality-control target of only
3.4 defects per million opportunities. Thus, six sigma quality levels have also been widely applied to
manufacturing, in order to measure process quality [14–18].

Many researchers, such as Chen et al. [19], Huang et al. [20], Wang et al. [21], and Yu and Chen [22],
have attempted to derive relationships between capability indices and six sigma quality levels. This was
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aimed at determining whether process quality meets specified requirements. In order to directly
determine quality levels based on index values, Chen et al. [11] came up with the six sigma index of
quality characteristics to assess the process quality of STB quality characteristics.

According to Prahalad and Hamel [23] and Grossman and Helpman [24], obtaining parts from
suppliers has become a trend in business strategy to enhance competitiveness and operational flexibility.
Chen and Chen [25] also pointed out that forming partnerships with suppliers can help companies
increase product quality, as well as the competitiveness of the industry chain as a whole. Lei and
Hitt [26] and Wu et al. [27] indicated that the quality of raw materials, components, and equipment
should be taken into consideration when selecting suppliers, because they can affect end products’
quality. The six sigma index can straightly display process quality levels as well as process yield.
Consequently, we chose this index as our instrument for supplier selection in this study. Since this
index contains unidentified parameters, sample data are required for estimation [28,29]. Numerous
researchers have come up with fuzzy testing methods using confidence intervals to improve the
precision of estimation and solve the problem of uncertainty found in the measured data [30,31].
A smaller size of the sample leads to a larger length of the interval, whereas a larger size of the sample
results in a smaller length of the interval [28]. Consequently, applying confidence intervals to the
statistical testing method can lead to inconsistencies or different sizes of the sample. Considering
practicality, the sample size is rarely large. As a result, this study developed a two-tailed fuzzy testing
method to select a proper supplier, which is more reasonable than the statistical testing method and
more consistent with the discussions made in several studies [12,28–32]. The proposed method can help
companies increase product quality, as well as the competitiveness of the industry chain as a whole.

The other sections of this paper are organized as follows. Section 2 is literature review. Section 3
is related to research design and methods including the confidence interval of the six sigma index and
the two-tailed confidence-interval-based fuzzy testing method for the supplier selection. In Section 4,
a numerical example is taken to illustrate the efficacy of the proposed method. Last but not least,
conclusions are made in Section 5.

2. Literature Review

The supplier selection model developed by this study adopts the industrial division of labor in
the industrial chain as a background and quality as a basis. At the same time, to solve the practical
limitation that the sample is so small that the traditional statistical testing accuracy is insufficient, this
study develops the fuzzy testing method based on the confidence interval. Subsequently, this study
will review the literature according to the above description.

There are two important industrial chains in Taiwan, tool machines and electronics, of which
the information and communication technology (ICT) has established itself as a crucial player in the
global electronics industry [24,33]. In fact, Taiwan has formed a complete industrial ecological chain
from IC design, wafer foundry, packaging and testing to production and assembly [34]. In addition,
central Taiwan is an industrial settlement of tool machines. In the face of increasingly fierce global
competition, enterprises have paid more and more attention to their specialized core technologies and
gradually outsourced non-core components to other manufacturers, or purchased them from suppliers.
This type of strategy has become a trend in business models [1,2,35].

The selection of suppliers is built on the basis of suppliers’ performances. Weber et al. [36] used
a questionnaire designed by Dickson [37] to investigate the frequency of 23 criteria appearing in
different literature and sorted out the most commonly adopted selection criteria in order—delivery
time, quality, and capacity. Patton [38] pointed out that product quality, price, delivery time, sales
support, equipment and technology, order status, and financial status are seven criteria for the supplier
evaluation. According to Verma and Pullman [39], the actual transaction data demonstrated that
“quality”, “price” and “delivery time” of the product are the key factors in selecting suppliers. Besides,
many studies have also suggested that a supplier’s process quality is very important, as it will affect
the quality and functionality of the end-product. Therefore, to ensure the quality of the end-product,
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suppliers must be selected with caution [12,25,27]. Furthermore, nowadays the industry emphasizes
the professional division of labor, and the relationship between enterprises and suppliers has evolved
from a purely transactional relationship to a strategic partnership. Enterprises can help suppliers
improve their production capacity and performance through the partnership of co-prosperity and
co-existence, in order to ensure the product quality of all components, as well as the quality of the
end-products [40].

