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Abstract: This study focuses on the issue of logistics Unmanned Aerial Vehicle (UAV) distribution in
urban environment and an automatic delivery system to support the delivery of packages. It can
effectively integrate existing facilities and be easily deployed. There is a scheduling problem in
this system with multiple UAVs and multiple flights. We manage to optimize the two objectives
of customer satisfaction and total completion time. The scheduling problem is formulated to a
Mixed Integer Linear Programming (MILP), and we propose a multiple objectives decision-making
method. A special encoding method suitable for the small scale problem is presented and Variable
Neighborhood Search (VNS) algorithm framework is used to generate the approximate optimal
solution for this problem. In experiments, we calibrate the important parameter and analyze the
robustness of the algorithm. The experimental results show that the proposed algorithms are efficient
for this problem.

Keywords: logistics; unmanned aerial vehicle; simulated annealing; variable neighborhood search

1. Introduction

With the popularity of the Internet, more and more people choose online shopping. A large number
of online orders have brought great pressure to the express industry. Therefore, the transformation
of the production pattern needs to be carried out for traditional delivery companies. As one of the
autonomous things, UAVs are considered to be the top strategic technology for logistics industry [1].
Both governments and enterprises have been heavily investing in the development of Unmanned
Aerial Vehicles (UAVs) [2]. Recently, with the maturity of UAV technology, it has been widely
used in various fields such as communication platforms, precision agriculture, surveillance and
monitoring, and cargo delivery; the UAV-assisted logistics systems have drawn significant research
interests [3]. It is worth noting that in different application scenarios, the number of UAVs included in
the UAV-assisted system is different (see Figure 1 for an illustration). Teams of UAVs can be dispatched,
for instance, as providing service to disaster-affected areas, detecting environment conditions or as an
aerial sensor network, collecting data in large areas. UAV logistics is also an emerging application
scenario, and most commercial UAV logistics auxiliary systems are exactly multi UAV cooperative
systems, whose execution efficiency depends on the number of UAVs. It uses UAVs to improve the
efficiency of the logistics distribution and schedule, reduce operating costs, and optimize the link of
terminal distribution.

Appl. Sci. 2020, 10, 3575; doi:10.3390/app10103575 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4392-3599
http://dx.doi.org/10.3390/app10103575
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/10/3575?type=check_update&version=2


Appl. Sci. 2020, 10, 3575 2 of 16Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 17 

 

Figure 1. Application areas over a range of distance vs. number of Unmanned Aerial Vehicles 

(UAVs). 

In this paper, we mainly present an automatic delivery system for logistics UAVs in urban 

environment. The algorithm frameworks based on Variable Neighborhood Search (VNS) are 

proposed to solve the small scale scheduling problem of this system, and we consider several 

important optimization objectives. In the traditional logistics industry, all packages that need to be 

delivered are stored in the trans-shipment depot. These packages in the trans-shipment depot are 

classified by their destinations. Multiple couriers deliver these packages, and each courier is 

responsible for the delivery of packages within a certain area. In the above system, a group of UAVs 

are used to replace a Courier. Some autonomous express cabinets are set up near the package’s 

destinations. These UAVs drop some packages from the trans-shipment depot into express cabinets 

according to the task scheduling results. The aforementioned UAVs and express cabinets are all 

connected to the Internet. The execution status of the system is obtained by the dispatch center in real 

time. The dispatch center performs the task scheduling at intervals and reports the status of the 

system to the relevant staff. The execution process of the system is shown in Figure 2: the dispatch 

center uploads the data to the Internet. The trans-shipment depot S_0, express cabinets from S_1 to 

S_9, and UAVs from u_1 to u_5 all connected with the Internet. Packages are sorted in S_0 according 

to instructions downloaded from the Internet; UAVs and express cabinets can realize reasonable 

dispatching through the interaction data from the dispatch center. 

 

Figure 2. The execution process of the delivery system. 

  

1

10

100

10 100 1000 10000

Number of UAVs

Distance in m

Figure 1. Application areas over a range of distance vs. number of Unmanned Aerial Vehicles (UAVs).

