
applied  
sciences

Article

Time-Series Prediction of the Oscillatory Phase of
EEG Signals Using the Least Mean Square
Algorithm-Based AR Model

Aqsa Shakeel 1,2 , Toshihisa Tanaka 1,2 and Keiichi Kitajo 1,2,3,4,*
1 CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako 351-0198, Japan;

aqsa@sip.tuat.ac.jp (A.S.); tanakat@cc.tuat.ac.jp (T.T.)
2 Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology,

Tokyo 184-8588, Japan
3 Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological

Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
4 Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced

Studies (SOKENDAI), Okazaki 444-8585, Japan
* Correspondence: kkitajo@nips.ac.jp

Received: 27 March 2020; Accepted: 21 May 2020; Published: 23 May 2020
����������
�������

Abstract: Neural oscillations are vital for the functioning of a central nervous system because they
assist in brain communication across a huge network of neurons. Alpha frequency oscillations are
believed to depict idling or inhibition of task-irrelevant cortical activities. However, recent studies on
alpha oscillations (particularly alpha phase) hypothesize that they have an active and direct role in
the mechanisms of attention and working memory. To understand the role of alpha oscillations in
several cognitive processes, accurate estimations of phase, amplitude, and frequency are required.
Herein, we propose an approach for time-series forward prediction by comparing an autoregressive
(AR) model and an adaptive method (least mean square (LMS)-based AR model). This study tested
both methods for two prediction lengths of data. Our results indicate that for shorter data segments
(prediction of 128 ms), the AR model outperforms the LMS-based AR model, while for longer
prediction lengths (256 ms), the LMS- based AR model surpasses the AR model. LMS with low
computational cost can aid in electroencephalography (EEG) phase prediction (alpha oscillations)
in basic research to reveal the functional role of the oscillatory phase as well as for applications for
brain-computer interfaces.

Keywords: electroencephalography (EEG); autoregressive (AR) model; least mean square (LMS);
alpha rhythm; time-series prediction; neural oscillations; instantaneous phase

1. Introduction

Rapidly changing neural oscillations are fundamental features of a working central nervous system.
These oscillations can be seen as rhythmic changes either in cellular spiking behavior or subthreshold
membrane potential in a single neuron. Large ensembles of these neurons can generate synchronous
activity that results in rhythmic oscillations in the local field potential (LFP). These oscillations reflect
the excitability of neurons. Their key role is to assist brain communication across a huge network of
neurons via synchronous excitation [1]. At certain frequencies, oscillations are initiated by specific
tasks, the outcome of which determines their amplitude or power [2]. Alpha oscillations have generally
been considered a ubiquitous characteristic of neural activity; however, recent observations have
demonstrated their roles in active inhibition [3,4] and attention [5]. Although alpha frequencies are
slower and tend to distribute frontally in older subjects [6], the largest alpha amplitude is observed
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at the scalp over the occipital and parietal areas of the brain [7]. Additionally, alpha oscillations are
also evident in the form of mu oscillations over motor cortices [8]. These studies suggest that alpha
oscillations play a specific role in brain information processing associated with specific functions in
motor, perceptual, and cognitive processes. However, the role of oscillations is yet to be revealed.

To understand the role of these oscillations in motor, perceptual, and cognitive processes, accurate
estimations of instantaneous phase and amplitude are required. In most studies, instantaneous phase
relationships are categorized post-hoc due to the requirement for analysis in the time-frequency domain.
The focus on oscillatory phase does not imply that the amplitude of ongoing oscillations has no impact.
In fact, the phase of an oscillatory signal can only be reliably computed when this signal has a significant
amplitude, both in the mathematical and biophysical sense. Oscillatory amplitude in various frequency
bands bears significant relations to sensory perception and attention [5,7,9,10]. The instantaneous
frequency of electroencephalography (EEG) oscillations has also been investigated [11–14]. However,
the ongoing oscillatory phase has been largely overlooked, at least up until recent studies, which showed
the effects of the instantaneous phase on perceptual performance [15–17].

