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Abstract: The vibration isolator equipped with a negative stiffness corrector (NSC) excels at 

vibration isolation, but its stiffness often presents complex nonlinearity which needs to be 

approximated in calculation. To avoid the harmful effects of approximate stiffness, the NSC formed 

by the cam-roller mechanism with a quadratic polynomial trajectory (QCRM) is proposed to 

construct the vibration isolation system. From the inherent geometrical relationship in the structure, 

the generation mechanism of high-static-low-dynamic stiffness is analyzed, and the quasi-zero 

stiffness (QZS) condition of the system is derived. Based on the dynamic model of the QZS vibration 

isolator, the functions of response characteristics are solved by the harmonic balance method. Then, 

the absolute displacement transmissibility with different parameter values, and the vibration 

isolation performance under sinusoidal, multi-frequency wave, and random excitations are 

discussed. The simulated results show that the stiffness expression of the proposed QZS vibration 

isolator is directly a quadratic function, which removes the calculation error caused by approximate 

stiffness at large displacement and broadens the available isolation displacement range. Introducing 

the QCRM-NSC can significantly suppress the low-frequency vibration and resonance response 

without changing the load-bearing capacity of the vibration isolator. Under various excitations, the 

vibration isolation performance of the QZS vibration isolator all outperforms the linear counterpart. 

Keywords: negative stiffness corrector; quasi-zero stiffness; quadratic polynomial trajectory; cam-

roller mechanism 

 

1. Introduction 

Vibrations occur in many engineering applications. In most cases, they are undesirable and 

harmful, as they shorten the service life of equipment and even cause serious accidents [1]. Recently, 

with the rapid development of sophisticated industry, such as high-speed trains [2], precision optical 

instruments [3] and stealth submarines [4], the requirements on the vibration environment have 

become increasingly strict. Considering the contradiction between the load-bearing capacity and the 

low-frequency vibration isolation of traditional linear vibration isolators, nonlinear theory is widely 

adopted for better isolation performance [5]. 

Nonlinear vibration isolation systems can be implemented without additional energy, and 

constructed in a variety of interesting ways. Air springs [6], polycal wire ropes [7], bio-inspired X-

shaped structures [8], and fluidic origami structures [9] are all effective designs to achieve the 

expected vibration isolation. The use of a negative stiffness corrector (NSC) to develop nonlinear 
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isolators on the basis of linear isolators is also an attractive issue in the vibration control field. In this 

type of nonlinear vibration isolator, the static stiffness is high, but the dynamic stiffness drops to 

extremely low and can even realize the quasi-zero stiffness (QZS). This means that introducing an 

NSC will reduce the natural frequency without increasing the static deflection of the original system, 

which is beneficial to vibration isolation. 

The early NSC, whose dynamic model was established and fully analyzed in [10,11], consists of 

a pair of inclined linear springs. Buckled beams are another choice for negative stiffness structure 

due to their elastic property [12,13]. Nonlinear magnet metamaterials and honeycomb configurations 

are also incorporated in negative stiffness structures to reduce friction and deformation during 

vibration isolation [14] or to isolate shocks [15]. As the theory of negative stiffness becomes mature, 

the use of NSCs to suppress vibration in many practical applications have been discussed. 

Papaioannou et al. [16] installed the vibration isolator with a negative stiffness element in a passenger 

vehicle. In their research, five different isolators were compared under different seated passengers 

and excitations from rough roads. Yang et al. [17] introduced a negative stiffness adjusting 

mechanism into the suspension system of trucks with an all-floating cab. Their simulation results 

presented that the vibration of the cab with the nonlinear suspension system is significantly 

attenuated, and the suspension travel space is utilized due to the controllable deflection. Li and Xu 

[18] conducted their study on a double-layer QZS vibration isolation floating raft system which 

expands the isolation region to a very low-frequency. Zhou et al. [19] used permanent magnets as a 

negative stiffness corrector to construct the QZS vibration isolator, aiming to weaken the vibrations 

of the infant in an incubator during neonatal transport. For the flexible structures, such as stay cables, 

a negative stiffness damper was proposed to mitigate the damage caused by vibrations. Zhou and 

Fang [20] investigated the matching of the negative stiffness and viscous damping in that passive 

equipment and revealed its vibration control mechanism from the perspective of energy. 

