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Abstract: This paper proposes a fatigue crack evaluation technique based on digital image correlation
(DIC) with statistically optimized adaptive subsets. In conventional DIC analysis, a uniform subset
size is typically utilized throughout the entire region of interest (ROI), which is determined by experts’
subjective judgement. The basic assumption of the conventional DIC analysis is that speckle patterns
are uniformly distributed within the ROI of a target image. However, the speckle patterns on the ROI
are often spatially biased, augmenting spatially different DIC errors. Thus, a subset size optimization
with spatially different sizes, called adaptive subset sizes, is needed to improve the DIC accuracy.
In this paper, the adaptive subset size optimization algorithm is newly proposed and experimentally
validated using an aluminum plate with sprayed speckle patterns which are not spatially uniform.
The validation test results show that the proposed algorithm accurately estimates the horizontal
displacements of 200 µm, 500 µm and 1 mm without any DIC error within the ROI. On the other hand,
the conventional subset size determination algorithm, which employs a uniform subset size, produces
the maximum error of 33% in the designed specimen. In addition, a real fatigue crack-opening
phenomenon, which is a local deformation within the ROI, is evaluated using the proposed algorithm.
The fatigue crack-opening phenomenon as well as the corresponding displacement distribution
nearby the fatigue crack tip are effectively visualized under the uniaxial tensile conditions of 0.2,
1.0, 1.4 and 1.7 mm, while the conventional algorithm shows local DIC errors, especially at crack
opening areas.

Keywords: fatigue crack evaluation; digital image correlation; adaptive subset size; statistical
optimization; automated subset size determination

1. Introduction

A fatigue crack caused by cyclic loading is one of the most critical damage types in metallic
structures because it may cause plastic deformation or abrupt structural failure even below the yield
strength. However, the technical challenge in fatigue crack evaluation is that a fatigue crack cannot
typically be observed by the naked eye. To effectively investigate the fatigue crack, a number of
nondestructive evaluation (NDE) techniques—such as ultrasonic [1–3], infrared thermography [4–6],
eddy current [7–9], shearography [10–12], radio-frequency identification [13–15], vision-based
inspection [16–18] and digital image correlation (DIC) [19–21]—have been developed. Among various
NDE techniques, DIC is one of the simplest and most promising optical assessment tools for fatigue
crack evaluation, because DIC is able to intuitively visualize and trace the minute deformation of a
target structure in a pixel unit. To accurately evaluate the fatigue crack using DIC, users should carefully
consider various factors, such as non-parallel charge-coupled device [22], measurement noise [23,24],
correlation criterion [25], shape function [26–29] and subset size [30–34]. Among them, the subset size
is one of the most critical factors in terms of DIC accuracy, because the partial deformation of a target
surface is separately tracked by speckle pattern features within each subset. The smaller subset size is

Appl. Sci. 2020, 10, 3574; doi:10.3390/app10103574 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3852-9025
http://dx.doi.org/10.3390/app10103574
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/10/3574?type=check_update&version=2


Appl. Sci. 2020, 10, 3574 2 of 13

typically able to achieve the higher DIC accuracy by increasing the spatial resolution. On the other
hand, an excessively small subset size often inversely increases the DIC errors, because they may not
contain enough distinctive speckle pattern features within each subset for a proper DIC analysis.

Although commercial DIC software—such as StrainMaster from LaVision [35], GOM Correlate
from GOM [36] and VIC-2D from Correlated Solution [37]—have been used, they commonly select the
subset size depending on users’ subjective judgement without a speckle pattern analysis. To determine
the optimal subset size, a number of subset size determination algorithms have been proposed. Yaofeng
and Pang suggested a subset entropy, calculating the sum of the absolute difference of eight neighboring
points for the selection of a single subset size [30]. Pan et al. proposed a sum of the square of the subset
intensity gradient (SSSIG), which evaluates the local speckle pattern intensity using a threshold value
of standard deviation (SD) error within the subset for selecting a single subset size throughout the
entire region of interest (ROI) [31]. Additionally, Lane et al. proposed a grey-level co-occurrence matrix
(GLCM) to determine a single subset size using a critical GLCM offset concept [32]. Although the
aforementioned algorithms can properly determine a single optimal subset size within the entire ROI,
the following technical hurdles still remain to be overcome. First, the conventional algorithms evaluate
the speckle patterns at a certain local area in the target image and determine a single subset size under
the assumption of uniformly distributed speckle patterns within the entire ROI. If the speckle patterns
are spatially biased, it may augment spatially different DIC errors. Furthermore, the conventional
algorithms highly depend on the experts’ subjective judgement or experience to determine an optimal
threshold value for the subset size determination. Although dynamic subset selection algorithms to
adopt various subset sizes in the ROI were recently proposed [33,34], they are not fully validated in
spatially biased speckle patterns yet. Therefore, a fully automated subset size optimization study is
still necessary.

