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Abstract: In rubber bumper design, the most important mechanical property of the product is the
force–displacement curve under compression and its fulfillment requires an iterative design method.
Design engineers can handle this task with the modification of the product shape, which can be
solved with several optimization methods if the parameterization of the design process is determined.
The numerical method is a good way to evaluate the working characteristics of the rubber product;
furthermore, automation of the whole process is feasible with the use of Visual Basic for Application.
An axisymmetric finite element model of a rubber bumper was built with the use of a calibrated
two-term Mooney–Rivlin material model. A two-dimensional shape optimization problem was
introduced where the objective function was determined as the difference between the initial and the
optimum characteristics. Our goal was to integrate a surrogate model-based parameter selection of
local search algorithms for the optimization process. As a metamodeling technique, cubic support
vector regression was selected and seemed to be suitable to accurately predict the nonlinear objective
function. The novel optimization procedure which applied the support vector regression model in
the parameter selection process of the stochastic search algorithm proved to be an efficient method to
find the global optimum of the investigated problem.

Keywords: rubber bumper; hyperelastic material model; finite element method; shape optimization;
stochastic search algorithm; support vector regression; surrogate model

1. Introduction

Rubber bumpers built into air spring structures perform several critical tasks, such as working
together with the air spring as a secondary spring, thus modifying the original characteristics of
the air spring when pressed together. In the product design and development cycle, engineers are
faced with several predefined requirements that are difficult to fulfill and time consuming, and thus
remain a challenging task. The product investigated is applied in the air springs of lorries, where the
force–displacement characteristic for the compression load is one of the most challenging technical
requirements. Design engineers manage to achieve the required working characteristics by modifying
the shape of the product, which leads to an iterative design process. This process is termed shape
optimization whose simplest solution is to determine the optimal geometry through a series of trials
with a study called “what if,” based on design engineers’ experiences. Owing to the continuum
mechanics background and hyperelastic material model, available trials can be carried out by applying
a finite element analysis. If there is an opportunity to parameterize the process from creating a geometry
to obtaining the results, then conversion that meets the technical requirements can be automated;
furthermore, there might also be an opportunity to use optimization algorithms in the design process.
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Design optimization is an engineering design methodology that uses a mathematical formulation
of a design problem to support the selection of the optimal design among many alternatives [1].
Several researchers have investigated shape optimization of rubber products, out of which [2,3] are
the least efficient “trial and error” procedures. Many articles combined finite element analysis with
a variety of optimum search methods, such as one presented by Kaya [4] involving a differential
evolution algorithm-based shape optimization of the 2D rubber bushing. Interaction of a genetic
algorithm and finite element code was used in the shape optimization of a rubber bumper for a new
pickup vehicle [5]. A bush-type engine mount using a parameter optimization method was designed
by Kim [6], and Fletcher’s method using the concept of quadratic convergence and was applied as an
optimization algorithm.

Several papers can be found where metamodel-based design optimization was used for rubber
product design. The problem of a rubber component design for automotive application by changing the
shape with five design variables was discussed by Previati et al. [7]. The optimization of the bushing was
performed concerning two objectives, mass reduction and the fatigue life of the component. The finite
element model of the bushing was used to simulate about 200 different combinations of parameters for
four different material models. These simulations were used to calibrate the parameters of a series
of interpolating functions. A parameter optimization methodology for a rubber mount, based on
finite element analysis and the genetic neural network model, was proposed by Li [8]. The orthogonal
experiment table was adopted to design the geometric parameters of the samples on which the
numerical analyses were run. The results of finite element analyses were used as samples to train the
error backpropagation neural network model which defines the nonlinear global mapping relationship
between the geometric parameters of the rubber mount and its primary stiffness in the three principal
directions.. Multiobjective shape optimization of a rubber isolator of an automotive cooling module
was performed to maximize fatigue life and vibration isolation. The response values of interest were
evaluated with the integration of various computer-aided engineering tools. The analysis procedure
was automated using a commercial process integration and design optimization tool, therefore the
cycle time of the complex analysis was reduced. A regression-based sequential approximate optimizer
was used successfully to obtain the optimal shapes of the rubber isolators for two different cooling
module types [9].