Clearly, it has been well proven that adding the NSC to a vibration isolator can improve the 

isolation performance. In literature, however, the vibration isolator applying an NSC often has the 

nonlinear stiffness with a complex analytical expression [10,11,14,16–19,21–27] which needs to be 

approximated by the Taylor series expansion before solving its dynamic characteristics, including 

frequency response function, bounded response area and peak amplitude. In fact, the strong 

nonlinearity makes the vibration isolator with NSC sensitive to parameters and prone to instability. 

When the response of the vibration isolation system is small enough, it is reliable to adopt the Taylor 

series expansion with low order to simplify the stiffness of the system. On the contrary, this kind of 

approximation is difficult to satisfy the accuracy requirement under large vibrations. The errors will 

lead to the deviation against actual isolation performance, the mismatch of structure parameters and 

isolated mass, and the limitation on working displacement of isolators. The changes of the predicted 

vibration responses caused by stiffness error have been presented in [21,22]. Increasing the order of 

Taylor series expansion, the accuracy can be improved, while the difficulty and cost of calculation 

will be raised. 

In order to avoid the above approximation error problem in dynamic analysis of nonlinear 

vibration isolators, a novel cam-roller type negative stiffness corrector is proposed in this paper. In 

manufacturing and automobile engineering, the cam and its profile theory have been widely used 

[28,29]. Vibration isolators with cam-roller mechanisms (CRMs) present superior isolation 

capabilities [16,23,24], but the cams in the existing CRMs all have the semicircular trajectory, which 

results in a complicated stiffness and fails to exploit the advantage that cam contours are easy to 

design. Therefore, for the desired stiffness characteristics, the NSC constructed in this paper employs 

the cam-roller mechanism with a quadratic polynomial trajectory (QCRM), and the nonlinear 

vibration isolator with this QCRM-NSC is established. Then, according to the static model of the 

vibration isolator, the simple quadratic polynomial stiffness of the NSC and the QZS condition of the 

isolator are given without stiffness approximation. Both the dynamic response and the vibration 

isolation performance under different excitations show that the nonlinear QZS vibration isolator with 

the special QCRM-NSC can effectively suppress the transmission of vibrations. 
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2. NSC Formed by CRMs with Quadratic Polynomial Trajectory 

In nonlinear vibration isolators, the NSC and the positive supporting structure are usually 

connected in parallel along the vibration isolation direction. Figure 1 illustrates the principle of the 

NSC in an isolation system for vertical vibration. When the vibration isolator just bears the rated 

mass, it moves down from the position shown in Figure 1a to the static equilibrium position in Figure 

1b,c. At this time, the NSC only generates restoring force in the horizontal direction, so the load-

bearing capacity of the vibration isolator, here provided by a vertical linear spring, will not be 

affected. When isolating vibrations, the NSC begins to deviate from the static equilibrium position, 

as shown in Figure 1d, and produces a vertical component force in the same direction as the 

movement of the isolated object. The new component force is related to displacement and results in 

a reduction in the dynamic stiffness of the system. Actually, the NSC, as a part of the stiffness unit, 

together with the supporting spring determines the stiffness characteristics of the vibration isolator. 

The NSC makes the stiffness of the vibration isolator nonlinear. It does not interfere with the static 

stiffness provided by the supporting spring, but changes the dynamic stiffness during vibration by 

the superposition of a variable vertical restoring force. Correspondingly, the force-displacement 

principles of the linear supporting spring, the NSC and the entire vibration isolation system are given 

in Figure 2. At the working range pointed out on the curves, the negative stiffness offsets part of the 

positive stiffness, and makes the system possess ultra-low dynamic stiffness while maintaining the 

static supporting capacity unchanged. 