To come up with the technical demand, a fully automated adaptive subset size determination
algorithm is newly proposed and experimentally validated through a fatigue crack-opening evaluation
with spatially biased speckle-patterned images in this study. The adaptive subset sizes are spatially
different depending on the speckle pattern quality of each local subset and automatically determined
by the iteration of normalized cross correlation (NCC) without experts’ intervention within the entire
ROI. Another superiority of the proposed algorithm over the existing algorithms is that the random
measurement noises can be minimized using the combination of several images acquired with a certain
time interval without deformation of a target structure. Finally, the effectiveness of the proposed
adaptive subset size determination algorithm is experimentally validated using a speckle-patterned
aluminum specimen with a sophisticatedly controllable scanning stage. Then, the fatigue crack-opening
phenomenon, which is a local deformation on the ROI, is evaluated using a universal testing machine
(UTM). In addition, the experimental results are compared with SSSIG, which is one of the most widely
accepted conventional subset size determination algorithms, for further quantitative validation.

This paper is organized as follows. First, the automated adaptive subset size determination
algorithm is explained. The feasibility tests of the proposed algorithm are then conducted with the
spatially biased speckle-patterned aluminum specimen. Next, the fatigue crack-opening phenomenon
is evaluated with adaptive subset sizes. Finally, this paper is concluded with a brief discussion.

2. Automated Determination Algorithm of Adaptive Subset Sizes

Figure 1 shows the overview of the automated adaptive size determination algorithm.
The proposed algorithm consists of the following four steps: (1) initial parameter setting within
the ROI, (2) the determination of the converging size by evaluating a matching distance, (3) the
establishment of a convergence map and (4) the determination of adaptive subset sizes. The details of
each step are as follows.



Appl. Sci. 2020, 10, 3574 3 of 13
Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 14 

 
Figure 1. Overview of the automated size determination algorithm of adaptive subsets: 𝑅𝑅𝑞𝑞 and 𝑅𝑅𝑞𝑞′  
are the pair reference images. 𝑂𝑂𝑖𝑖 is the seed point on 𝑅𝑅𝑞𝑞, and 𝑆𝑆𝑖𝑖 is the reference subset centered at 
𝑂𝑂𝑖𝑖. 𝑀𝑀𝑗𝑗 is the size parameter of 𝑆𝑆𝑖𝑖, and 𝑆𝑆𝑖𝑖(𝑗𝑗) is �2𝑀𝑀𝑗𝑗 + 1� × �2𝑀𝑀𝑗𝑗 + 1�. 𝑆𝑆𝑖𝑖′ is the matched subset of 
𝑆𝑆𝑖𝑖 centered at 𝑂𝑂𝑖𝑖′. 𝐷𝐷 is the matching distance between 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑖𝑖′. 𝐷𝐷′ is the derivative of 𝐷𝐷. 𝑉𝑉𝑖𝑖 is the 
converging size and 𝐴𝐴𝑖𝑖 is the adaptive subset size. PDF is the probability density function. 
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reference subset 𝑆𝑆𝑖𝑖 to be investigated in the subsequent step, so that searching pixel missing can be 
avoided. Once 𝑂𝑂𝑖𝑖 is assigned in the ROI, 𝑆𝑆1, centered at 𝑂𝑂1, starts to be determined with the size of 
(2𝑀𝑀1+1) × (2𝑀𝑀1+1) to have integer pixel values. 