The process capability index (PCI) adopts a method of unit-free value quantization to evaluate the
process quality level [41–43]. Plenty of scholars are exploring the relationship between the process
capability index and the six sigma quality level to facilitate industrial applications [5,7,10,21,22].
Chen et al. [11] proposed a six sigma quality index, based on the relationship between PCI and the six
sigma quality level. This index can directly reflect the process quality level, as well as the process yield.
When the quality level is higher, the process yield is higher as well.

Since the evaluation indicators usually contain unknown parameters, the research, which must
estimate, by means of sample data, indicated that the sample size is usually not enormous, due to
the cost and timeliness considered by the industry [28,29]. The fuzzy selection model developed
based on the confidence interval can solve the inconsistencies of evaluations [28–31]. In addition,
Aloini et al. [44] applied the business procurement knowledge base to establish a fuzzy decision
support system (DSS) to carry out a more objective supplier selection. According to the concepts of
many relevant studies, not only can the fuzzy evaluation model evaluate the process quality, but it
can also identify key quality characteristics that need to be enhanced and provide suggestions on
improvement [5,10,21].

3. Research Design and Methods

This section first introduces research design, as well as explaining the research content and the
main axis with a flowchart. Next, related research methods are proposed, including the confidence
interval of six sigma index QPU and developing a fuzzy supplier selection model.

3.1. Research Design

As mentioned earlier, the quality of the supplier will affect the quality and functionality of the
end-product. Therefore, to ensure the quality of the end-product, the supplier must be cautiously
selected. Firstly, this study discovered a fact from the literature review that the six sigma index is an
appropriate tool for the quality-based supplier selection, whose advantage is that it can directly reflect
the one-to-one relationship between the six sigma process quality level and process yield. Secondly,
based on the consideration of cost and timeliness in practice, the sample size can hardly be enormous.
On the basis of the traditional statistical evaluation rules, this study develops the fuzzy supplier
selection method. Finally, fuzzy evaluation rules are established to provide practical applications.
The flow of the entire research design is shown in Figure 1:
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3.2. Confidence Interval of Six Sigma Index QPU

Assume that X is normally distributed; i.e., X~N
(
µ, σ2

)
, where µ represents the process average

and σ represents the standard deviation of the process. Then, the six sigma index of STB quality
characteristics can be illustrated below:

QPU =
USL− µ

σ
+ 1.5 (1)

where USL refers to upper specification limit. Chen et al. [11] suggested that the target value of STB
quality characteristics is 0. Nevertheless, due to cost considerations and technical issues, the process
average is not likely to approach this target value. So, when USL − µ ≥ (k− 1.5)σ, then the process is
considered to have reached the k− sigma quality level. That is

QPU ≥ QPU(k) =
(k− 1.5)σ

σ
+ 1.5 = k. (2)

It is obvious that when the process quality level is k− sigma, then the value of QPU is equal to at
least k. In addition, it is assumed that there is a one-to-one mathematical relationship between index
QPU and process yield p, expressed as

p = p{X ≤ USL} = p{Z ≤ QPU − 1.5} = Φ(QPU − 1.5) (3)

where Φ(·) is a cumulative distribution function of standard normal distribution. For example, when
QPU = 4.5, then we can derive the process yield p = Φ(3.0) = 99.865%.

Suppose (X1, X2, · · · , Xn) is a random sample of X, then the estimator of six sigma index QPU can
be written below:

Q∗PU =
USL−X

S
+ 1.5, (4)
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where X =
(
n−1

)
×

∑n
i=1 Xi and S =

√
(n−1) ×

∑n
i=1(Xi − µ∗)

2 are the maximum likelihood estimates
(MLEs) of µ and σ, respectively. Under the assumption of normality, we let

Z =
X − µ
σ

and K =
nS2

σ2 .