In this paper, we mainly present an automatic delivery system for logistics UAVs in urban
environment. The algorithm frameworks based on Variable Neighborhood Search (VNS) are proposed
to solve the small scale scheduling problem of this system, and we consider several important
optimization objectives. In the traditional logistics industry, all packages that need to be delivered
are stored in the trans-shipment depot. These packages in the trans-shipment depot are classified
by their destinations. Multiple couriers deliver these packages, and each courier is responsible for
the delivery of packages within a certain area. In the above system, a group of UAVs are used to
replace a Courier. Some autonomous express cabinets are set up near the package’s destinations.
These UAVs drop some packages from the trans-shipment depot into express cabinets according to
the task scheduling results. The aforementioned UAVs and express cabinets are all connected to the
Internet. The execution status of the system is obtained by the dispatch center in real time. The dispatch
center performs the task scheduling at intervals and reports the status of the system to the relevant staff.
The execution process of the system is shown in Figure 2: the dispatch center uploads the data to the
Internet. The trans-shipment depot S_0, express cabinets from S_1 to S_9, and UAVs from u_1 to u_5
all connected with the Internet. Packages are sorted in S_0 according to instructions downloaded from
the Internet; UAVs and express cabinets can realize reasonable dispatching through the interaction
data from the dispatch center.
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Figure 2. The execution process of the delivery system.

The scheduling problem of logistics UAVs is a special kind of Unmanned Aerial Vehicle routing
problem (UAVRP). Similar to the traditional vehicle routing problem (VRP), the UAVRP adds some new
features such as limitations of flight time and load capacity. VRP is well known as an NP-hard problem.
As a variant of VRP, the scheduling problem of logistics UAVs is also NP-hard. The VNS algorithm
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framework is used to address the computational intractability and search for the approximate optimal
solution of the proposed problem.

The rest of the paper is organized as follows. Related works are reviewed in Section 2. Section 3
describes and formalizes the problem under study. An algorithm framework is proposed for the
considered problem in Section 4. Section 5 evaluates the performance of the proposal under different
workload scenarios followed by conclusions in Section 6.

2. Related Works and Contributions

The traditional logistics scheduling problem is a special Vehicle Routing Problem (VRP). A great
number of studies have focused on the field of VRP. Dantzig and Ramser [4] first introduced the truck
dispatching problem and proposed a procedure to search for the near-optimal solution. Chao et al. [5]
considered the VRP with simultaneous pickup–delivery and time windows, and a parallel Simulated
Annealing algorithm was proposed for the problem. Jiahai et al. [6] present a multiobjective and
multidepot VRP. They developed a two-stage multiobjective evolutionary algorithm to deal with this
problem. Li et al. [7] constructed the multiobjective VRP mathematical model of military logistics in
wartime and improved the NSGA II algorithm by the introduction of Greedy algorithm, in order to
solve the proposed multiobjective VRP problem. Wang et al. [8] proposed the improved Ant Colony
Algorithm to solve the classical Vehicle Routing Problem, where experimental analysis showed that
the proposed algorithm was better than the traditional Ant Colony Algorithm in optimum value and
the rate of convergence. Hosseinabadi et al. [9] proposed a variable neighborhood search algorithm to
solve a kind of capacitated location-routing problem (CLRP). Ziyao Li [10] put forward an improved
ACO algorithm and built a path model to solve practical vehicle route problem in the emergency
rescue event. Jun Zheng [11] set up a vehicle routing problem (VRP) model with multiple fuzzy time
windows, based on time-varying traffic flow. They also proposed an improved ITO algorithm to reduce
the distribution cost and consumer dissatisfaction.

As a special kind of VRP, UAV routing and scheduling problem has been applied in various
scenarios. Dorling et al. [12] proposed two multitrip VRPs for UAV delivery that minimizes cost subject
to a delivery time limit or minimizes the overall delivery time subject to a budget constraint. Kim and
Morrison [13] present a scenario in which UAVs were needed to provide continuous service and docking
locations. They used a scheduling method to solve this problem. Zeng et al. [14] developed a nonlinear
model to schedule UAV resources to the battlefield. Denis et al. [15] proposed the network-centric
multiagent system for real-time task scheduling of the UAV group, which achieved coordination
and control of several UAVs in the group in order to perform joint tasks. Ahmadian et al. [16]
proposed a mixed-integer programming model to determine the optimal collision-free schedule for
multiple UAVs. The approach reduced the possibility of collision between UAVs by creating a gap
between their arrival intervals to each node. Ahmed et al. [17] proposed an efficient algorithm based
on successive convex approximation and classical Dinkelbach method to reduce UAV flight energy
consumption. Xu et al. [18] suggested a trajectory planning method for two-UAV cooperative target
locating. Ghazzai et al. [19] designed a generic scheduling framework of a fleet of micro UAVs.
The framework employed multiple UAVs in sequential and parallel ways to perform a mission over
a long period of time. A mixed integer linear programming (MILP) problem aiming at minimizing
the total energy consumption was formulated after a series of linearization steps. The generic UAV
scheduling framework can be applied in multiple domains comprising short and/or long-term UAV
missions while ensuring uninterrupted service.