 

(a)           (b)           (c)                    (d) 

Figure 1. Negative stiffness corrector (NSC) in a nonlinear vibration isolator. (a) Unloaded linear 

spring; (b) loaded linear spring at static equilibrium position; (c) isolator with NSC at static 

equilibrium position; (d) isolator with NSC in operation. 

 

Figure 2. Force-displacement curves of linear supporting spring, NSC, and the vibration isolator they 

build. 

The NSCs formed by QCRMs are indicated by dash-line boxes in Figure 1c,d. The rollers in the 

NSC, which have the same displacement as the isolated object, are installed on the upper loading 

platform by horizontal springs. As the rollers move along the quadratic polynomial trajectory of the 

cam mounted on the baseplate, the compression length of the horizontal springs is affected, enabling 

the NSC to provide a varying force to the vibration isolation system. 
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The main function of the cam is to convert the vertical displacement along the vibration direction 

into the horizontal displacement of rollers, and then the direction of the elastic reaction force of the 

rollers back into the vertical direction. In CRM-NSCs, since the cam contours are easy to design and 

have regularity, their trajectory functions can be derived inversely according to the desired stiffness 

characteristics of the vibration isolator. In fact, both the negative stiffness structures with inclined-

springs [10] and with link-springs [25] can be transformed into the unified form constructed by CRMs. 

To further understand the QCRM-NSC in our research, the forces between a set of cam and roller 

are illustrated in Figure 3. Define y as the absolute displacement of the roller with the upward positive 

direction, and only consider the vibration in the vertical direction. The roller center at the static 

equilibrium position in Figure 3a is set as the origin of y, which is on the horizontal centerline of the 

cam. When the base of the vibration isolation is subjected to an external excitation z, there is a vertical 

relative displacement u = y − z between the roller and the cam, as shown in Figure 3b. Based on the 

integrated model in [26] and the purpose of cubic nonlinear restoring force, the trajectory of the roller 

center with respect to u is defined as the quadratic function: 

2( )x u au  (1) 

where x is the compression deformation length of the horizontal spring caused by u, and a is the 

quadratic coefficient of the trajectory. 

The pressure of the horizontal spring keeps the roller in contact with the cam. So, the cam 

generates the force fc on the roller along the normal direction, which is equal to the force of the roller 

acting on the cam and opposite in direction. The horizontal component force fh of fc depends on the 

stiffness kn and total deformation length of the horizontal spring, which can be obtained as: 

2

h n n
( ) ( )f u k x a y δ     (2) 

where δn is the pre-compressed length of the horizontal spring without the rate mass, and Δy, the 

static vertical displacement caused by rated mass, is selected as the maximum working displacement. 

The angle between the horizontal force and the normal vector of the roller center trajectory is 

defined as β. Its tangent value can be obtained as tanβ = 2au by differentiating x with respect to u. 

Then, the vertical component force Fn on the roller, namely the force exerted on the upper loading 

platform by the QCRM, can be gained as: 

n h n n n

2 3 2( ) tan 2 2 ( )F u f β a k u ak a y δ u      (3) 

When the horizontal spring has the largest compression length, tanβ = 0 which satisfies the 

requirement that there is no vertical component force at the equilibrium position. 

 

(a)                    (b) 

Figure 3. Static analysis of cam-roller mechanism with a quadratic polynomial trajectory (QCRM). (a) 

Roller at static equilibrium position; (b) roller deviating from equilibrium position. 
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Nondimensionalizing Equation (3), the non-dimensional force-displacement relationship can be 

expressed as: 

2 3 2( ) 2 2 2
n n

F u a u a u aδ u    (4) 

where 
n n n

/ ( )F F k y   is the non-dimensional vertical force on the roller, /u u y   is the non-

dimensional relative displacement, a a y   is the non-dimensional quadratic coefficient, and 

n n
/δ δ y   is the non-dimensional pre-compressed length of the horizontal spring. 