Step (2) The determination of the converging size by evaluating a matching distance: As depicted 
in Step (2) of Figure 1, the NCC of 𝑆𝑆1 with respect to 𝑅𝑅1′  is calculated to establish the correlation 
coefficient (𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁) map. 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 can be expressed by: 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ ∑ ��𝑓𝑓(𝑥𝑥𝑎𝑎,𝑦𝑦𝑏𝑏)−𝑓𝑓′�×[𝑔𝑔�𝑥𝑥𝑎𝑎′ ,𝑦𝑦𝑏𝑏
′�−𝑔𝑔′]

∆𝑓𝑓∆𝑔𝑔
�𝑀𝑀𝑗𝑗

𝑏𝑏=−𝑀𝑀𝑗𝑗

𝑀𝑀𝑗𝑗
𝑎𝑎=−𝑀𝑀𝑗𝑗

, 

∆𝑓𝑓 = �∑ ∑ [𝑓𝑓(𝑥𝑥𝑎𝑎,𝑦𝑦𝑏𝑏) − 𝑓𝑓′]2𝑀𝑀𝑗𝑗
𝑏𝑏=−𝑀𝑀𝑗𝑗

𝑀𝑀𝑗𝑗
𝑎𝑎=−𝑀𝑀𝑗𝑗

, ∆𝑔𝑔 = �∑ ∑ [𝑔𝑔(𝑥𝑥𝑎𝑎′ ,𝑦𝑦𝑏𝑏′ ) − 𝑔𝑔′]2𝑀𝑀𝑗𝑗
𝑏𝑏=−𝑀𝑀𝑗𝑗

𝑀𝑀𝑗𝑗
𝑎𝑎=−𝑀𝑀𝑗𝑗
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Figure 1. Overview of the automated size determination algorithm of adaptive subsets: Rq and R′q are
the pair reference images. Oi is the seed point on Rq, and Si is the reference subset centered at Oi. M j is

the size parameter of Si, and Si( j) is
(
2M j + 1

)
×

(
2M j + 1

)
. S′i is the matched subset of Si centered at

O′i . D is the matching distance between Si and S′i . D′ is the derivative of D. Vi is the converging size
and Ai is the adaptive subset size. PDF is the probability density function.

Step (1) Initial parameter setting within the ROI: First, R number of the reference images are taken
by a digital camera at a certain time interval without any deformation of the target structure, as shown
in Step (1) of Figure 1. The pair of reference images, i.e., Rq and R′q, are then selected via the two
different combinations of the reference images. Subsequently, the ROI to be analyzed is selected within
Rq, and the seed point Oi is then spatially assigned with a certain spatial interval on the ROI. Note
that the spatial interval of Oi should not be larger than the minimum size of the reference subset Si
to be investigated in the subsequent step, so that searching pixel missing can be avoided. Once Oi is
assigned in the ROI, S1, centered at O1, starts to be determined with the size of (2M1+1) × (2M1+1) to
have integer pixel values.

Step (2) The determination of the converging size by evaluating a matching distance: As depicted
in Step (2) of Figure 1, the NCC of S1 with respect to R′1 is calculated to establish the correlation
coefficient (CNCC) map. CNCC can be expressed by:
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where f and g represent the grayscale intensity value at spatial points (xa, yb) and
(
x′a, y′b

)
in Rq and

R′q, respectively.
The pixel of the highest CNCC within the CNCC map is selected as O′1 which is the center point of

the matched subset S′1. Physically, S′1 is the most similar to S1 within R′1. S′1 is then assigned to R1,
centered at O′1. If there is no deformation between Rq and R′q, O′i and Oi theoretically have the same
locations on Rq and R′q, respectively. Next, the matching distance D between S1 and S′1 is computed
using O1 and O′1, which is given by:

D =

√(
xi − x′i

)2
+

(
yi − y′i

)2
, (2)

where (xi, yi) and (x′i , y′i ) are the spatial points of Oi and O′i on Rq and R′q, respectively.
Now, CNCC is iteratively calculated by increasing S1( j), i.e., (2M j+1) × (2M j+1). Here, M j

( j = 1,2,3 . . . m) is the size parameter of Si, and Si( j) should be smaller than the ROI. Then, D can be
obtained depending on S1( j). When Si( j) has small values, D typically fluctuates, as shown in Step
(2) of Figure 1, because the lack of distinctive speckle features within the Si makes it difficult to find
the exact location of S′i . On the other hand, D will converge after Si( j) exceeds a certain value, which
physically implies that sufficient speckle features are secured within the subset. The threshold value
can be considered as the minimum converging size V1, which is determined when the derivative of D
(D′) becomes 0, as shown in Step (2) of Figure 1.

Step (3) The establishment of a convergence map: As for Oi (i = 2,3 . . . n), Vi can be obtained by
repeating Step (2), as described in Step (3) of Figure 1. Then, Vi is assigned at the corresponding Oi
within the ROI, which is called the convergence map. Physically, Vi in the convergence map means the
minimum subset size for the proper DIC analysis with respect to each Oi within the ROI.