Although UAVs can be used in many scenarios, there are few studies on the application of logistics
UAV in urban environment. The scheduling method proposed in VRP related research cannot be
directly applied to UAV logistics scheduling. The traditional VRP Problem includes customer set and
vehicle set, and the main constraints include customer demand and actual road constraints, focusing on
path planning. Whereas in UAVRP problems, UAV’s operation track is relatively more flexible, smaller
in size and greater in number. UAV-based scheduling problems also have some specific constraints,
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such as the power and capacity constraints, which need to be considered comprehensively for package
loading and path planning. Therefore, a suitable logistics UAV scheduling scheme is essential to
replace the work of couriers.

We refer to the methods presented in the above literates, and the main contributions of the present
study are summarized as follows. (i) We first present the automatic delivery system with logistics
UAVs to improve the efficiency of the logistics distribution and reduce operating costs. (ii) Mixed
Integer Linear Programming (MILP) is used to describe the scheduling problem of the system. (iii) We
propose a special coding method for this small-scale problem. (iv) The algorithm frameworks based
on VNS is presented, as an extension of the previous version [20], to search for approximate optimal
solution and make the decision between multiple objectives.

3. Problem Description and Model

Packages in the trans-shipment depot need to be delivered to multiple areas. In the traditional
logistics delivery scenario, one courier is responsible for a certain small area. Many couriers work
together to complete the delivery of all packages in the trans-shipment depot. Multiple UAVs are being
used to replace one courier. The above mentioned automatic delivery system for logistics UAVs is
used to support the execution of the above workflow. Package tasks for one courier are scheduled by
this system respectively.

In order to deploy the UAV delivery system on existing resources, the following components need to
be used in logistics distribution. (i) Some package loading equipment in the trans-shipment depot, they are
responsible for loading packages into UAVs and replacing UAV’s battery for their next flight. (ii) Each of
these UAVs will complete the delivery according to the route specified by the dispatch center. These package
tasks in a certain area require multiple UAVs to collaborate. Furthermore, these package tasks are usually
completed through multiple flights. (iii) Some express cabinets are placed near these package destinations.
The express cabinet supports UAVs to automatically place the package inside it, and it allows customers to
pick up their packages at any time after delivery. (iv) The dispatch center performs resource scheduling in
units of areas. It updates the status of the transit warehouse, UAVs and express cabinets in real time, and
notifies the corresponding staff in time when the system fails.

We consider the scheduling problem of the system in a certain area. Since one courier has to deliver
a certain number of packages in a day, there is a small-scale scheduling problem in the specific area
that needs to be addressed. The search ability of three algorithm frameworks proposed in this section
are adequate for this problem. The customer satisfaction and the total completion time, which are
critical to the problem, are selected as the two optimization objectives for this problem. The scheduling
problem is modeled as a MILP. Notations are summarized in Table 1.

Table 1. Notations description.

Notation Description

h Number of UAVs
uk The kth UAV
U = {u1, u2, . . . , uh} Set of UAVs
e Maximum flight time of UAV
c Load capacity of UAV
v Average speed of UAV
td Time for UAV to load packages in s0
tc Time for UAV to unload packages into s1, . . . , sm
n Number of packages
pi The ith package
P =

{
p1, p2, . . . , pn

}
Set of packages

wi Weight of pi
li Destination of pi
t0
i Best delivery time of pi

ti Actual delivery time of pi
g Maximum weight of packages
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Table 1. Cont.

Notation Description

G Total weight of packages
m Number of express cabinet
s j The jth station
S = {s0, s1, . . . , sm} Set of stations
d =

(
s j, s j′

)
Distance between s j and s j′

r Radius of area
t Initial temperature of SA framework
Suav The scheduling scheme
Tk Number of flights for uk
Tk, f Number of packages delivered by uk’s f th flight
pk, f ,b Number of bth package on uk’s f th flight
lk, f ,b Destination of bth package on uk’s f th flight
tk, f Start time of uk’s f th flight
qk, f Task execution duration of uk’s f th flight
te
k Time for uk to complete all its tasks

A Customer satisfaction
B Total completion time
Bmax Maximum total completion time

There is a small scale problem. All packages that a courier needs to deliver are represented by
P =