Next, differentiating Equation (4) with respect to u , the non-dimensional stiffness nK  is also 

obtained as: 

2 2 2

n n
( ) 6 2 2K u a u a aδ    (5) 

The non-dimensional force-displacement characteristics and non-dimensional stiffness for 

different 
n

δ  and a  are plotted in Figures 4 and 5. At the static equilibrium position ( 0u  ), the 

restoring force provided by the QCRM is equal to zero and changes direction, and correspondingly 

the negative stiffness is symmetrical and reaches the minimum. Then, with the displacement moving 

away from the symmetric point, both the force and stiffness increase. From Figure 4, it can be found 

that for a fixed a , the change of 
n

δ  will shift the stiffness curves longitudinally, but not change their 

shape. Raising 
n

δ  can broaden the negative stiffness region and provide a lower negative stiffness. 

In Figure 5, a  is varied, but 
n

δ  is fixed. The curvature of the stiffness curves is determined by a , 

while the stiffness values at some points on the curves change little, for example 0.85u   . The 

decrease of a  extends the negative stiffness region but causes the minimum of the negative stiffness 

to increase. The curves drawn by dotted line correspond to the case where =0a . Actually, the value 

of a  cannot be zero. Meanwhile, according to Equation (5), the second derivative of nK  is greater 

than zero. Therefore, the negative stiffness must be a concave function, so that when the vibration 

isolator is far from the static equilibrium position, the total stiffness of the system can remain non-

negative to avoid the instability in [27]. Properly selecting 
n

δ  and a  can provide negative stiffness 

throughout the whole displacement range. 

  

(a)                                            (b) 

Figure 4. Non-dimensional characteristics of QCRM with a  = 0.5. (a) Force-displacement curves; (b) 

stiffness curves. 
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(a)                                              (b) 

Figure 5. Non-dimensional characteristics of QCRM with 
n

δ  = 0.7. (a) Force-displacement curves; (b) 

stiffness curves. 

3. Nonlinear Vibration Isolator with Negative Stiffness Corrector 

3.1. Modelling of Nonlinear Vibration Isolator 

The proposed nonlinear vibration isolation system is mainly composed of the positive stiffness 

mechanism, the QCRM-NSC, the upper loading platform (2), and the baseplate (6), as shown in 

Figure 6. The positive stiffness mechanism here consists of four vertical linear springs (5) which are 

fixed on the corners of the baseplate to carry the rated mass m (1) and ensure the reliability of the 

vibration isolator. The QCRM-NSC is designed based on the principle described in Section 2 and 

located in the middle of the isolator. As the important components of the NSC, two grooved cams (3) 

are symmetrically mounted on the baseplate. After being connected by the horizontal compression 

linear spring (7), the rollers (4) contacting with the cams are horizontally installed under the upper 

platform (2) by the hollow tube (8). The pre-compression of the horizontal spring can be adjusted by 

the nuts (9) at the bottom of the cams. Vertical adjustment nuts (10) are also adopted to eliminate the 

interference of static load error on the static equilibrium position of the vibration isolator. 

 

Figure 6. Physical model of nonlinear vibration isolator with QCRM-NSC. 

Since the positive stiffness mechanism and the NSC are connected in parallel, the sum of their 

restoring forces is the total restoring force of the entire vibration isolator. When the stiffness of each 

vertical spring is kv, the force-displacement characteristic can be written as: 

2 3 2

k n n n p
( ) 4 4 ( )F u a k u ak a y u k u       (6) 
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where Fk is the restoring force provided by the vibration isolator, kp = 4kv is the total stiffness of the 

positive stiffness mechanism, and Δy = mg/kp. 

Dividing both sides of Equation (6) by kpΔy, the non-dimensional restoring force 
k

F  of the 

isolator can be derived as: 

2 3 2

k n
( ) 4 4 4F u ra u ra u ra u u     (7) 

where r = kn/kp is the stiffness ratio, and the other non-dimensional parameters have the same 

definitions with those in Equation (4). 