Step (4) The determination of adaptive subset sizes: In the last step, q number of the convergence
maps can be obtained from Rq and R′q, as shown in Step (4) of Figure 1. The reason why the multiple
convergence maps are used in this algorithm is that the random measurement noises caused during
the image acquisition process can be minimized through averaging. If the random measurement
noises are more dominant than the speckle features within a certain size of subset, Vi will be increased.
Thus, for each pair of reference images, Vi might be different depending on the random measurement
noises even at the same Oi. Then, Vi can be assumed to follow the normal distribution because Vi
depends on random measurement noises. Finally, the adaptive subset size Ai is statistically determined
by summing the SD (σ) and mean (µ) with respect to the q number Vi of each Oi.

3. The Feasibility Tests of Adaptive Subset Sizes

The feasibility of the proposed algorithm is experimentally validated using a speckle-patterned
aluminum plate specimen, as shown in Figure 2. To quantitatively investigate the surface deformation,
horizontal displacements of 200 µm, 500 µm and 1 mm are applied to the specimen using the
scanning stage in this experiment. Furthermore, the test results are compared with the conventional
SSSIG algorithm.
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Figure 2. Experimental setup: (a) data acquisition system, (b) aluminum plate specimen and the target
region of interest (ROI).

Figure 2a shows the data acquisition system, consisting of the control computer, digital camera,
speckle-patterned aluminum specimen and scanning stage. The overall working principle is as follows.
First, several reference images are acquired from the surface of the scanning stage-mounted specimen.
To avoid image distortion, the digital camera keeps the parallel aligned condition with respect to the
target specimen surface. The adaptive subset sizes can be constructed within the entire ROI from the
combinations of reference images. Then, the control computer sends out a signal to the scanning stage
to numerically translate the specimen in the x or y directions, and the corresponding surface is acquired
as a test image for the validation test. By repeating the specimen translation and test image acquisition
over the predetermined steps, the adaptive subset sizes are validated through comparing the actual
translated displacement and the displacement which calculated by the DIC. Finally, the validation test
results are compared with the conventional subset size determination algorithm, i.e., SSSIG.

The digital camera employed in this system is the Canon EOS 5D Mark 4 with a 100 mm F 2.8 L
macro IS USM lens. The scanning stage is able to shift the specimen along the x and y directions with
a spatial resolution of 0.5 µm. Then, the speckle patterns are made on the aluminum specimen of
500 × 500 × 2 mm3 using a stone spray, as shown in Figure 2b. Here, the speckle patterns are spatially
biased and intentionally designed to examine the feasibility of the proposed algorithm. The speckle
pattern images of the ROI, which has 300 × 300 pixels (6 × 6 mm2) on the target specimen, are taken by
the digital camera. The image resolution is 3360 × 2240 pixels when the working distance between the
lens and the target specimen surface is 230 mm. Here, a single pixel is equivalent to 20 µm. The digital
images are obtained under the normal indoor lighting condition, and the camera setting is fixed at ISO
1600, F 22 and an exposure time of 0.5 s.

First, 15 reference images without any deformation of the target specimen are acquired from the
ROI with five second time intervals, and the corresponding 105 pairs of reference images are obtained
in Step (1). Then, 2500 Oi are assigned to the ROI with respect to the spatial interval of six pixels.
For all Oi, the Vi values are determined while increasing the M j from 3 to 27 with intervals of 1 through
Step (2) and Step (3). Finally, in Step (4), 105 convergence maps are established, and Ai values are
determined with respect to the 105 Vi values; they are then assigned at each Oi.

Figure 3 shows the determination results of Ai. Ai varies from the minimum 9 × 9 pixels to the
maximum 23 × 23 pixels depending on the Oi. Here, 91% of Ai has a subset size between 11 × 11 pixels
and 17× 17 pixels, as shown in Figure 3a. It is interesting to observe that 3 of the subset are automatically
determined as 25 × 25 pixels, meaning that the corresponding area physically does not have enough
distinctive speckle features compared to the other ordinary areas. Figure 3b shows the spatially
different Ai, which is obtained through the proposed adaptive subset size optimization algorithm
within the ROI of the test specimen. Note that the subset sizes can be adaptively and automatically
optimized depending on the target speckle pattern, digital camera type, image capturing condition
and so on.
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Figure 3. Determination results of adaptive subset sizes: (a) the number of adaptive subset sizes
according to the subset length and (b) spatial distribution of the adaptive subset sizes.