{
p1, p2, . . . , pn

}
. A set of stations S = {s0} ∪ {s1, s2, . . . , sm} are set up in the scenario, where s0 is the

trans-shipment depot and the set of {s1, s2, . . . , sm} represents these express cabinets in the area. lk, f ,b
represents the destination of the bth package delivered by uk on f th flight. We determine a minimum
circle that covers all these stations, and r is the radius of the circle. According to customer requirements,
the optimal delivery time t0

i is set for each package, and the actual delivery time of the package is
represented as ti. A set of UAVs U = {u1, u2, . . . , uh} is used to accomplish these package tasks. Suav

is the solution of the task scheduling for all UAVs. It contains the scheduling results of multiple
flights and is an intuitive representation of the scheduling scheme. Customer satisfaction A and total
completion time B are two optimization objectives.

Based on the above descriptions and notations, the following mathematical model is established.

Maximum A =
n∑

i=1

max
(
0, ti − t0

i

)
(1)

Minimum B = max
1≤k≤n

te
k (2)

Subject to:
max
1≤i≤n

wi ≤ c,∀k, f , (3)

∑Tk, f

b=1wpk, f ,b ≤ c,∀k, f , (4)∑Tk, f−1
b=0 d

(
lk, f ,b, lk, f ,b+1

)
+ d

(
lk, f ,Tk, f

, s0
)
≤ v× e,∀k, f , (5)

te
k = tk,Tk

+ qk,Tk
,∀k, (6)

tk, f =

0, f = 1

tk, f−1 + qk, f−1, f ≥ 2
,∀k, (7)

qk, f =
∑Tk, f−1

b=0 d
(
lk, f ,b, lk, f ,b+1

)
+ d

(
lk, f ,Tk, f

, s0
)
+ td + Tk, f × tc,∀k, f , (8)

pk, f ,b =
∑n

i=1i× xk, f ,b,i,∀k, f , b, (9)∑n
i=1xk, f ,b,i = 1,∀k, f , b, (10)
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∑h
k=1

∑Tk
f=1

∑Tk, f

b=1xk, f ,b,i = 1,∀i, (11)

xk, f ,b,i ∈ {0, 1},

Equations (1) and (2) describe how optimization objectives are calculated. Customer satisfaction
A is significantly more important than total completion time B. Constraint (3) is the weight limit of
packages. Constraints (4–5) ensure the maximum payload and flight distance of UAVs. Equations (6)–(9)
present the calculation methods of the relevant parameters. xk, f ,b,i is a decision variable, taking 1 if
bth package on uk’s f th flight is pi, taking 0 otherwise. That taking 1 means loading the package, and
taking 0 means unloading the package. Constraints associated with decision variables are 10–11.

4. Proposed Algorithm

In this section, the proposed algorithm will be described in detail. The key problem of the three
algorithm frameworks proposed is to determine an appropriate encoding method for the small scale
problem. A new encoding method is introduced, as the scheduling scheme Suav = {< 5, 2, 3 >,< 4, 1 >}.
It consists of two vectors, and each of the vectors determines the order in which a UAV delivers
packages. For example, the distribution scheme of the above example Suav is that UAV u1 delivers
packages p5, p2, p3, and UAV u2 delivers packages p4, p1, respectively. Each UAV completes its package
tasks through multiple flights. The number of flights is determined by the load capacity of the UAV c.
The encoding method is essentially a sequence of packages. It can accurately assign each package task
and find a better solution when the search space is small.

As our algorithm is a hybrid of Initial Solution Generation Algorithm (ISG) and heuristic
algorithms, we first provide a brief description about ISG algorithm as follows.

Once a better initial solution can be found to participate in the iterations, more satisfactory
efficiency will be achieved. Since the initial solution to the scheduling scheme Suav is essentially a sort
of packages, ISG is used to generate it. The shortest path through all express cabinets is calculated by a
simple Simulated Annealing (SA) algorithm (Lines 1–15). According to the shortest path and the best
delivery time t0

i , the elements in Sinit are ordered as the initial solution (Lines 16–18).