Then, the non-dimensional stiffness K  is obtained by differentiating Equation (7) with respect 

to the non-dimensional displacement u , as: 

2 2 2

n
( ) 12 4 4 1K u ra u ra ra     (8) 

3.2. Condition for Quasi-Zero Stiffness 

The nonlinearity of K  makes the vibration isolation system possess high-static-low-dynamic 

stiffness characteristic. Furthermore, it is possible for negative stiffness to completely offset all the 

positive stiffness, so as to achieve the QZS. Therefore, by setting the Equation (8) to zero at the static 

equilibrium position, that is, ( 0) 0K u   , the required relationship that gives the system QZS 

characteristic can be obtained as: 

nQZS

1

4
δ a

ra
   (9) 

With such a configuration, the non-dimensional stiffness of the QZS system is reformulated as: 

2 2

QZS
( ) 12K u ra u  (10) 

From the non-dimensional stiffness curves for different a  and r in Figure 7, it can be found that 

the QZS is realized under different stiffness characteristics. Increasing the stiffness ratio and the 

quadratic coefficient can both get a larger range of low dynamic stiffness near the zero-stiffness point. 

  

(a)                                              (b) 

Figure 7. Non-dimensional stiffness characteristics of QZS vibration isolator. (a) r = 0.5; (b) a  = 0.4. 
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4. Dynamics and Isolation Performance of the Vibration Isolator 

4.1. Dynamic Equation 

Based on Newton’s second law and the structure in Figure 6, the motion equation of the 

vibration isolation system exposed to the base displacement excitation ( ) cos( )z t Z ωt  with 

amplitude Z and frequency ω is established as: 

2
2 3 2 2

n n n p2

d d
4 4 ( + ) cos( )

dd

u u
m c a k u ak a y δ u k u mω Z ωt

tt
       (11) 

where c is the damping coefficient in the vertical direction. 

Considering the QZS condition in Equation (9), the non-dimensional form of Equation (11) is 

obtained as: 

2
2 3 2

2
2 4

d d
cos( )

dd

u u
ξ a ru Ω Z Ωτ

ττ
    (12) 

where the new non-dimensional transformation parameters are defined as 
0

ω
Ω

ω
 , 

p

0

k
ω

m
 , 

0
τ ω t , 

0
2

c
ξ

mω
 , ( ) cos( )z τ Z Ωτ  and 

Z
Z

y



. 

Here, the harmonic balance method (HBM) [30], an approximate analytical algorithm, is used to 

acquire dynamic characteristics of the isolation system. Since the primary resonance response is of 

interest, the steady solution to Equation (12) for u  can be written as: 

cos( )u A Ωτ θ   (13) 

where A  and θ are the amplitude and phase of the response, respectively. Substituting Equation 

(13) into Equation (12) and making the coefficients of sin(Ωτ) and cos(Ωτ) equal to zero, the following 

relations can be obtained:  

2

2 3 2 2

2 sin 0

3 cos 0

ξΩA Ω Z θ

a rA Ω A Ω Z θ

  


  
 (14) 

By the nature of trigonometric function, Equation (14) can be combined as the implicit 

amplitude-frequency equation: 

2 2 4 2 2 2 4 2 4 2 6( ) (4 6 ) 9 0A Z Ω ξ A a rA Ω a r A      (15) 

4.2. Frequency Response Characteristics and Stability 

From Equation (15), the positive solutions for non-dimensional excitation frequency Ω can be 

obtained as: 

2 4 2 2 2 4 2 2 2 2 4 2 2

1,2 2 2

(3 2 ) 4 12 9a rA ξ A A ξ ξ a rA Z a r A
Ω

A Z

   



 (16) 

Equation (16) implies the relationships between Ω and A  during the steady-state response 

which are often plotted by frequency response curve (FRC). Based on this relationship, the following 

response features of the vibration isolation system can be predicted in the form of formulas. 

The peak amplitude of vibration response occurs when Ω has a unique solution. Hence, the peak 

amplitude peak
A  and the corresponding excitation frequency Ωpeak under QZS condition are:  

2

peak
2 2 2 4 2

2

12 9

ξ
A

ξ a r Z a r



 (17) 
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and 

6 2 2 8

peak
6 4 2 2 2 4 2 4 6 3 6

18 12

81
12 45 54

4

ξ a rZ ξ
Ω

ξ ξ a rZ ξ a r Z a r Z




  

 
(18) 

In resonance response, the backbone curve, drawn by the peak amplitude points (Ωpeak, peak
A ), 

can be formulated as: 

2 4 2 2

b 2 2

3 2a rA ξ A
Ω

A Z





 (19) 

When the square root of the denominator in Equation (17) is not positive, peak
A  does not exist. 