Optimization methods can be divided into local and global optimum search procedures. Most local
search procedures require the calculation of gradient while most optimum search ones are direct and
belong to gradient-free optimization algorithms. Applying the latter kind of algorithms needs to
meet few requirements, as they only use function value and implementing them is generally simpler.
The direct optimal algorithm includes localized stochastic search, the Nelder–Mead method (simplex
method), simulated annealing, tunneling, and several other methods [10]. The random search methods
for optimization are based on randomly exploring the design area to find a point that minimizes the
objective function. These techniques have all or some of the following advantages relative to most
other search methods. The advantages, like ease of programming, inexpensive realization, flexibility,
or reasonable computational efficiency, were mentioned by Karnopp [11]. In direct random search,
several methods are known, depending on the field of application for noise-free or noise problems.
For noise-free object function, three algorithms were presented in [12]. One of the presented methods
is a simple random or blind search. In this case, uniformly distributed random numbers were created
above the range of each design variable. This is a unique algorithm from the point of view that it does
not contain any adjustable algorithm coefficients that need to be selected by the user. Localized and
enhanced localized random search methods are slightly more sophisticated in that random sampling
depends on the position of the current best-estimate object function.

The most primitive version of the localized random search was applied by Mátyás [13]. This utilizes
selection of the next point from a normally distributed hyperplane or hypersphere and then moving
to a better position. This technique can be improved in several ways based on observations. One
of them is that if the newly selected point results in a higher function value, the opposite direction
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can often lead to a lower objective function. The other observation is that successive success or
failure searches in a certain direction should bias or discourage subsequent searching toward that
direction. It could be handled with the use of a bias term as the mean value of the random vector [14].
In [15], a modified algorithm such as enhanced localized random search was introduced with these
guidelines. Luus-Jaakola [16] utilized a local search algorithm with the use of pseudorandom numbers
over an exponentially decreasing search region. To test its effectiveness, mathematical, chemical, and
engineering examples were chosen.

Metamodel methods applied to replace costly simulation engineering tasks are termed “surrogate
models” in the English literature [17]. Generally, the main goal is to replace the original model with
one very similar that requires a lower calculational time. There are several metamodels known, such
as the simple and adaptive response surface, kriging method, radial basis function, multivariable
adaptive spline regression, and neural network or support vector machines (SVM) [18]. In machine
learning, SVM is a supervised learning algorithm that can efficiently perform a nonlinear classification
using the so-called kernel trick [19]. Based on the SVM algorithm, support vector regression (SVR) was
introduced in [20]. This regression technique has advantages in high dimensionality spaces because
SVR optimization does not depend on the dimensionality of the input space. Therefore, it is widely
used for function approximation, regression estimation, and signal processing [21,22].

Three mathematical problems and two engineering design problems were solved with SVR
efficiency and accuracy of which were compared with other metamodels such as kriging, radial basis
function (RBF), and polynomial regression. Latin hypercube design was used as a design of the
experiment technique. The results showed that in all problems the introduced SVR method performed
more efficiently than the other methods [23]. A two-variable aerodynamic problem was introduced
in [24] where the quasi-Monte Carlo algorithm was used to determine eight sample points. Poor
space-filling properties of the quasi-Monte Carlo sampling left a noticeable gap in the data. In this
area, inaccuracies were found in the prediction of the kriging and RBF model, and only the SVR
method mitigated this problem. In [25,26], vehicle crashworthiness designs were presented, where
SVR was utilized to construct crashworthiness responses. It was demonstrated that SVR models with
Gaussian RBF and exponential RBF have good generalization performance compared to other types of
kernels. SVR outperforms polynomial response surface, radial basis neural network, and kriging with
good accuracy in approximating the crashworthiness responses. A multiobjective crashworthiness
design of a tailor-rolled blank thin-walled structure was constructed based on the ε-support vector
regression (ε-SVR) technique and nondominated sorting genetic algorithm-II. The SVR parameters were
further optimized with a genetic algorithm to improve the predictive accuracy of ε-SVR [27,28]. Shape
optimization of rubber bumpers, where obtaining data with finite element simulation is independent on
the optimization algorithm, was investigated [29–32]. Optimal shape was determined by minimizing
the objective function by calculating differences in work energy. Design options obtained from design
space, such as learning points, were applied. The SVR model was applied to determine the given values
of the objective functions of further constructions. Through this metamodel, the optimal shape was
determined. The SVR method was investigated by Huri and Mankovits [33] to predict the optimum
shape of a rubber jounce. From the results, the cubic kernel function showed the best match, therefore
it was chosen for the prediction of each combination of design variables. From the predicted values,
the optimum shape was selected, which was sufficiently accurate if the number of the learning points
was at least 22. This observation is used in the current rubber product optimization process.