Initial Solution Generation Algorithm ISG()

1 L← {s1, s2, . . . , sm} ;/* L records the shortest path that traverses {s1, s2, . . . , sm} */
2 Lcurrent

← L ;
2 Sinit

← P ;
3 t← 80 ;/* t represents the initial temperature */
4 for ϕ = 80; ϕ > 1; ϕ← 0.9×ϕ do
5 for τ = 0; τ < 500; τ← τ+ 1 do
6 Swapping two random disjoint subsequences of Lcurrent to generate Lnew;
7 if R(Lnew) < R

(
Lcurrent

)
then/* R(Lnew) is the path length of Lnew */

8 Lcurrent
← Lnew ;

9 if R
(
Lcurrent

)
< R(L) then

10 L← Lcurrent ;
11 else

12 p← e
−1×R(L′)

0.8×ϕ ; /* Accept an inferior solution with the probability p */
13 A random number p′ is generated between 0 and 1;
14 if p′ < p then
15 Lcurrent

← Lnew ;
16 The packages in Sinit are sorted according to L;
17 For packages with the same destination in Sinit, sort by t0

i ;
18 return Sinit;



Appl. Sci. 2020, 10, 3575 7 of 16

4.1. Local Search Algorithm Framework

Local Search algorithm (LS) is applied to improve the initial solution. A new solution in the local
search is generated by random swapping. The approximate optimal solution to the scheduling scheme
Suav is calculated by iteration (Lines 2–6).

Local Search algorithm framework LS()

1 Suav
← ISG() ;

2 While not Termination Criterion do
3 Generation of candidate neighbor Suav;
4 if Fit(Snew) < Fit(Suav) then
5 Suav

← Snew ;
6 return Suav;

where Fit function is the fitness of the solution defined as a linear weighted sum:

Fit = ωA + (1−ω)B (ω ∈ (0, 1)) (12)

4.2. Simulated Annealing Algorithm Framework

As our algorithm is a hybrid of Initial Solution Generation Algorithm (ISG) and heuristic
algorithms, we first provide a brief description about ISG algorithm as follows. Simulated Annealing
algorithm is a greedy algorithm. It is derived from the principle of solid annealing. SA accepts an
inferior solution with the certain probability, and this probability varies with the temperature. The SA
algorithm framework is used to compute the integrated objective C. We obtain the approximate
optimal solution by the Simulated Annealing algorithm framework. ISG is used to generate the initial
solution (Line 1). The approximate optimal solution to the scheduling scheme Suav is calculated by
iteration (Lines 2–14). In the iterative process, the global optimal solution is recorded (Lines 8–9) and
an inferior solution is accepted with probability p (Lines 11–14).

Simulated Annealing algorithm framework SA()

1 Suav
← ISG() ;

2 Scurrent
← Suav ;

3 for ϕ = t; ϕ > 1; ϕ← 0.9×ϕ do
4 for τ = 0; τ < 1000; τ← τ+ 1 do
5 Swapping two random disjoint subsequences of Scurrent to generate Snew;
6 if Fit(Snew) < Fit

(
Scurrent

)
then/* Fit(Snew) is the fitness of Snew */

7 Scurrent
← Snew ;

8 if Fit
(
Scurrent

)
< Fit(Suav) then

9 Suav
← Scurrent ;

10 else

11 p← e
−1×R(L′)

0.8×ϕ ; /* Accept an inferior solution with the probability p */
12 A random number p′ is generated between 0 and 1;
13 if p′ < p then
14 Scurrent

← Snew ;
15 return Suav;

4.3. Variable Neighborhood Search Algorithm Framework

Variable Neighborhood Search (VNS) is a metaheuristic with the systematic change of
neighborhood in a search. VNS was first proposed for solving the traveling salesman problem
and its effectiveness is illustrated in [21]. Since TSP can be taken as a subproblem of the considered
problem in this paper, we chose VNS to improve our previous work. VNS can escape from the local
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optimum by restructuring the neighborhood. Different neighborhoods supply different candidate
solutions, thus it is possible to find a better solution.

ISG is used to generate the initial solution (Line 2). The approximate optimal solution to the
scheduling scheme Suav is calculated by iteration (Lines 4–12). In the iterative process, the neighborhood
is obtained by shaking (Line 5), the local optimum Suav′′ is calculated by iteration (Lines 6–7), and the
global optimal solution is recorded (Lines 8–9).

Variable Neighborhood Search algorithm framework VNS()

1 Select the set of neighborhood structures Nk, k = 1, . . . , kmax;
2 Suav

← ISG() ;
3 Set k=1;
4 While k ≤ kmax do
5 Generate a point Suav

′ randomly from Nk (Suav); /* Shaking Step*/
6 While not Termination Criterion do

/* Obtain local optimum Suav′′ from an initial solution Suav′*/
7 Generation of candidate neighbor Suav′′;
8 if Fit(Suav′′) < Fit(Suav) then
9 Suav

← Suav′′, k = 1 ;
10 else
11 k = k + 1;
12 return Suav;

As our algorithm is a hybrid of Initial Solution Generation Algorithm (ISG) and heuristic
algorithms, we first provide a brief description about ISG algorithm as follows.