To ensure the maximum response of the system is bounded, the parameters should be satisfied that: 

2 23

4

a rZ
ξ  (20) 

In a nonlinear system, the jump phenomenon is always unavoidable. To investigate the stability 

of the steady-state response in Equation (13), a small disturbance ( )e τ  is added in the harmonic 

solution. Then, cos( ) ( )A Ω θ e τ   is substituted into Equation (12) without considering the higher 

terms of e , resulting in: 

2 2( ) 2 ( ) 6 (1 cos 2( )) ( ) 0e τ ξe τ a rA Ωτ θ e τ       (21) 

Therefore, the unstable solution of Equation (12) at steady state is given as: 

4 2 2 2 2 4 2 4(4 12 ) 27 0Ω ξ a rA Ω a r A     (22) 

Two FRCs of the vibration isolation system are plotted in Figure 8 to illustrated the transition of 

response from bounded to unbounded. Z  is chosen as the variable parameter, and the maximum 

response is bounded when 3.079Z <  with =0.45a , r = 1 and ξ = 0.12. At Z  = 0.3, the FRC bends to 

the right as Ω grows, which denotes the hardening stiffness characteristic of the system. The unstable 

response region between the jump-down and the jump-up frequencies appears on the inclined side 

of the resonant response. As Z  increases to 0.31, the FRC still has right bend and unstable region, 

but the maximum response of the system changes to unbounded. 

 

Figure 8. Bounded and unbounded frequency response curve (FRCs) of the quasi-zero stiffness 

(QZS) vibration isolator with different Z . 
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In order to prove the vibration isolation capability of the QZS isolator, the equivalent linear 

vibration isolator is also given in this paper for comparison. When only the QCRM-NSC is removed 

but the other structures remain unchanged in Figure 6, the motion equation of the equivalent linear 

vibration isolation system can be derived as: 

2
2

2

d d
2 cos( )

dd

u u
ξ u Ω Z Ωτ

ττ
     (23) 

The response of the linear system can be easily obtained as: 

2

l
2 2 2 2(1 ) 4

Ω Z
A

Ω ξ Ω


 
 (24) 

4.3. Advantage of QCRM in Calculation Accuracy 

Unlike the classic NSC whose complex stiffness needs to be approximated by the Taylor series 

expansion in dynamic analysis, the NSC composed of QCRMs can directly provide the negative 

stiffness in the form of a quadratic polynomial. In this subsection, the NSC with a semicircular cam 

trajectory is exemplified and compared to show the harmful effects of stiffness approximation on 

response prediction and parameter selection. Except for its positive stiffness element constructed by 

the same arrangement in Figure 6, the structure and derivation of its negative stiffness was detailed 

in [23]. Hence, the non-dimensional stiffness of the NSC with a semicircular cam trajectory is obtained 

as: 

cir
cir 3 22

cir

11
1 1

(1 )

δ
K

δ u

 
   

 
 (25) 

Its approximate stiffness from a second order Taylor expansion at the equilibrium point is: 

* 2cir
cir

cir

3(1 )

2

δ
K u

δ


  (26) 

where 
cir

δ  is the non-dimensional pre-compressed length of the horizontal spring in the NSC with 

a semicircular cam trajectory, and equal to 2kv/kn under the QZS condition. 

Figure 9 shows the comparisons between the non-dimensional original stiffness (OS) and the 

non-dimensional approximate stiffness (AS) with different 
cir

δ . It can be found that the 

approximation accuracy is determined by both the structure parameter and the displacement. When 

cir
δ  = 0.4, the approximation error is large, and only a very small part of the displacement around u  

= 0 can meet the calculation requirement. When 
cir

δ  = 0.9 (the choice of [23]), the approximation 

accuracy around small displacement is improved, but the error is still obvious at large displacement. 