Then Z and K are distributed as N(0, 1) and χ2
n−1, respectively. As a result,

p
{
−Zα′/2 ≤ Z ≤ Zα′/2

}
=
√

1− α and p
{
χ2
α′/2;n−1 ≤ K ≤ χ2

1−(α′/2);n−1

}
=
√

1− α

where α′ = 1 −
√

1− α, Zα′/2 is the upper α′/2 quantile of the standardized normal distribution, and
χ2

a,n−1 is the lower a quantile of the chi-square distribution with n − 1 degrees of freedom, a = α′/2

or 1 − α′/2. X and S2 both are independent, so are Z and K. Resulting from these relationships, the
following equation is expressed as

p
{
−Zα′/2 ≤ Z ≤ Zα′/2,χ2

α′/2;n−1 ≤ K ≤ χ2
α′/2;n−1

}
= 1− α. (5)

Equivalently,

p
{

X −
(
Z0.5−

√
1−α/2

) σ
√

n
≤ µ ≤ X +

(
Z0.5−

√
1−α/2

) σ
√

n
, σD ≤ σ ≤ σU

}
= 1− α (6)

where

σD =

√
n

χ2
0.5+

√
1−α/2;n−1

S and σU =

√
n

χ2
0.5−

√
1−α/2;n−1

S.

Therefore, the confidence region can be shown as

CR =

{
(µ, σ)

∣∣∣X − (
Z0.5−

√
1−α/2

) σ
√

n
≤ µ ≤ X +

(
Z0.5−

√
1−α/2

) σ
√

n
, σD ≤ σ ≤ σU

}
.

Obviously, the six sigma index QPU is the function of (µ, σ). Based on Chen et al. [11], the object
function is QPU (µ, σ) and the confidence region (CR) is the feasible solution area. First, to find the lower
confidence limit of QPU, an appropriate mathematical programming model is expressed as follows:{

LQPU = Min
{
(USL− µ)/σ+ 1.5

}
subject to (µ, σ) ∈ CR

(7)

When σD ≤ σ ≤ σU and σ , σU, then QPU (µ, σ) > QPU (µ, σ). Therefore, the mathematical
programming model is rewritten below:{

LQPU = Min
{
(USL− µ)/σ+ 1.5

}
subject to µLU ≤ µ ≤ µRU

(8)

where

µLU = X −
Z0.5−

√
1−α/2√

χ2
0.5−

√
1−α/2;n−1

× S, µRU = X+
Z0.5−

√
1−α/2√

χ2
0.5−

√
1−α/2;n−1

× S.
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Similarly, when µLU ≤ µ ≤ µRU and µ , µRU, then QPU(µ, σ) > QPU(µ, σ). Therefore, the lower
confidence limit LQPU is

LQPU =
USL−µRU

σU
+ 1.5

=
(
Q∗PU − 1.5

)
×

√
χ2

0.5−
√

1−α/2;n−1
n −

Z0.5−
√

1−α/2
√

n
+ 1.5.

(9)

Second, to find the upper confidence limit of QPU, an appropriate mathematical programming
model is written as: {

UQPU = Max
{
(USL− µ)/σ+ 1.5

}
subject to (µ, σ) ∈ CR

(10)

When σD ≤ σ ≤ σU and σ , σD, then QPU(µ, σ) < QPU(µ, σ). Therefore, the mathematical
programming model is rewritten as follows:{

UQPU = Max
{
(USL− µ)/σ+ 1.5

}
subject to µLD ≤ µ ≤ µRD

(11)

where

µLD = X −
Z0.5−

√
1−α/2√

χ2
0.5+

√
1−α/2;n−1

× S, µRD = X+
Z0.5−

√
1−α/2√

χ2
0.5+

√
1−α/2;n−1

× S.

Similarly, for any µLD ≤ µ ≤ µRD and µ , µLD, QPU(µ, σ) < QPU(µ, σ). Therefore, the upper
confidence limit UQPU is

UQPU =
USL−µLD

σD
+ 1.5

=
(
Q∗PU − 1.5

)
×

√
χ2

0.5+
√

1−α/2;n−1
n +

Z0.5−
√

1−α/2
√

n
+ 1.5

(12)

Thus, the 100(1− α)% confidence interval of QPU is CI = [LQPU, UQPU].