4.4. Time Complexity Analysis

(1) Since the time complexity of the ISG algorithm is related to the number of packages n,
the number of UAVs h and the number of stations |S|, it can be denoted as O(n + h ∗ |S|).

(2) The time complexity of the SA algorithm is related to the ISG algorithm, the initial temperature
t and the number of iterations τ. Therefore, the time complexity is O

((
log0.9

1
t

)
∗ τ ∗ (n + h ∗ |S|)

)
.

(3) The time complexity of the VNS algorithm is related to the ISG algorithm, the number of
neighbors |Nk|, and the number of neighbors Ik per exploration. Therefore, the time complexity is
O(

∑k=kmax
k=1 Ik ∗ |Nk| ∗ (n + h ∗ |S|)).

5. Simulated Experiments

In this section, numerical results are reported. We first calibrate the important parameter initial
temperature t of the SA algorithm framework. Then, the robustness of the algorithm is analyzed for all
instance parameters. All experiments are coded in Java and run on a PC with an Intel(R) Core(TM)
i5-7500 CPU @3.40Ghz, 8GB of RAM. The version of Integrated Development Environment (IDE)
is eclipse Jee Oxygen April 2018 ×64. Relative Percentage Deviation (RPD) is used to evaluate the
performance of the algorithm. The value of RPD reflects the difference between one solution and
the optimal solution in the same instance. The better algorithm corresponds to a smaller PRD value.
By observing the change of the value, the difference between the optimization effects of algorithms can
be clearly observed.

RPD =
Fit(C) − Fit(C′)

Fit(C′)
, (13)

Equation (13) depicts the calculation of the RPD value. In Equation (13), Fit(C′) represents the
optimal fitness for the same instances.
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5.1. Parameter Calibration

The initial temperature t is critical to the performance of the SA algorithm framework. We use
a large number of instances to determine the value of t. To the best of our knowledge, no uniform
testing benchmark is available for the considered problem. So, we combined some practical scenarios
in logistics transportation to generate test instances, such as [22] and [23].

Parameters are designed as follows. (i) We consider the regional parameters with the area radius
r ∈ {1 km, 2 km, 3 km} and the number of stations m ∈ {5, 10, 15}. (ii) The weight of each package wi
is generated randomly in interval [0.05, g], and the parameter g represents the maximum weight of
all packages. The package related parameters are set as g ∈

{
3 kg, 4 kg, 5 kg

}
and G ∈ {80, 100, 120}.

(iii) The number of UAVs h ∈ {3, 4, 5}. The special logistic UAV is selected with maximum flight time
e = 0.67 h, load capacity c = 5 kg, and average speed v = 48 km/h.

There are 3 × 3 × 3 × 3 × 3 = 243 instance combinations. For each instance combination, we
compare the algorithm performance of five different values of initial temperature t of SA framework.
Therefore, there are 3× 3× 3× 3× 3× 5 = 1215 instances for parameter calibration. One-way analysis
of variance technique is used to analyze the experiment results. The mean plots of SA framework with
different values of t are depicted in Figure 3. The smaller RPD values, the better optimization effect.
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From Figure 3, it can be observed that the differences are statistically significant for t ≤ 120,
however, they tend to be flat for t ≥ 120. So, when t is set to 120, the algorithm can generate a better
solution with fewer iterations.

5.2. Robustness Analysis

In terms of the parameter calibration, t = 120 is set to the initial temperature of the SA algorithm
framework. To further demonstrate the robustness of the proposed algorithm, we analyze the influence
of the five instance parameters on this algorithm. The proposed algorithm is compared with the Local
Search (LS) algorithm and the Simulated Annealing (SA) algorithm.

As can be seen from Figure 4, the VNS performs better than the other two algorithms. The statistical
difference is significant. This is because the VNS algorithm framework can compare the optimal
solutions of different neighborhoods, and the final result is closer to the global optimal solution,
which can effectively avoid falling into the local optimal situation.
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Figure 4. The mean plot of the three compared algorithms with 95.0 percent Tukey HSD intervals.

Interactions between each parameter and the compared algorithms with 95.0 percent Tukey HSD
(Honestly Significant Difference) intervals are depicted in Figures 5 and 6. It can be concluded from
Figures 5 and 6 that the observed differences are not statistically significant for the proposed algorithm
in most cases.