To reveal the functional role of the phase of neural oscillations, real-time prediction of the
instantaneous phase is important. Pavlides in 1988 [18] and Holscher in 1997 [19] built analog
circuits that triggered stimulation at the peak, trough, and zero crossing of the hippocampal LFP
based on the assumption of a sufficiently narrow bandwidth. Hyman [20] employed a dual-window
discrimination method for peak detection in theta oscillations. The aforementioned approach required
manual calibration in a specific setting; thus, real-time operation would not be possible. More recently,
Chen [21] used autoregressive (AR) modelling to accurately estimate the instantaneous phase and
frequency of an intracranial EEG theta oscillation and phase-locked stimulation in real time. This study
used a genetic algorithm to optimize several parameters before deploying the algorithm. Although the
optimization procedure was a major limitation, this system provided a benchmark for comparing
oscillations in other frequency bands. Alternatively, wavelet ridge extraction can be utilized to
estimate the instantaneous phase [22]. This method is robust when presented with simultaneous
multiple oscillatory schemes. However, the implementation of such a system in real time might be
computationally expensive. Therefore, an adaptive method is needed. Closed-loop neuroscience
has gained significant attention over the past few years with the latest technological advances.
Phase information in real-time systems could have applications in brain- computer interfaces [23],
closed-loop stimulator devices [24–26], and electrical stimulation of animal models based on a specific
phase [18,19]. There is substantial experimental and therapeutic potential in state-dependent brain
stimulation as the participant or patient performs the task simultaneously. We are mainly interested in
estimating the current instantaneous phase utilizing the visual alpha oscillation so that depending
on the brain state, we can decide whether oscillatory phase-dependent stimulation should be given
or not. This reflection of a closed-loop brain-state-dependent stimulation system can be seen as a
new brain-computer interface (BCI) approach. Herein, we propose a novel approach for time-series
forward prediction that was developed based on the conventional AR model [21,27] with an extension
of an adaptive least mean square (LMS)-based AR model. The AR model can be constructed using
various algorithms to calculate model coefficients, each one of them fulfilling different purposes.
These methods minimize the prediction error, either only forward prediction error or both backward
and forward prediction errors. This study focuses on the forward prediction error and demonstrates
that the LMS-based AR model minimizes the forward prediction error because its coefficients can be
adjusted dynamically, and it performs the AR model better in real-time for long prediction lengths.
Since adaptive methods can dynamically track the coefficients and allow more accurate prediction,
we chose the LMS-based AR model.
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2. Materials and Methods

2.1. Algorithm Outline

The ultimate aim of the algorithm is to estimate accurately the instantaneous phase and frequency
of alpha oscillations using the AR and LMS-based AR model. The algorithm is composed of the
following sequential preprocessing steps:

Preprocessing for both the AR- and LMS-based AR model:

1. Re-reference the raw data and then downsample to 500 Hz.
2. Optimize the frequency band (8–13 Hz) based on the peak/central frequency of each individual.

The individual alpha frequency (IAF) is linked to the maximum EEG power within the alpha
range. After finding the IAF, a passband for a band-pass filter is chosen. The low cutoff frequency
for the band-pass filter is IAF-1 and high cutoff frequency is IAF+1.

3. Apply a two-pass finite impulse response (FIR) band-pass filter with a filter order of 128 and the
passband chosen in step 2 [28].

4. Segment the data into 500 ms epochs.

AR model (replicating Zrenner’s method) [27]:

1. Compute the optimal AR model order using Akaike’s Information Criterion (AIC).
2. Compute AR coefficients using the Yule–Walker equations.
3. Estimate the instantaneous phase at the boundary of the sliding window in the AR forward

prediction method (prediction length, 128 ms) [21,27] (see Figure 1).
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Figure 1. Autoregressive (AR) forward prediction. (A) The length of the actual data segment is 500 ms;
(B) From both ends, a 64 ms data segment was trimmed; (C) The remaining 372 ms data segment was
used to generate AR coefficients to forecast 128 and 256 ms data segment.