3.3. Developing a Fuzzy Supplier Selection Model

If we let (xh1, xh2, · · · , xhn) be the observed value of (Xh1, Xh2, · · · , Xhn) for supplier h, then the
observed value of Q∗PUh is

Q∗PUh0 =
USL− xh

sh
+ 1.5, (13)

where xh =
(
n−1

)
×

∑n
i=1 xhi and sh =

√
(n−1) ×

∑n
i=1(xhi − xh)

2. Therefore, the observed values of the
lower and upper confidence limits of QPUh are functions of α, and can be shown as follows:

LQPUh0(α)
(
Q∗PUh0 − 1.5

)
×

√
χ2

0.5−
√

1−α/2;n−1

n
−

Z0.5−
√

1−α/2
√

n
+ 1.5, (14)

LQPUh0(α)
(
Q∗PUh0 − 1.5

)
×

√
χ2

0.5−
√

1−α/2;n−1

n
+

Z0.5−
√

1−α/2
√

n
+ 1.5. (15)

This study examined the statistical testing process before developing the fuzzy supplier selection
model. Based on Chen et al. [12], when determining whether the quality levels of any two suppliers are
equal, this study adopted the following null hypothesis H0:QPUi = QPUj versus the alternative
hypothesis H1:QPUi , QPUj, for any value of i , j. For applying confidence intervals CIi =

[LQPUi, UQPUi] and CI j =
[
LQPUj, UQPUj

]
to the statistical testing method, the rules are made as follows:
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(1) If UQPUi < LQPUj, then H0 is rejected, and QPUi < QPUj is concluded.
(2) If CIi ∩ CI j , φ, then H0 is not rejected, and QPUi = QPUj is concluded.
(3) If LQPUi > UQPUj, then H0 is rejected, and QPUi > QPUj is concluded.

Next, this study developed the fuzzy supplier selection model based on the aforementioned
statistical testing rules related to the fuzzy hypothesis testing method recommended by Chen et al. [12].
This study first examined the case of Q∗PUj ≥ Q∗PUi. If Q∗PUj < Q∗PUi, then the decision will not be made
until the inequality is reversed.

Applying the confidence interval CI in accordance with the method proposed by Chen et al. [12],
the α−cuts of the triangular fuzzy number Q̃∗PUh0 are derived as follows:

Q̃∗PUh0[α] =

{
[LQPUh0(α), UQPUh0(α)], for 0.01 ≤ α ≤ 1
[LQPUh0(0.01), UQPUh0(0.01)], for 0 ≤ α ≤ 0.01

. (16)

Thus, the triangular fuzzy number of Q∗PUh0 is Q̃∗PUh0 = ∆(QLh, QMh, QRh), where

QLh =
(
Q∗PUh0 − 1.5

)
×

√
χ2

0.0025;n−1

n
−

Z0.0025
√

n
+ 1.5, (17)

QMh =
(
Q∗PUh0 − 1.5

)
×

√
χ2

0.5;n−1

n
+ 1.5, (18)

QRh =
(
Q∗PUh0 − 1.5

)
×

√
χ2

0.9975;n−1

n
+

Z0.0025
√

n
+ 1.5. (19)

It is observed that the membership function of the fuzzy number Q̃∗PUh0 is

ηh(x) =



0 i f x < QLh
α′ i f QLh ≤ x < QMh
1 i f x = QMh
α′′ i f QMh < x ≤ QRh
0 i f QRh < x

. (20)

where α′ and α′′ are determined by

(
Q∗PUh0 − 1.5

)
×

√
χ2

0.5−
√

1−α′/2;n−1

n
−

Z0.5−
√

1−α′/2
√

n
+ 1.5 = x, (21)

(
Q∗PUh0 − 1.5

)
×

√
χ2

0.5−
√

1−α′/2;n−1

n
+

Z0.5−
√

1−α′/2
√

n
+ 1.5 = x. (22)

Figure 2 is a diagram showing the membership functions of ηi(x) and η j(x).
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This study calculates the total area aTi of ηi(x) as follows:

aTi =

QRi∫
QLi

ηi(x) dx. (23)

Let x = ci j, such that ηi
(
ci j

)
= η j

(
ci j

)
. Then, this study calculates the slashed area ai j of ηi(x) in the

following:

ai j =

QRi∫
c

ηi(x) dx. (24)