Based on the professional papers, the local stochastic search method is suitable for finding the
global optimum of engineering optimization tasks. However, it is vital to find the right size of the search
space to achieve good results. Due to the stochastic procedure, it is to be noted that one cannot conclude
whether the adjustment is correct by simply running one instance. From the literature review, it can be
seen that none of the research deals with setting the parameters of the applied optimization algorithms.
The parameters highly influence the required finite element run and the accuracy of the determined
optimum. All the case studies indicated that if enough set of training vectors are supported, the SVR
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is a promising metamodel technique for highly nonlinear engineering applications. The selection
of the appropriate type of kernel function and hyperparameter choice is of vital importance for the
right assessment. This article first introduces what considerations are necessary for the finite element
analysis of axisymmetric rubber products, especially when exposed to pressure with special attention
to the selected material model type and its parameters. The rubber bumper investigated in the paper
is a case study based on an industrial design problem. Secondly, the task of two-variable shape
optimization of a rubber bumper is described where the objective function values of 22 uniformly
distributed samples from the design area were determined from the results of finite element analysis.
The SVR surrogate model with cubic kernel function was trained utilizing the sampled experiments,
whereby the relationship between the design variables and objective function values was described.
The pre- and postprocessing of the model were automated in the Visual Basic for Applications (VBA)
language. Owing to this method, the local stochastic search algorithm was implemented and run with
basic options for the shape optimization task. This research aims to investigate the parameter selection
of local search algorithms for design optimization of an automotive rubber bumper. The novelty of
our research is that the trained SVR surrogate model was integrated into the size selecting process
of the search space of the algorithm. Finally, using the stochastic search algorithm and the adjusted
parameter, the finite element model was directly run to solve the shape optimization of the rubber
bumper. Later on, to validate the goodness of the procedure, it is compared with the initial algorithm
in terms of precision and efficiency.

2. Materials and Methods

2.1. Hyperelastic Material Model of the Investigated Rubber Product

Rubber behaves as a nonlinear, elastic, isotropic, and incompressible material, which can be
described accurately with a hyperelastic constitutive model. Within this model, several material
models and material constants can be found. The material models for rubbers are generally given
by the strain energy potential. A successful finite element simulation of rubber parts hinges on the
selection of an appropriate strain energy function and the accurate determination of material constants.
Because of material incompressibility, the strain energy function can be divided into two parts [34]:

W = WD
(
I1, I2

)
+ Wb(J), (1)

where Wb(J) denotes the volumetric terms of the strain energy function and J is for the Jacobian and
WD

(
I1, I2

)
is for the deviatoric terms of the strain energy function. The polynomial form of the strain

energy potential is based on the first I1 and second I2 strain invariants of the right Cauchy–Green
tensor [35]

W =
N∑

i+ j=1

ci j
(
I1 − 3

)i(
I2 − 3

) j
+

N∑
k=1

1
dk
(J − 1)2k, (2)

where determination of ci j and dk material constants are required in a material model. The dk material
compressibility parameter can be calculated as

dk =
2
κ

, (3)

where κ is the bulk modulus.
Mooney–Rivlin, Yeoh, and neo-Hookean material models are available within the polynomial

form of the strain energy potential. There are two-, three-, five- and nine-term Mooney–Rivlin
models. With N = 1 substitution, the expression of the polynomial form is equivalent to the two-term
Mooney–Rivlin model:

WMR = c10
(
I1 − 3

)
+ c01

(
I2 − 3

)
+

1
d
(J − 1)2. (4)
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The exact mixture of the styrene–butadiene rubber (SBR) material is unknown for the investigated
product; the manufacturing instruction prescribes 90 ± 5 Shore A hardness. Measurements on the base
material are needed to determine the material constants used for finite element analysis. The main
load of the rubber bumper is pressure, therefore a compression test and curve-fitting process were
performed by us on rubber specimens according to [36,37]. The two-term Mooney–Rivlin model with
c10 = 1.28801 MPa, c01 = 1.1371 MPa, and κ = 1000 MPa values were selected for the finite element
investigation of the rubber part. The determined models were used for the finite element analysis of
the specimen and the exactness of parameters was compared with experimental data.

2.2. Finite Element Model of the Rubber Bumper Under Compression Load Set

The geometry of the investigated rubber specimen is axisymmetric; furthermore, the boundary
conditions are symmetric as well, thereby the deformation of the shape is independent of the ϕ axis.
In such a case, it is worth choosing the axisymmetric element (isoparametric quadrilateral elements)
for meshing. The size of the element was 1 mm. The investigated geometry can be seen in Figure 1
and it was created with H = 40 mm, α = 3, D1 = 77 mm and D2 = 15 mm dimensions. Under
working conditions, the rubber bumper comes into contact on the bottom and on the top with flat steel
plates. Therefore, frictional contact was defined between the surfaces of the product and the steel parts.
The coefficient of static friction µs = 0.6 was selected according to [38]. For boundary conditions, it
was given 12 mm prescribed displacement for the top edge of the upper one steel plate; furthermore,
the bottom curve nodes on the lower steel one were constrained along the z axis. Finally, finite element
analysis was run. As a result, Figure 1 shows the deformation state of the rubber bumper while the
curve named “Initial characteristics” in Figure 2 shows the load–displacement characteristics of the
investigated product.
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(b) Finite element model of the rubber bumper and the deformation state obtained at 12 mm
displacement load.
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2.3. Two-Dimensional Shape Optimization Problem

In many cases, the dimensions of the rubber bumper built-in air spring are constrained by other
parts. During the current investigation, the product’s height H = 40 mm and draft angle α = 3 were
fixed while the outer diameter D1 and hole diameter D2 were design variables (Figure 1). Thus, in the
shape optimization, the design variables are defined in mm, according to the following conditions:

D = (D1; D2), where
{

D1 ∈ [70, 71, . . . 130]
D2 ∈ [10, 11, . . . 60]

and x1 −
D2

2
≥ 15, (5)

where vector D contains design variables of possible construction and x1 is the coordinate of point P
(Figure 1):

x1 =
D1

2
−Htanα. (6)

The goal of the shape optimization process is to minimize the difference between the initial
characteristics and the optimum characteristics (Figure 2). This research investigated the applicability
of localized random search algorithm in the optimization process, therefore the desired characteristics
determined from predefined an optimum shape Dopt = (108; 33) mm.

The finite element analysis was solved in 100 steps with every 10th step created as output.
The difference was calculated as the sum of the square error (SSE):

E(D)FEA =
∑10

i=1

(
Fi

(
Dopt

)
− Fi(D)

)2 (
kN2

)
, (7)

where E(D)FEA is the error value in an investigated design point, Fi
(
Dopt

)
is the ith results of required

compression force value in the optimal design point, and Fi(D) is the ith results of the required
compression force value in the initial design point. Table 1 contains the calculated error value for
the initial design point D = (77; 15) mm. Function E(D) is considered on Ω ∈ Rn, the set of possible
design variables vectors D. The objective function of the shape optimization process is to minimize
this error value:

E
(
Dopt

)
= min

D∈Ω
E(D). (8)
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Table 1. Calculated cost function value in different design points.