LMS-based AR model:

1. Select the adaptation size/learning rate of LMS.
2. Select the number of filter taps (same as the AR model order).
3. Compute the coefficients using LMS and then use those coefficients to predict the next sample

until the prediction length in the AR equation.
4. Calculate the time-series forward prediction for twice the prediction length (256 ms) for the

LMS-based AR model (See Figure 1).
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Assessment of performance of AR model and LMS-based AR model:

1. Compute the means of the predicted segment and original segment and subtract the respective
means from the predicted segment and original segment.

2. Estimate the instantaneous phase and frequency of the original and predicted data segments by
calculating the analytic signal via the Hilbert transform.

3. Compute the phase difference between the original and predicted data segments.
4. Calculate the phase locking value (PLV) between the original and predicted data.

The last four steps are to be performed for both methods. A flow chart of these steps is shown in
Figure 2.
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2.2. Autoregressive (AR) Model

AR modelling has been successfully applied to EEG signal analysis for diverse applications such
as segmentation, forecasting, rejection of artifacts [29,30], and speech analysis [31,32]. The AR model is
a robust method for estimating the power spectrum of shorter EEG segments and is less susceptible to
spurious results [30].

An AR(p) of order p is a random process defined as follows [21]:

x(n) = c +
p∑

k=1

αk x(n− k) + εn (1)

where x(n) is an input data at sample n, c is a constant, α1, . . . , αp are the coefficients of the AR model,
and εn is white noise at sample n.

The AR model can be created using one of numerous algorithms to calculate model coefficients.
These algorithms include the Burg lattice method to solve the lattice filter equations, utilizing the
mean of backward- and forward-squared prediction errors and the Yule–Walker method to minimize
the forward prediction error only. To enable comparisons with previous studies [21,27], we used
the Yule–Walker method. The AR model order was selected using Akaike’s Information Criterion
(AIC) [33].
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2.3. Least Mean Square (LMS)

For a random signal, the main objective of the AR modelling technique is to find recursively
the optimal coefficients that minimize the mean square error (MSE) [34]. The LMS algorithm was
developed by Hoff and Widrow in 1960 [35]. It employs a stochastic gradient algorithm to solve the
least square problem. This method is obtained from steepest-descent implementation by replacing the
required gradient vectors and Hessian matrices by more suitable approximations. The equations that
constitute the adaptive LMS algorithm are as follows [36]:

x(n) = [x(n), x(n− 1), x(n− 2), . . . x(n−M + 1)]T (2)

w(n) = [w0(n), w1(n), . . . wM−1 (n)]
T (3)

y(n) = wT(n) x(n) (4)

e(n) = x(n + 1) − y(n) (5)

w(n + 1) = w(n) + 2µ e(n)x(n) (6)

where x(n) is an input data at sample n, y(n) is output, e(n) is error, w(n) is filter weight, µ is step size,
and M is filter length.

In the current study, two methods were implemented and compared for time-series forward
prediction; first Yule–Walker based AR model and second LMS-based AR model. The AR model
computes AR coefficients once, whereas the LMS-based AR model computes them at each instant.
The LMS-based AR model algorithm starts from an initial condition without having the desired
information and then updates the filter weights based on the input data sequence. The filter length for
the LMS-based AR model is the same as for the AR model order.