According to Buckley [45], this study used ai j as the numerator and aTi as the denominator and
then performed a fuzzy testing method using ai j/aTi. Chen et al. [12] felt that calculating this ratio was
difficult and thus replaced it with the ratio quotient of their base lengths. First, let di j = QRi − ci j, so di j
is the base length of the slashed area of ηi(x). Based on Equation (19), di j is shown as follows:

di j =
(
Q∗PUi0 − 1.5

)
×

√
χ2

0.9975;n−1

n
+

Z0.0025
√

n
−

(
ci j − 1.5

)
. (25)

Correspondingly, the base length of ηi(x) can be exhibited as dTi = QRi − QLi. Based on
Equations (17) and (19), dTi can be shown as follows:

dTi =
(
Q∗PUi0 − 1.5

)
×


√
χ2

0.9975;n−1

n
−

√
χ2

0.0025;n−1

n

+ 2
Z0.0025
√

n
. (26)
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For the sake of convenience, we followed Chen et al. [12] and replaced ai j/aTi with di j/dTi for
fuzzy testing. The fuzzy testing ratio di j/dTi is defined as

di j/dTi =

(
Q∗PUi0 − 1.5

)
×

√
χ2

0.9975;n−1
n + Z0.0025

√
n
−

(
ci j − 1.5

)
(
Q∗PUi0 − 1.5

)
√

χ2
0.9975;n−1

n −

√
χ2

0.0025;n−1
n

+ 2× Z0.0025
√

n

. (27)

If we let 0 < φ1 < φ2 < 0.5, in accordance with Buckley [45] and Chen et al. [12], where φ1 and φ2

are two expert coefficients, will be taken into consideration in the following rules:

(1) If di j/dTi ≤ φ1, then H0 is rejected, and QPUi < QPUj is concluded.
(2) If φ1 < di j/dTi < φ2, then the decision of whether to reject/not reject cannot be made.
(3) If φ2 ≤ di j/dTi, then H0 is not rejected, and QPUi = QPUj is concluded.

4. Numerical Example

This study aims to demonstrate the efficacy of our methodology, and develops the observed value(
xh,1, xh,2, · · · , xh,36

)
of random sample, with sample size n = 36 for each supplier. The upper specification

limit for roundness of the parts is 0.02. According to Section 3, if we want to determine whether
the quality levels of any two suppliers are identical, we should adopt the following null hypothesis
H0:QPUi = QPUj versus the alternative hypothesis H1:QPUi , QPUj for any i , j. The observed value of
Q∗PUi and Q∗PUj can be described as follows:

Q∗PUi0 = 3.81 and Q∗PUj0 = 5.42.
Thus, based on Equations (17) and (19), the triangular fuzzy numbers of Q∗PUi and Q∗PUj can be

shown as follows:
∆( QLi, QMi, QRi) = ∆(2.852, 3.778, 4.755),
∆
(

QLj, QMj, QRj
)
= ∆(4.047, 5.365, 6.771).

Besides, observed from Equation (20), the membership function of fuzzy number Q̃∗PUi is

ηi(x) =



0 i f x < 2.852
α′i i f 2.852 ≤ x < 3.778
1 i f x = 3.778
α′′ i i f 3.778 < x ≤ 4.755
0 i f 4.755 < x

.

Based on Equations (21) and (22), α′i and α′′ i are determined by

2.31×

√
χ2

0.5−
√

1−α′i/2;n−1

n
−

Z0.5−
√

1−α′i/2
√

n
+ 1.5 = x, and

2.31×

√√
χ2

0.5+
√

1−α′′ i/2;n−1

n
+

Z
0.5−
√

1−α′′ i/2
√

n
+ 1.5 = x.

Similarly, the membership function of fuzzy number Q̃∗PUj is

η j(x) =



0 i f x < 4.047
α′ j i f 4.047 ≤ x < 5.365
1 i f x = 5.365
α′′ j i f 5.365 < x ≤ 6.771
0 i f 6.771 < x

.
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based on Equations (21) and (22), where α′ j and α′′ j are determined by

3.92×

√√
χ2

0.5+
√

1−α′′ j/2;n−1

n
+

Z0.5−
√

1−α′′ j/2
√

n
+ 1.5 = x, and

3.92×

√
χ2

1−α/2,35

36
+

Zα/2

6
+ 1.5 = x.