To validate the optimized adaptive subset sizes, the specimen is horizontally shifted using the
scanning stage and the corresponding DIC errors are computed for the entire ROI. Figure 4 shows
the DIC errors when the horizontal displacements are 200 µm, 500 µm and 1 mm. The resultant
images show that no error appears in the test cases, meaning that the spatially optimized subsets with
distinctive features track the same speckle patterns well even when the target patterns are translated
within the ROI.
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(b) 500 µm and (c) 1 mm.

In order to compare the validation results of the proposed algorithm with the conventional
algorithm ones, a single subset size is determined by SSSIG. First, SSSIG selects a random location
within the ROI and calculates speckle pattern gradients within the subset while increasing the subset
size. Then, a single subset size that satisfies a certain threshold is determined.

According to the typical procedure of SSSIG, the two different seed points are randomly selected,
as shown in Figure 5. To equivalently compare the test results, the seed points are intentionally selected
among Oi. Then, the SD error values, i.e., SDerror(x) and SDerror(y), are calculated. It is given by [31]:

SDerror(x) ≈

 N(η)∑ ∑
( fx)

2


1
2

, SDerror(y) ≈

 N(η)∑ ∑ (
fy
)2


1
2

, (3)

where N(η) is the noise variance calculated using the two images acquired with a certain time
interval. fx and fy are the first-order derivatives of grayscale intensities within the subset along the
x and y directions, respectively. The threshold of the SDerrors is set to 0.005, as recommended by
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Pan et al. [31], and the subset size increases from 7 × 7 pixels to 55 × 55 pixels, which is similar to the
proposed algorithm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 

 
Figure 5. Randomly selected two different seed points within the ROI of the aluminum specimen. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) ≈ � 𝑁𝑁(𝜂𝜂)
∑∑(𝑓𝑓𝑥𝑥)2

�
1
2, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦) ≈ � 𝑁𝑁(𝜂𝜂)

∑∑�𝑓𝑓𝑦𝑦�
2�

1
2
,  

(3) 

where 𝑁𝑁(𝜂𝜂) is the noise variance calculated using the two images acquired with a certain time 
interval. 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the first-order derivatives of grayscale intensities within the subset along the 
x and 𝑦𝑦 directions, respectively. The threshold of the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is set to 0.005, as recommended by 
Pan et al. [31], and the subset size increases from 7 × 7 pixels to 55 × 55 pixels, which is similar to the 
proposed algorithm. 

Figure 6 shows the subset size determination results obtained by SSSIG. At the seed point 1, the 
subset size of 7 × 7 pixels is determined by employing the threshold value of 0.005, as shown in Figure 
6a. On the other hand, at the seed point 2 the subset size of 9 × 9 pixels is selected, as displayed in 
Figure 6b. The SSSIG results obtained from the two different seed points mean that the subset size 
can be different depending on the spatial points and even the empirically obtained threshold value. 

  

(a) (b) 

Figure 6. Determination of subset sizes using subset intensity gradient (SSSIG) at the randomly 
selected two different seed points: (a) seed point 1 and (b) seed point 2. 

Similarly, the corresponding DIC errors are computed with respect to the horizontal 
displacement images of 200 µm, 500 µm and 1 mm. Figure 7a shows that a number of error points 
occur regarding the subset size of 7 × 7 pixels even for the 200 µm displacement. Compared with 
this, Figure 7a–c shows that the error points decrease as the specimen displacement increases. On the 
other hand, the subset size of 9 × 9 pixels case reveals that a certain error pattern depending on the 
specimen displacement cannot be observed, as shown in Figure 7d–f, while it can be clearly seen that 
the DIC errors randomly and fairly exist. The DIC errors are quantitatively compared in Table 1, and 
the maximum error of SSSIG is 33% among the test cases. As a result, it can be confirmed that spatially 
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Figure 6 shows the subset size determination results obtained by SSSIG. At the seed point 1,
the subset size of 7 × 7 pixels is determined by employing the threshold value of 0.005, as shown in
Figure 6a. On the other hand, at the seed point 2 the subset size of 9 × 9 pixels is selected, as displayed
in Figure 6b. The SSSIG results obtained from the two different seed points mean that the subset size
can be different depending on the spatial points and even the empirically obtained threshold value.
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Figure 6. Determination of subset sizes using subset intensity gradient (SSSIG) at the randomly selected
two different seed points: (a) seed point 1 and (b) seed point 2.