2.4. Instantaneous Frequency and Phase

The analytic signal is constructed by combining the original data and its Hilbert transform to
calculate the instantaneous phase [37]. The complex signal zx(t) can be constructed as follows:

zx(t) = x(t) + iH
{
x(t)

}
(7)

where x(t) is the original real signal, and H
{
x(t)

}
is the Hilbert transform of the real signal x(t) defined

as follows:

H
{
x(t)

}
=

1
π

p.v.
∫
∞

−∞

x(τ)
t− τ

dτ (8)

where p.v. denotes Cauchy’s principal value. The instantaneous phase of the signal can be calculated
from the complex analytic signal as follows:

ϕx(t) = argzx(t) (9)

The instantaneous frequency can then be calculated from the instantaneous phase as follows:

fx(t) =
1

2π
d
dt
ϕuw

x (t) (10)

where ϕuw
x (t) is the unwrapped instantaneous phase.

To estimate the instantaneous phase at the edge of the sliding data segment of 500 ms and to
avoid edge effects, 64 ms segments were trimmed on both ends. The remaining 372 ms data segment
was then introduced into the AR model to generate AR coefficients. The AR model order was fixed to
30 to iteratively forecast the 128 ms in the future [21]. The predicted 128 ms window was then used to
calculate the analytic signal based on the Hilbert transform. As suggested by Zrenner [23], there is a
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trade-off between the length of the predicted segment and the efficacy of the filter. This study used a
128th order two-pass FIR band pass filter. A higher filter order delays the signal longer, whereas a low
filter order <100 does not remove frequencies outside the passband effectively. For the LMS-based AR
model, the same, and twice (256 ms) prediction lengths were compared with the AR model.

2.5. Participants

A total of 21 volunteers (10 males and 11 females; mean age + SD, 26.2 + 7.1) were recruited to this
study and provided informed consent for EEG analysis before they participated in the study. To record
EEG data, participants were asked to rest with their eyes closed while their EEG signals were measured
for 3 minutes. The study was conducted in accordance with the Declaration of Helsinki, and the study
was approved by the ethics committee of RIKEN (Wako3 26-24). The EEG data had been used in our
previous studies for different purposes [38–40].

2.6. EEG Recording and Preprocessing

EEG signals were recorded using an EEG amplifier (BrainAmp MR+, Brain Products GmbH,
Gilching, Germany) at a sampling rate of 1000 Hz using a 63-channel EEG cap (Easycap, EASYCAP
GmbH, Herrsching, Germany). Online low and high cutoff frequencies of the EEG amplifier were
set to 0.016 and 250 Hz, respectively. Electrodes were positioned according to the 10/10 system
with electrode AFz as the ground electrode and left earlobe as the reference electrode. EEG signals
were re-referenced to the average of the right and left earlobe and down sampled to 500 Hz offline.
All analysis was performed in MATLAB (Math-Works Inc., Natick, MA, USA) using custom-written
scripts and EEGLAB [41].

2.7. Statistical Analysis

All statistical analyses were conducted using MATLAB Statistics and Machine Learning Toolbox.
The statistical significance level was set at p < 0.05.

3. Results

The ultimate goal of this study was to replicate the AR model for time-series forward prediction
and compare the results with those of the adaptive LMS-based AR model with twice the prediction
length. First, we wanted to determine the performance of both methods to assess the phase-locking
value (PLV) at different time points [42].

For a given data segment, the difference between the original instantaneous phase and predicted
instantaneous phase was computed as shown in Figure 3. The measure yields a number between 0
and 1: with 0 reflecting the high phase variability, and 1 reflecting trials with identical phase. PLV is
defined as follows:

PLV(n) =
1
N

∣∣∣∣∣∣∣
N∑

m=1

ei(∅2(m,n)−∅1(m,n))

∣∣∣∣∣∣∣ (11)

where N is the total number of trials, m is the trial index, Ø2 is the instantaneous phase of the original
data segment, Ø1 is the instantaneous phase of the predicted data segment, and n is the time.

The statistical significance of the PLV can be tested by calculating Rayleigh’s Z value [43] as follows:

Z = NPLV2 (12)

where N is the total number of trials.
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Figure 3. Diagram of calculation method of phase-locking value (PLV) [42] between origanl and
predicted data segments. Intertrial variability of phase differences between the original and predicted
data segments from the same electrodes was calculated. PLV was calculated for three different electrodes
(O1, O2, and Oz) and at three different time points (0, 128, 256 ms), respectively.