Obviously, when the confidence intervals CIi = [2.852, 4.755] and CI j = [4.047, 6.771], then CIi
∩ CI j , φ. According to statistical testing rules, H0 is not rejected, and QPUi = QPUj is concluded.
Nevertheless, it is discovered that the observed values of Q∗PUi0 = 3.81 and Q∗PUj0 = 5.42. The quality
levels of the two suppliers differ by at least one standard deviation, but the conclusions are not
significantly different. This is because the small sample size (n = 36) resulted in a large error. Next, this
study performed the fuzzy testing method using the fuzzy selection model suggested in Section 3.
Figure 2 exhibits a graph related to the membership functions ηi(x) and η j(x) with Q∗PUi0 = 3.81 and
Q∗PUj0 = 5.42. In Figure 3, when ci j = 4.446, such that ηi(4.446) = η j(4.446), the slashed area ai j of ηi(x)
can be calculated.
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Based on Figure 2 and Equations (25) and (26), the values of di j and dTi can be shown as follows:

di j = QRi − ci j = 4.755− 4.446 = 0.309,

dTi = QRi −QLi = 4.755− 2.852 = 1.903.

Therefore,
di j/dTi

As noted by Chen et al. [12], φ1 and φ2 can be 0.2 and 0.4 in practice. Because di j/dTi = 0.162 < φ1,
H0 is rejected, and QPUi < QPUj is concluded. Then, the differences between the fuzzy testing method
proposed in this study and the traditional statistical testing method are displayed in Table 1:
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Table 1. Comparison table of methods.

Method Fuzzy Testing Statistical Testing

Testing tool
Fuzzy testing ratio

di j/dTi

Confidence intervals
CIi and CI j

Calculation process
di j = 0.309,
dTi = 1.903,

di j/dTi = 0.162.

CIi = [2.585, 4.775]
CI j = [4.047, 6.771]

CIi ∩ CI j , φ

Results Reject H0 Do not reject H0

Clearly, the small sample size (n = 36) produced a large error. Statistical testing would demonstrate
that there is no major difference between the quality levels of the two suppliers, even though their
quality levels differ by at least one standard deviation. In contrast, fuzzy testing using the proposed
fuzzy selection model shows significant differences between the quality levels of the two suppliers;
that is, QPUi < QPUj. It is thus clear that the proposed method is more accurate in practice.

5. Conclusions

Obtaining parts from suppliers has become a trend in business strategy to enhance the industries’
competitiveness and operational flexibility. In order to make sure of the quality and functionality of the
end product, this study took the roundness of parts, for example, to propose a fuzzy supplier selection
model. For this product, the roundness of parts is a crucial STB quality characteristic. We selected the
six sigma quality index as our selection tool. The index can directly reflect process quality levels and
establish a one-to-one mathematical relationship with process yield. Then, mathematical programming
was used to find the confidence interval of index QPU. In addition, this study proposed a two-tailed
confidence-interval-based fuzzy testing method for supplier selection. Due to the fact that this method
is based on the basis of confidence intervals, the risk probability of misjudgments caused by sampling
errors will be lowered, while the precision of selection will be enhanced. Finally, a numerical example
is explained in Section 4, to demonstrate the application and efficacy of this method. In this example,
it is clear that the small sample size created a wide confidence interval; therefore, even though the
quality levels of two suppliers differ significantly, statistical testing shows no significant differences.
The proposed fuzzy selection model, however, can successfully identify the difference between the
quality levels of the two suppliers, thereby demonstrating that the proposed approach is more accurate
in practice. Furthermore, the proposed method can help companies increase product quality, as well as
the competitiveness of the industry chain as a whole.
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Glossary

µ process average
σ process standard deviation
X estimator of µ
S estimator of σ
x the observed value of X
s the observed value of S
α′ significance level
n sample size
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QPU six sigma index
Q∗PU estimator of six sigma index
USL upper specification limit
STB smaller-the-better
Φ(·) cumulative distribution function of standard normal distribution
CR confidence region
LQPU lower confidence limit of QPU
UQPU upper confidence limit of QPU
Q∗PUh estimator of six sigma index for supplier h
Q∗PUh0 the observed value of Q∗PUh
ηh(x) membership function of the fuzzy number Q̃∗PUh0
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