Figure 5 shows that the area radius r has a great effect on the performance of proposed SA
algorithm framework. Furthermore, the differences in RPD values are not statistically significant for
the number of express cabinet m. This is because the radius of the region directly affects the fitness of
the solution. The increase of r widens the differences between these RPD values, making it easier for
the algorithm to find better solutions.
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Figure 5. Interactions between area-related parameters with 95.0% Tukey HSD intervals.

Figure 6 illustrates that the following parameters: the maximum weight of packages g, the total
weight of packages G, and the number of UAVs h have little influence on the execution of SA algorithm
framework. Furthermore, their differences in RPD values are not statistically significant. This is because
these three parameters hardly affect the ability of the algorithm to search for the global optimal solution.

After comparing the robustness of LS with SA, we compared SA with Variable Neighborhood
Search algorithm (VNS). From Figure 5, it can be observed that although the robustness of SA and
VNS is similar, VNS optimizes the solution better especially for the following parameters: the radius of
area r and the number of express cabinet m. Figure 6 shows that the robustness of the two algorithms
is not different, but VNS has better search performance. The differences in RPD values are statistically
significant for the following parameters: the maximum weight of packages g and the total weight of
packages G. These experiments illustrate that there is little difference in robustness between algorithms
SA and VNS, but the execution performance of VNS is better. This is because VSN algorithm framework
can calculate the optimal solution in different neighborhoods to avoid falling into the local optimal
situation, so it can frequently get the global optimal solution.
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For each of the 243 instance combinations, five different values of initial temperature t of SA
framework are chosen, i.e., in total there are 1215 instances for the algorithms to compare. Average
Relative Percentage Deviations (ARPDs) on all instance combinations are shown in Table 2. This
table not only shows the execution effect of different algorithms in each test instance, but it also
depicts the influence of these instance parameters on different algorithms. From Table 2, it can be
illustrated that VNS has the lowest ARPDs with different parameter settings and SA has the highest
ARPDs. VNS performs better than the others mainly because it can escape from the local optimum by
restructuring the neighborhood, and the explored solution space is larger than the other two. From
the analysis of the results, it can be seen that the proposed VNS algorithm framework is robust for
most parameters.

Table 2. ARPD values.

SA LS VNS

r
1000 m 5.647 9.136 3.686
2000 m 3.978 6.344 2.394
3000 m 3.084 5.212 1.307

m
5 3.891 9.235 2.389
10 3.376 7.618 1.915
15 2.409 5.758 1.508

g
3 kg 4.364 7.791 2.433
4 kg 3.862 6.179 1.884
5 kg 3.649 5.537 1.819

G
80 kg 3.416 5.097 1.682

100 kg 4.183 6.654 2.253
120 kg 4.878 7.086 3.173

h
3 3.907 6.103 2.416
4 4.084 6.313 2.589
5 4.196 6.657 2.603

Average 3.928 6.715 2.27

In order to better show the structure of the result and system flow, the test based on a small-scale
example is executed. The calculation results of the UAV flight tasks are described in detail.

Figure 7 shows the path scheduling results of three isomorphic UAVs in a small-scale scenario.
For this type of UAV, the upper limit of load is 5 kg, the average flight speed is 48 km/h, and the total
flying time of single charging is 0.67 h. In this experiment, the coordinates (abscissa/km, ordinate/km)
of each express cabinet are as follows: s0(1.604, 1.720), s1(1.163, 3.585), s2(1.220, 2.153), s3(2.467, 3.623),
s4(0.519, 3.264), s5(0.714, 2.742).
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Figure 7. Small scale experimental results of UAV path planning.

Figure 8 is the path planning diagram of UAV1 based on the map data and the calculation results
shown in Figure 7. UAV1 has six missions in total. The first one: it starts from s0, passes s3, s5 and s1

in turn, and then returns to s0. The second one and the third one are both missions between s0 and
s2. The fourth one is shuttle flights between s0 and s5. The fifth one is flight from s0, passes s5 and s4

in turn, and then returns to s0. The sixth one is from s0, passes s3 and s5 in turn, and then returns to
s0. Among them, the reason that the same destination is distributed twice is that packages delivered
exceed the upper load limit of the UAV.
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Figure 8. Routes of UAV1.