3.1. Shorter Prediction Length

A paired t-test was used to compare the results of both methods for three different channels (O1,
O2, and Oz) at two time points (64 ms and 128 ms). Figure 4 depicts the mean values of Rayleigh’s Z
value (PLVrz) for all the subjects. Part A shows the results for the AR model, and part B reflects the
PLVrz values of the LMS-based AR model. The PLVrz decays slowly, indicating that the prediction
performance decreases with time. At 128 ms, there is a significant difference between the two methods
where the AR performs better than the LMS-based AR model. For approximately 700 trials per subject
across 21 subjects, PLVrz > 2.9957 is considered statistically significant with respect to the p < 0.05
significance level.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 16 
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3.2. Twice Prediction Length

To investigate how well both methods perform with increasing prediction length, the prediction
length was increased twice (256 ms: 128 samples). The prediction performance usually decays with
time [44]. However, the LMS-based AR model showed better prediction performance when the length
was increased, as shown in Figure 5.
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Figure 5. Representative prediction data of the AR model and the LMS-based AR model for double the
prediction length (256 ms). Original data segment is shown as the red signal, while the predicted signal
is shown in blue. (A) AR model and its respective instantaneous phase and amplitude; (B) LMS-based
AR model and its corresponding instantaneous phase and amplitude. Asterisk (*) shows the prediction
starting point.

Representative PLVrz values as a function of predicted time points are shown for three channels
(O1, O2, and Oz) in Figure 6. Both parts of the figure show a decay with respect to increasing prediction
length and crossing the significance line. For this particular subject, the AR model shows the 378 ms
(189th sample) for crossing, while the LMS-based AR model shows the 416 ms (208th sample) for
crossing the significant line.
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Both methods were compared using a paired t-test for three channels: O1, O2, and Oz. At 128 ms
and the 256 ms, the LMS-based AR model showed higher PLVrz than the AR model. Although the
performance of both methods declined with increasing prediction length, the LMS-based AR model
outperformed the AR model when the length was increased two times, as shown by their mean PLV
Rayleigh Z values (Figure 7).
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256 ms. Error bars indicate the standard deviation of mean.

3.3. Sampling Points Crossing the Significant Rayleigh’s Z Value

Next, we investigated which of the sampling points in the 800 ms interval per individual subject
crossed the significant Rayleigh’s Z value (>2.9957). When the prediction length was increased to
800 ms, the performance of both methods declined (Table 1). Amongst the 21 participants, 15 subjects
showed higher crossing values with the LMS-based AR model than with the AR model. A significant
difference was observed between the two methods for time points <400 (Table 2). At 64 ms, the AR
model surpassed the LMS-based AR model, whereas for the 128 ms, 256 ms, and 340 ms, the LMS-based
AR model outperformed the AR model. For time points greater than 400 ms, there was no significant
difference between the two methods, and their performances declined.

Table 1. Time points crossing the significant Rayleigh’s PLV for channel O1 for both the autoregressive
(AR) model and the least mean square (LMS)-based AR model. Asterisk (*) means that out of 800 ms,
the particular channel did not cross the significant value (>2.9957).

Subjects

Results of Channel O1 800 ms

Autoregressive (AR) Model Least Mean Square (LMS)-based AR Model

Time Points Time Points

1. 424 446

2. 368 392

3. 536 550

4. 492 484

5. 382 416

6. 420 578

7. 452 456

8. 678 752

9. 392 370
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Table 1. Cont.

Subjects

Results of Channel O1 800 ms

Autoregressive (AR) Model Least Mean Square (LMS)-based AR Model

Time Points Time Points

10. 694 *

11. 630 678

12. 506 556

13. 702 618

14. 524 522

15. 796 *

16. 644 598

17. 528 578

18. * 778

19. 566 598

20. 660 714

21. 452 406

Table 2. Statistical comparison of Rayleigh’s Z value for channel O1 for 800 ms prediction.