D1 (mm) D2 (mm) E(D)FEA (kN2)

Optimum Shape 108 33 0
Initial Shape 77 15 7911.2

Dopt, best from 128 DP 120 55 3.267

3. Results and Discussion

3.1. Investigating the Shape of The Objective Function above the Design Area

With the increment of 5 mm along with the design variables, 128 vertex pairs (Design Points, DP)
were selected from Ω. With the use of the introduced finite element model of the rubber bumper, it was
possible to calculate the E(D)FEA values for each vertex pair. To accelerate the finite element model
pre- and postprocessing, the parameterization of these processes was necessary. Automation of the
whole process was feasible with the use of Visual Basic for Applications (VBA), which allowed us to
directly access Femap from Excel. Thereby, the finite element model pre- and postprocessing were
controlled with a macro running in Excel, and E(D)FEA values were determined for each vertex pair.

The objective function values are plotted above the design area, which is shaped like a valley
(Figure 3). Table 1 contains the best design point Dopt = (120; 55) mm relating to the smallest objective
function E

(
Dopt

)
FEA

= 3.267 kN2 value from the 128 vertex pairs investigated. As it can be seen, the
error value was small compared to the initial shape, however, and the determined optimum point was
far away from the known optimum. This indicated that convergence to the global optimum was not a
trivial task.
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3.2. Train Support Vector Regression Model

The objective of machine learning is to discover a function E(D)FEA = E(D)SVM that best predicts
the value of E(D)FEA associated with each value of D. At the first step, 22 vertex pairs (Learning Points,
LP) were selected from Ω according to Figure 4, then E(D)FEA values were determined by the use of
finite element analysis. Thereby, the training set was produced for the machine learning algorithm.
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(a) (b) 

 

  

Figure 4. (a) The selection of learning points from the design area. (b) Comparison of the finite element
analysis (FEA) calculated objective function values with the support vector regression (SVR) model
calculated predicted responses in the learning points.

With the use of Regression Learner application built into Matlab, it is possible to perform an
automated training to search for the best regression model type, including linear regression models,
regression trees, Gaussian process regression models, support vector machines, and ensembles of
regression trees. Manual regression model training was run without a validation data set for the
support vector machine. The goodness of the prediction highly hinges on the kernel function type.
According to [32], the cubic kernel function was selected because this method’s root mean square
error (RMSE) value was the lowest on the predicted set. For the fitting process ε = 0.001 and kernel
scale = 1 values were selected while the rest of the hyperparameters were selected automatically by
the Regression Learner application. The predicted response ESVM of the cubic SVM model is plotted
against the true response EFEA, see Figure 4b. A perfect regression model has a predicted response
equal to the true response, so all the points lay on the diagonal line. The vertical distance from the line
to any point is the error of the prediction for that point. The predictions are scattered near the diagonal
line, which means the SVR model accurately predicts the nonlinear objective function values.

Using the trained cubic SVM model, predictions were made for each combination of integer values
of design variables. Table 2 shows the smallest predicted object function value and the associated
design variables. Based on the results, the SVM-based design optimization is not feasible to find the
global optimum of a valley function. Predicted objective function values are illustrated above the
design space according to Figure 5. It can be pointed out that the trained SVM model overlaps with
the objective function values calculated by finite element analysis in point 128. The SVM model with
the cubic kernel function was trained by using 22 support vectors. As a result, it seemed suitable for
approaching the values of the nonlinear objective function.

Table 2. The predefined and the support vector machines (SVM) model-based optimum point.

D1 (mm) D2 (mm) E(Dopt)FEA (kN2) E(Dopt)SVM(kN2)

Optimum Shape 108 33 0 -
SVM 95 10 390.91 −772.83
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be provided as a precondition of stopping criterion, meaning cost of the algorithm. To investigate the
operation of the algorithm, σ = 20 mm and mmax = 5000 values were selected. The search method was
run for the two-variable shape optimization task for the rubber bumper as outlined in the previous
section. The program written was operated for running the shape optimization task in an automatized
closed system by providing the parameters. As a result, it determined the optimal objective function
value as well as its other relevant values.