Similarly, the corresponding DIC errors are computed with respect to the horizontal displacement
images of 200 µm, 500 µm and 1 mm. Figure 7a shows that a number of error points occur regarding the
subset size of 7 × 7 pixels even for the 200 µm displacement. Compared with this, Figure 7a–c shows
that the error points decrease as the specimen displacement increases. On the other hand, the subset
size of 9 × 9 pixels case reveals that a certain error pattern depending on the specimen displacement
cannot be observed, as shown in Figure 7d–f, while it can be clearly seen that the DIC errors randomly
and fairly exist. The DIC errors are quantitatively compared in Table 1, and the maximum error of
SSSIG is 33% among the test cases. As a result, it can be confirmed that spatially different random DIC
errors are noticeably produced by SSSIG, while there are no DIC errors in the adaptive subset case,
as shown in Figure 4.
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Table 1. Comparison of the number of spatial error points between the adaptive subset and the SSSIG.

The Number of Spatial Error Points

Case 200 µm 500 µm 1 mm

Adaptive subset 0 0 0

SSSIG 7 × 7 pixels 829 134 0

SSSIG 9 × 9 pixels 67 8 71

4. Fatigue Crack-Opening Evaluation Tests

The fatigue crack-opening phenomenon, which is a typical local deformation, is experimentally
traced on a speckle-patterned fatigue crack specimen, as shown in Figure 8. In this experiment, four
steps of the fatigue crack-opening images are acquired under the uniaxial tensile conditions of 0.2, 1.0,
1.4 and 1.7 mm using UTM.
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Figure 8a shows the fatigue crack-opening test setup, consisting of the digital camera,
speckle-patterned dog-bone test specimen and UTM. Figure 8b displays the zoom-in speckle-patterned
image of the specimen with a real fatigue crack and the random speckle pattern similarly made by
the stone spray. First, the reference images are captured from the target specimen surface, which
is installed at the UTM without loading. Here, the ROI is 1000 × 400 pixels, which is equivalent to
20 × 8 mm2 on the target specimen, as shown in Figure 8b. Then, the uniaxial tensile loads of 0.2, 1.0,
1.4 and 1.7 mm are applied using UTM, and the corresponding test images are sequentially acquired
according to the loading steps. Note that the single pixel resolution of the captured image is 20 µm
when the working distance between the lens and specimen surface is 487 mm. The speckle-patterned
images are obtained under normal indoor lighting conditions and the camera settings are similarly
fixed at ISO 1600, F 22, with an exposure time of 0.5 s. INSTRON 5982 UTM has a 100 kN axial force
capacity with a 0.01 mm displacement resolution control.

Similar to the feasibility test, 15 reference images are acquired from the ROI without any
deformation with five second time intervals; the corresponding 105 pairs of reference images are
obtained according to Step (1). Then, 6250 Oi are assigned to the ROI with respect to the spatial
interval of seven pixels. For all Oi, the Vi values are determined while increasing M j from 3 to 27 with
intervals of 1 through Step (2) and Step (3). Finally, in Step (4), 105 convergence maps are established.
Subsequently, the Ai values are determined with respect to 105 Vi; they are then assigned at each Oi.

Figure 9 shows the determination results of Ai. Ai varies from the minimum 15 × 15 pixels to the
maximum 43 × 43 pixels depending on Oi. Here, 78.4% of Ai has a subset size of between 21 × 21 and
29 × 29 pixels, as shown in Figure 9a,b, which shows the spatially different and randomly distributed
subset sizes within the entire ROI of the test specimen.
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Figure 9. Determination results of adaptive subset sizes: (a) the number of adaptive subset sizes
according to the subset length and (b) spatial distribution of the adaptive subset sizes.