Figure 9 is the path planning diagram of UAV2 based on the map data and the calculation results
shown in Figure 7. As shown in Figure 9, UAV2 has seven missions in total. The first and the third
missions both start from s0, pass s2 and s5 in turn, and then return to s0. The second one and the fourth
one’s missions are between s0 and s5. The fifth one is flight from s0, passes s3, s5, s4, and s1 in turn, and
then returns to s0.
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Figure 9. Routes of UAV2.

Figure 10 is the path planning diagram of UAV3 based on the map data and the calculation results
shown in Figure 7. As shown in Figure 10, UAV3 has seven missions in total. The first, fourth, and fifth
missions are flights between s0, and s5. The second and third missions are shuttle flights between s0

and s2. The sixth one is flight from s0, passes s2, s5, and then returns to s0. The seventh one is flight
from s0, passes s5, s4, and then returns to s0.
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Since the considered problem is biobjective, we apply a linear weighted sum (LWS) method to
evaluate the solutions on both the total completion time and the satisfaction perspectives, as defined
as Equation (14). ω and 1 − ω (ω ∈ (0, 1)) are the weight according to the importance of the total
completion time and the satisfaction, respectively. Therefore, the smaller the LWS, the better the
solution will be.

LWS =
A−Amin

Amin
·ω+

B− Bmin
Bmin

(1−ω) (14)

As can be seen from Figure 11, compared with no difference shown in (c), when the weight of
customer satisfaction A is higher and the weight of total completion time B is lower, the Relative
Percentage Deviation (RPD) value of Local Search (LS) algorithm is larger and the RPD value of
variable neighborhood search (VNS) algorithm is smaller shown in (e). Conversely, the RPD value of
LS algorithm is smaller and the RPD value of VNS algorithm is larger, shown in (a). So, LS algorithm
is more suitable to solve the problem of high demand for customer satisfaction, VNS algorithm is more
suitable to solve the problem of high demand for total completion time.

From Figure 11 it is observed that when the parameter ω changes, the result of SA algorithm is
the most stable and there is almost no fluctuation. The result of VSN algorithm is relatively stable
with small fluctuation, while the result of LS algorithm has large fluctuation, which is sensitive to
the parameter, so its stability is poor. The experimental results demonstrate that VNS is feasible and
effective for the considered problem.
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Figure 11. The result of linear weighted sum. (a) LWS (w = 0.1), (b) LWS (w = 0.3), (c) LWS (w = 0.5),
(d) LWS (w = 0.7), (e) LWS (w = 0.9).

Table 3 shows the average operation times for the three specifications of radius of area r. Figure 12
shows the convergence curves of the three algorithms LS, SA, and VNS simultaneously. The horizontal
coordinate is the run time and the vertical coordinate is the ARPD value. From Figure 12 it is observed
that LS has the fastest convergence, SA is second, and VNS has the slowest convergence, but VNS
outputs the best results. Since it can escape from the local optimum by changing the neighborhood,
it is possible to find a better solution compared with LS and SA. However, constant changes of
neighborhood increase its cost of time.

Table 3. Average operation time (s).

r LS SA VNS

1000 7.63 19.72 50.26
2000 14.82 38.13 98.57
3000 28.74 74.05 189.41Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 17 
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Figure 12. The time convergence curve of the algorithms. 
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convergence. We believe that there are many other metaheuristics which are suitable for solving the
problem and may have better performance. Based on our preparatory work, GA and PSO converge
slowly and their performances on TSP are good for small-size testing instances. If the computation time
is not limited, we believe they can find better solutions than those of VNS in probability significance.
NSGA-II is another potentially competitive algorithm which may be very suitable for the considered
problem, since NSGA-II converges faster than GA and PSO and has promising performance on
multiobjective optimization problems. We will further investigate these algorithms to improve our
work on the considered problem based on these assumptions.

6. Conclusions

The delivery problem of logistics UAV in urban environment is considered to be a scheduling
problem. We first present the automatic delivery system for logistics UAVs to improve the distribution
efficiency and reduce costs. The Variable Neighborhood Search algorithm framework is proposed to
address the scheduling problem of the system. We use the special method of two-stage optimization to
solve the optimization problem with customer satisfaction and total completion time. The experimental
results show that the proposed VNS is robust and has better performance. For future work,
more multivariate heuristic algorithms will be incorporated, edge computing scenarios that are
more realistic will be considered, more practical UAV volume models and energy consumption models
will be applied, and the information interaction, multi-UAVs cooperation, and optimized operation
mode in the distribution process will be further considered. There are also many other potential
algorithms that may be more suitable for solving the considered problem. We will further investigate
these algorithms to improve our work on the considered problem.
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