Table 3 contains better function values accepted in m iteration by the algorithm and its related
geometric variable values. Figure 6 visualizes the change in the location of the better function accepted
by the optimization method in design space, as well as the starting and end points. Considering the
results, the efficiency of the algorithm was low, as it was not suitable for identifying better value than
E
(
Dopt

)
FEA

= 0.051 kN2 even after passing m = 1250 iterations. The optimum revealed, based on
Figure 6, could not approach the global optimum even after m = 5000 function calculation, although it
managed to approach it.
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Table 3. Better function values accepted by the local search algorithm.

m D1 (mm) D2 (mm) E(D)FEA(kN2)

0 89.851 31.215 4828.676
2 109.522 25.262 748.357
4 113.054 44.676 25.124
17 113.506 43.719 1.057

427 111.375 39.416 0.654
514 107.389 31.960 0.267
1250 109.184 35.372 0.051

 

3 

 

  Figure 6. Investigated design points by the local search algorithm.

3.4. Adjustment of Local Search Algorithm Parameters

The optimization algorithm run in the previous section is suitable for solving shape optimization
tasks. However, the question arises if there is an adjustment appropriate for increasing the precision
and efficiency of the algorithm. The main goal of this section is to adjust the parameters of the local
search algorithm for the investigated shape optimization task. The stochastic search algorithm can only
find the acceptable environment of the global optimum with an appropriately high number of iterations,
which means a computationally expensive procedure. Calculation of the finite element model is a
time-consuming task, which makes it impossible to investigate the search algorithm parameters. Model
SVM, which was trained before, provides a suitable approach for describing the relation between the
design variables and objective function values, while running it is less time consuming. By running
model SVM, there is an opportunity to test the effects of adjusting the algorithm parameters in terms
of optimal search precision and efficiency. By doing so, we can observe the behavior of the original
model on a well-approximating function. While training the algorithm, the σ ∈ [ 1; 5; 10; 30] standard
deviation is selected parameter by parameter. Table 4 includes algorithms of different settings between
P-I and P-IV.

Table 4. Different settings of local search algorithms.

P-I P-II P-III P-IV

maximum iteration number, mmax 5000 5000 5000 5000
standard deviation, σ (mm) 1 5 10 30

The starting point is chosen at random from the design area, while the search direction of the
algorithm is stochastic too, whereby each adjustment is run ten times. The number of the better function
accepted after the starting point should be marked by k. Table 5 includes the last accepted k value and
m iteration number belonging to it, as well as the target function value E

(
dopt

)
SVM

belonging to the
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optimum location that can be found on the surrogate model. Based on the results, it can be pointed
out that the algorithms got stuck in the local optimum while being run several times. The search
process adjusted by P-IV found the optimum environment expected in all ten cases of being run, but
not in a sufficiently good environment. This proves the fact that it lags behind the minimum values
found during the P-I adjustment. There were even cases when the algorithm did not manage to find a
single better solution after iteration 370. This was mainly caused by the big search space, due to which
the chance to find a better solution while approaching global optimum converges to zero. The only
solution seems to tighten the search space. By applying P-IV adjustment, the algorithm moves out its
local minimum environment during 1000 iterations in 8 cases out of 10, whereas it occurred in 9 cases
out of 10 during 2000 iterations.

Table 5. Optimal objective function values with search algorithms run with different adjustments.

P-I P-II P-III P-IV
Test
No. k m

E(Dopt)SVM
(kN)2 k m

E(Dopt)SVM
(kN)2 k m

E(Dopt)SVM
(kN)2 k m

E(Dopt)SVM
(kN)2

1 14 2578 −707.86 17 3202 −707.86 13 2523 −767.65 9 4528 −754.88
2 4 107 −707.85 10 280 −707.81 14 3992 −707.81 12 3123 −755.79
3 19 1762 −707.86 10 474 −707.73 4 21 −707.77 5 3723 −755.96
4 47 2412 −707.86 15 2588 −771.93 5 723 −707.78 15 4847 −747.06
5 59 2209 −707.86 12 4288 −770.20 12 2679 −767.12 11 4076 −771.67
6 69 4838 −707.86 14 4635 −772.15 8 1626 −707.78 5 2165 −741.28
7 13 1812 −772.86 19 515 −707.70 18 3224 −707.77 9 4601 −756.77
8 47 2385 −707.86 12 424 −707.71 15 2626 −766.46 3 370 −757.06
9 38 1311 −772.87 15 1122 −771.10 11 911 −707.81 8 470 −752.52