Figure 10 shows the DIC analysis results with the automatically optimized adaptive subset sizes
corresponding to the test images acquired under the uniaxial tensile loading conditions of 0.2 mm,
1.0 mm, 1.4 mm and 1.7 mm. The color bar of Figure 10 shows the minute displacement of the target
specimen according to the loading step. Figure 10a shows that only a random displacement distribution
can be observed, because a 0.2 mm displacement is too small to be observed by the determined physical
subset sizes. From the 1.0 to 1.7 mm displacement steps, the corresponding displacement distributions
can be clearly observed during the fatigue crack-opening, as shown in Figure 10b–d. In particular,
the fatigue crack boundaries are clearly visualized in Figure 10c,d. Although the DIC error partially
occurs in Figure 10d, the displacement distribution near the crack tip is successfully visualized due to
the spatially different subset sizes, which are large enough to compensate the local DIC errors.



Appl. Sci. 2020, 10, 3574 10 of 13

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 

 
 

(a) (b) 

Figure 9. Determination results of adaptive subset sizes: (a) the number of adaptive subset sizes 
according to the subset length and (b) spatial distribution of the adaptive subset sizes. 

Figure 10 shows the DIC analysis results with the automatically optimized adaptive subset sizes 
corresponding to the test images acquired under the uniaxial tensile loading conditions of 0.2 mm, 
1.0 mm, 1.4 mm and 1.7 mm. The color bar of Figure 10 shows the minute displacement of the target 
specimen according to the loading step. Figure 10a shows that only a random displacement 
distribution can be observed, because a 0.2 mm displacement is too small to be observed by the 
determined physical subset sizes. From the 1.0 to 1.7 mm displacement steps, the corresponding 
displacement distributions can be clearly observed during the fatigue crack-opening, as shown in 
Figure 10b–d. In particular, the fatigue crack boundaries are clearly visualized in Figure 10c,d. 
Although the DIC error partially occurs in Figure 10d, the displacement distribution near the crack 
tip is successfully visualized due to the spatially different subset sizes, which are large enough to 
compensate the local DIC errors. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Digital image correlation (DIC) analysis results using the proposed algorithm under the
uniaxial tensile loads of: (a) 0.2, (b) 1.0, (c) 1.4 and (d) 1.7 mm.

Similarly, the fatigue crack-opening phenomenon is analyzed by SSSIG. Figure 11 shows the
randomly selected two seed points within the entire ROI for SSSIG.
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Figure 11. Randomly selected two seed points in the ROI of the fatigue crack specimen.

From the randomly selected two different seed points, the subset sizes of 13 × 13 pixels and
19 × 19 pixels are respectively computed throughout the entire ROI when the threshold value of 0.005
is used, as shown in Figure 12.

The corresponding DIC analysis results of subset sizes 13 × 13 and 19 × 19 pixels are shown in
Figures 13a–d and 13e–h, respectively. Similarly, the resulting images of Figures 13a–d and 13e–h
are clearly different from each other depending on the seed point. In particular, Figure 13a–d shows
that the subset size 13 × 13 pixels is too small to analyze a local displacement of even 0.2 mm. On the
other hand, the subset size 19 × 19 pixels case reveals that fatigue crack-opening is well traced until
1.0 mm, while displacement cases of over 1.4 mm produce the dominant local DIC errors, as shown
in Figure 13e–h. It can be concluded that the SSSIG results highly depend on experts’ subjective
intervention as well as the spatial bias of the speckle pattern, making it difficult to properly analyze
the fatigue crack-opening phenomenon.
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Figure 13. DIC analysis results using SSSIG. The subset size of 13 × 13 pixels with uniaxial tensile
conditions of: (a) 0.2, (b) 1.0, (c) 1.4 and (d) 1.7 mm; the subset size of 19 × 19 pixels with uniaxial
tensile conditions of (e) 0.2, (f) 1.0, (g) 1.4 and (h) 1.7 mm.

5. Conclusions

This paper proposed a new adaptive subset size optimization algorithm, and it was experimentally
validated by tracing the global and local deformations of target specimens. In particular, the superior
performance of the proposed algorithm was experimentally validated through a comparative study
with one of the most widely accepted subset size determination algorithms. The validation test
results revealed that the proposed algorithm automatically optimizes spatially different adaptive
subset sizes in the entire region of interest without experts’ subjective intervention, making it possible
to successfully analyze local as well as global deformations by minimizing the local digital image
correlation (DIC) errors. The proposed algorithm is able to become a promising tool for the evaluation
of various local and global deformations of a target structure. In the follow-up study, the proposed
algorithm will be applied to real structures such as bridges, machinery, buildings and so on. Moreover,
a surface treatment-free DIC technique, which can be used as an alternative to surface-treated speckle
patterns, is now being developed based on deep learning-based image feature enhancement.
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