Prediction Time Point (ms) p-Value
AR Model LMS-Based AR Model

Rayleigh’s Z Value (Mean Values)

64 p < 0.001 582 568

128 p < 0.001 384 403

256 p < 0.001 113 131

340 p = 0.010 50.5 61.18

400 p = 0.070 29 35

4. Discussion

Estimation of the phase of EEG rhythms is challenging due to their low signal-to-noise ratio
and dynamic nature. In this study, we presented an adaptive method to estimate the phase of alpha
oscillations and compared the results with those of the AR model. Our aim was to improve real-time
EEG applications that depend on phase estimates. This approach estimates instantaneous frequency
and phase of an EEG segment (three channels: O1, O2, and Oz) and then forecasts the signal based on
these aforementioned methods. Two prediction lengths (128 ms and 256 ms) of the EEG segment were
investigated, and performance was evaluated in terms of PLV.

Previously, Zrenner [27] used the AR model [21]. For comparison and consistency purposes,
we applied the AR model with the same filtering method, AR model order, length of EEG data segment,
and prediction length. Additionally, we assessed how the future prediction window affected the
performance of both methods. Earlier studies used the Hilbert–Huang transform [45,46] and complex
wavelet transform [47] to extract frequency and phase information from EEG signals. These methods are
limited because the task of predicting a future signal is hard to resolve using analysis of non-stationary
data. Rendering methods such as AR assume stationarity over short time periods, therefore they
are not suitable for closed- loop and real-time applications. Our adaptive method relies on frequent
updates to cater for EEG signals with non-stationarity, thus making it possible to predict the future
signal while adjusting to dynamic changes over time.
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Considering the precise phase dynamics of an ongoing oscillation, the use of closed-loop
neurostimulation has escalated significantly in the last few years. Specifically, a prior study [48]
used Fast Fourier- and Hilbert transform-based algorithms for phase-locked stimulation of different
EEG bands. The authors proposed a short window prediction algorithm based on an intermittent
protocol with distinct windows for phase extraction and prediction. As in our study, they used the
PLV metric for performance evaluation and exceeded it to 0.6 for alpha band detection. Similarly,
they reported that performance declined relative to increasing the size of prediction length in both
methods. The major limitations of this study were a relatively small sample size and neglect to show the
functioning of a whole closed-loop system. A study published in 2018 reported three different phase
prediction methods (AR model, Hilbert-based, and zero crossing) [44]. Different performance metrics
were applied, including PLV, phase synchrony based on entropy, and degree deviation. Their study
confirmed that PLV decreases with an increasing time-window as indicated by an increase in alpha
fluctuations at longer intervals. Drawbacks of the study include a small sample size (eight), use of only
one channel (Oz), and failure to determine whether the AR or Hilbert-based methods were optimal.