10 48 2437 −772.60 10 945 −707.83 10 4490 −707.85 11 4935 −753.29

3.5. Local Search Algorithms with Search Space Tightening

Based on research carried out in the previous section, it can be pointed out that no optimal value
can be defined for the size of the search space. In the beginning, a large space is needed for mapping
the design space and avoiding getting stuck in the local optimum. On the other hand, a smaller space
is needed in the environment of the global optimum for the algorithm to have a better chance to
find an optimal solution. Decreasing search space may happen through various functions such as
an exponential function or after a manually selected iteration number. Based on Table 5, the method
adjusted by the P-IV option was the only one suitable to move out its local environment during every
instance of being run, which took place in most cases following 1000 iterations. As a result of the
iteration number exceeding it, it was possible to decrease the search space as the algorithm had possibly
managed to move out of its local environment, looking for a better solution in a global optimum
environment. The main objective of this section, therefore, was to decrease σ = 30 mm value of standard
deviation exceeding the prescribed iteration number, as long as it is still being run according to cases
of P-V to P-VIII, as seen in Table 6.

Table 6. Adjusting local stochastic search algorithm by tightening search space.

P-V P-VI P-VII P-VIII

iteration number start, mstart 1 2001 1 1001 1 2001 1 1001
iteration number stop, mstop 2000 5000 1000 5000 2000 5000 1000 5000
standard deviation, σ(1) (mm) 30 1 30 1 30 0.5 30 0.5
standard deviation, σ(2)(mm) 30 1 30 1 30 0.5 30 0.5

Table 7 suggests that algorithms P-V and P-VII were suitable for finding the global optimum in the
adjustments. The value of the smallest objective function was determined by algorithm P-VIII, and yet
performance of algorithm P-VII was best by far in terms of average values. It proved the most precise
procedure out of the algorithms investigated. Concerning the results of running this algorithm, it
reached the objective function value E

(
dopt

)
SVM

< −772 kN2 during the 2319 iteration, even in the worst
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case. It is worth noting that the random number generated with a standard deviation σ = 0.5 mm after
4000 iterations means a too large a search space near-global optimum, as the algorithm only managed
to find a better function value only after one case of being run.

Table 7. The values of the optimal objective function with algorithms run by different adjustments.

P-V P-VI P-VII P-VIII

Test
No. k m

E(Dopt)SVM
(kN)2 k m

E(Dopt)SVM
(kN)2 k m

E(Dopt)SVM
(kN)2 k m

E(Dopt)SVM
(kN)2

1 18 3566 −772.50 13 4752 −707.86 13 2454 −772.82 18 3800 −772.84
2 20 4884 −772.67 10 3379 −772.87 16 3729 −772.84 14 4615 −772.52
3 15 2212 −772.29 22 2378 −772.32 14 2319 −772.80 17 1266 −772.89
4 9 2022 −771.61 17 3601 −707.86 11 3097 −772.49 11 3270 −707.86
5 15 2549 −772.78 8 4125 −707.86 19 3892 −707.86 13 3004 −707.86
6 9 3682 −707.86 13 2810 −772.63 11 4643 −772.86 18 1144 −772.72
7 19 3851 −772.67 10 4120 −707.86 21 2600 −772.77 16 2462 −772.72
8 20 2825 −772.76 13 1770 −772.67 16 3268 −772.73 23 3227 −707.86
9 15 3756 −772.80 16 4896 −772.39 21 3889 −772.60 13 2591 −772.89

10 17 3768 −772.36 16 4844 −772.01 11 2173 −772.74 19 1758 −772.85

avg. 16 3312 −766.03 14 3668 −746.64 15 3206 −766.25 16 2714 −753.3

3.6. Direct Optimization by Running the Parameterized Finite Element Model

The main goal of this section is to run directly the local stochastic search algorithm trained on the
parameterized finite element model created for shape optimization. For adjustments of the algorithm
based on cases of it being run in the previous section, see Table 8.

Table 8. Adjustment of local stochastic search algorithm by tightening search space.

P-IX

iteration number start, mstart 1 2001
iteration number stop, mstop 2000 3000

standard deviation, σ(1) (mm) 30 0.5
standard deviation, σ(2) (mm) 30 0.5

Table 9 includes better function values and their geometry variable values accepted by the
algorithm, while Figure 7 visualizes the path done by the algorithm. Based on the results of it being
run, we managed to find an appropriate environment for the global optimum when the function was
run 3000 times. Based on the results, the objective function values were equal until three decimals were
reached, even when the variables were within one decimal to the known optimum value. The effect of
tightening search space coincided with what was experienced with the surrogate model. The optimum
found by the algorithm occurred in the m = 2373 iteration, which involves the fact that the random
number generated with the σ = 0.5 mm standard deviation meant a search space that was too large
while on the way to a global optimum.
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Table 9. Better function values accepted by P-IX adjusted local search algorithm.

m D1 (mm) D2 (mm) E(D)FEA

0 73.237 36.540 14,624.63333
1 76.240 20.204 9106.38117
2 90.939 42.385 7081.81690
3 119.767 46.106 603.32863
4 105.709 37.932 482.39861
6 114.168 38.937 249.21546
18 108.312 32.409 8.77936
89 119.990 54.945 3.30837

204 115.371 46.689 2.16783
338 109.392 35.507 0.54223
410 106.942 30.752 0.06769

1056 108.970 34.950 0.03469
2073 108.861 34.704 0.03287
2158 108.738 34.448 0.02950
2178 108.562 34.174 0.01972
2202 108.511 34.070 0.01649
2219 108.338 33.685 0.00402
2307 107.900 32.816 0.00258
2373 107.966 32.937 0.00025

 

4 

 
Figure 7. Investigated design points by the P-IX adjusted local search algorithm.

Optimal variable values found by the basic adjustment local search methods were compared with
ones found by the local search method trained on surrogate models, and they were related to optimal
design variable values (Table 10). Regarding the results, the algorithm adjusted by P-IX was several
orders of magnitude more precise in determination of the objective function value, even with a lower
iteration number.

Table 10. Calculated cost function values in different design points.

m D1 (mm) D2 (mm) E(Dopt)FEA(kN2)

Optimum Shape 108 33 0
Stochastic Search 5000 109.184 35.372 0.051

Stochastic Search, P-IX 3000 107.966 32.937 0.00025

4. Conclusions

Foremost, the axisymmetric finite element model for the compression test of the automotive
rubber bumper was built with the use of a calibrated two-term Mooney–Rivlin material model.
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A two-dimensional shape optimization problem was introduced where the objective function was
determined as the difference between the initial characteristics and the optimum characteristics. As a
metamodeling technique, SVM was selected and 22 support vectors were supported for the training
process, which proved to be enough. Using the trained cubic SVM model, predictions were made for
each combination of integer values of design variables. Based on the results, the SVR model with a
cubic kernel function was found to be suitable to accurately predict the nonlinear objective function
in case of rubber bumper engineering design. Running the trained SVM model required a lot less
calculation than the finite element model, so the right adjustment of the stochastic search method
parameters happened on this surrogate model. The method described above (surrogate model-based
parameter selection of the optimization algorithm) was suitable for determining the local search
algorithm parameters by running 22 extra functions. The algorithm adjusted in this way was more
suitable for determining the objective function values, despite being run 2000 times less frequently
than the optimization run at basic adjustment. The algorithm was capable of carrying out similar tasks
without human interaction to determine the optimum, while in other cases readjustment of parameters
might be justified. Owing to the opportunity of axisymmetric simplification, the running time of the
finite element model only took 25 s on an Intel Core i5-8250U CPU. This computational need with 3000
iterations is below 21 h. This time allows a design engineer to solve axisymmetric two-variable rubber
shape optimization tasks.

The introduced optimization process can be implemented in design practice relatively simply.
The results can be obtained in an engineering sense, with accuracy and calculation efficiency; therefore,
the applicability can be considered by other researchers. The SVR model-based parameter selection is a
relatively new method that can be automated, thus it can be a useful tool for engineers. The algorithm
with the adjusted parameters can be used directly in the shape optimization of rubber bumpers.
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