Most studies estimate the phase based on standard signal processing methods. Recently machine
learning techniques, specifically deep learning methods, have been implemented in many BCI systems.
An eleven layered Convolutional Neural Network (CNN) model was used to detect schizophrenia [49].
High classification accuracy 81% for the subject and 98% for non-subject based testing were achieved.
Despite high classification accuracies, the major limitations include small data pool, and CNN is costly
to compute as compared to traditional machine learning algorithms. CNN was also implemented in
an automated detection system for Parkinson’s disease with an accuracy of 88.25% [50]. Another study
employed Principal Component Analysis (PCA)-based CNN for p300 EEG signals [51]. PCA was used
to reduce the dimension of the signal and computational cost by retaining the data features of the
original signal. A combination of the continuous wavelet transform and simplified CNN named SCNN
was implemented to enhance the recognition rate of motor imagery EEG signals [52]. Compared with
CNN, the SCNN shortens the training time and reduces the parameters; however, the classification
accuracy needs to be improved. An interesting study implemented the deep learning algorithm in
neuromarketing utilizing EEG signals for a product-based preference detection. Although the deep
neural network produced good results, a random forest algorithm yields similar results on the same
dataset [53]. Two-level cascaded CNN was proposed to detect the stego texts generated by substituting
synonyms [54]. The proposed steganalysis algorithms showed enhanced prediction performance with
an accuracy of 82.2%. A study investigated machine-learning methods to extract the instantaneous
phase of an EEG signal centered at POz [55]. Similar to our study, the authors also performed frequency
band optimization based on individual alpha frequency. To compose analytic signals, the algorithm
was split into two branches: on the first path, to generate an input signal, data were epoched only,
and on the second path, to generate an output signal, an FIR band-pass filter was applied on the data.
The second path was directly followed by Hilbert transform and then epoching as the last step before
evaluation of the model. The data was trained with an optimized filter, and instantaneous phase
recovered via application of the Hilbert transform and non-causal filtering to minimize MSE. The main
disadvantage of this procedure is the need for preliminary data prior to the principal experiment for
training purposes. Since real-time phase estimation does not provide future information, the trained
filters depend on the quality of the signal and their underlying properties. As a result, this method
does not assume unbiased phase estimation. Although deep learning techniques are highly efficient,
they require a copious amount of data for training. Another challenge is that it requires a huge amount
of processing power and, therefore, is a costly affair.

Recently, databases comprising abundant similar time-series have been available for many
applications. For such data, utilizing traditional univariate methods in time-series forecasting
leaves a great possibility for generating a precise forecast unexploited. A comprehensive review
article sheds light on utilizing CNN, Long Short Term Memory (LSTM), and Deep Belief Networks
for financial time-series forecasting [56]. Recently, recurrent neural networks, particularly LSTM
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networks, have proven to be able to surpass the traditional state-of-the-art time-series forecasting
methods. LSTM has attracted much attention and has been widely used in various domains in data
science such as forecasting of the production rate of petroleum oil [57], wind speed forecasting [58],
weather forecasting [59], and speech recognition [60]. Although the accuracy of the methods,
as mentioned above, may decline in the presence of the heterogeneous time-series data [61], we need
to further investigate the possibility of using such recent techniques, which have been applied to other
data types already mentioned.

The goal of this study was to estimate the EEG signal phase by utilizing an adaptive method.
In support of earlier studies, our results clearly show that for longer prediction intervals, the LMS-based
AR model outperforms the AR model. Even for single channel O1, the LMS-based AR model shows
higher samples crossing the significance line. Our proposed method may also be deployed as an
alternative to the AR model, when longer prediction length is the key. The LMS-based AR model offers
a feasible approach for mimicking the results of previous studies while incurring faster adaptation
to the underlying EEG signal at lower computational costs. Limitations of the current study include
the need to apply (a) the proposed method for different EEG rhythms, (b) performance evaluation in
some behavioral tasks (rather than a simple case of resting state), and (c) single performance metric
(i.e., PLV). Further work will involve overcoming the limitations and implementation in a real-time
scenario, such as by closed-loop stimulation or exploring new vistas for alpha oscillations.

5. Conclusions

Our analytical approach to estimate EEG phase relies on instantaneous alpha oscillations using
the conventional Yule–Walker-based method (AR) and the adaptive method (LMS). The LMS-based
AR model serves at least two main purposes. First, it avoids pre-existing knowledge of the exact
signal stochastic, which is rarely available in practice when a learning mechanism is used to estimate
the required signal statistics. Second, it possesses a tracking mechanism to monitor the variation in
the EEG signal. By comparing these two methods, our study showed that the adaptive LMS-based
AR model outperforms the AR model in real time for longer prediction lengths. This new approach
may raise the possibility of EEG phase prediction with its simplicity and low computational cost.
In summary, our proposed technique can help in neurostimulation applications, such as EEG phase
prediction aids in versatile brain-machine interface applications.
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