The error caused by the stiffness approximation will reduce the reliability of the dynamic analysis of 

the vibration isolation system. To make matters worse, the choice of structure parameters and the 

working range of isolation displacement are limited to ensure that calculation results are acceptable. 

Higher order Taylor approximation can improve this issue, but it is rarely used because of the 

increased computational cost. By contrast, the stiffness provided by the QCRM-NSC is a quadratic 

function directly. This means that analysis under arbitrary displacements and parameters is reliable 

and easy to implement. The simple stiffness expression also facilitates the study of the NSC in 

isolators with nonlinear supporting or multi-layer nested structure. 
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Figure 9. Comparisons between original and approximate stiffness curves of cam with semicircular 

trajectory. 

Figure 10 demonstrates the influence of stiffness approximation from the perspective of dynamic 

response. The numerical response solutions of the dynamic equations with the original and the 

approximate stiffness, calculated by Runge–Kutta method (RKM), are plotted as the pink dashed line 

and the blue dash-dotted line, respectively. Compared with the FCR of the approximate analytical 

solution obtained by HBM, plotted as the black solid and dotted line, it can be seen that different 

calculation methods have little effect on calculation accuracy, which has been verified in literature. 

However, the approximation of stiffness makes the FRCs quite different. In the approximate FRC, 

not only does the large tilt on the original FRC disappear, but the correct peak amplitude and jump 

frequencies are not obtained. Moreover, the unbounded response is incorrectly given as bounded. 

 

Figure 10. Comparisons between FRCs about original and approximate stiffness computed by Runge–

Kutta method (RKM) and the harmonic balance method (HBM). 

4.4. Vibration Isolation Performance under Different Excitations 

4.4.1. Displacement Transmissibility to Sinusoidal Excitation 

When subjected to a base displacement excitation, the vibration isolation capability of an isolator 

can be evaluated by displacement transmissibility T. For a linear isolation system, its absolute 

displacement transmissibility can be given by the ratio of the response amplitude of the isolated 

object to the excitation amplitude of the baseplate, and is described as 2 2 2 2 2

l
/ (1 ) 4T Ω Ω ξ Ω   . 

The transmissibility of a nonlinear vibration isolation system is more complicated because it is related 

to the level of excitation. According to the relationship of motion, the non-dimensional absolute 

displacement of the isolated mass is y u z  . Then, the absolute displacement transmissibility Tn 

of the nonlinear vibration isolator is obtained as:  
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2 2

n

2 cosA Z AZ θ
T

Z

 
  (27) 

From the previous analysis, the response of the vibration isolator with QCRM-NSC under QZS 

condition is related to the nonlinear stiffness coefficient 24a r , damping ratio ξ, and excitation 

amplitude Z . Since 2a  and r play the same role in vibration response, here only a  is selected to 

represent the nonlinear stiffness coefficient. Considering the bounded condition of the response and 

the practical working condition, the calculations for dynamic characteristics of the vibration isolator 

have been conducted. The parameter values listed in Table 1 can clearly reflect the system response 

changes with the parameters, and are used in the following discussion. 

Table 1. Parameters of vibration isolator. 

Parameter Value 

a  0.375 0.425 0.450 0.457 

ξ 0.10 0.11 0.12 0.13 

Z  0.15 0.25 0.28 0.30 

r 1 1 1 1 

The quadratic coefficient a  is a key parameter of the negative stiffness structure. When ξ = 0.10 

and Z  = 0.25, the effects of a  on the absolute displacement transmissibility of the QZS isolator are 

shown by the solid line in Figure 11. With a small a , the transmissibility curve is gentle and there is 

no resonance. The effective vibration isolation starts at Ω = 0.23. When a  reaches to 0.425, a 

resonance peak with a tendency to the right occurs on the curve, but the transmissibility does not 

present obvious nonlinear characteristics. As a  increases, the peaks of the transmissibility become 

larger and move to higher frequency, which results in the shrink of the vibration isolation range. At 

the same time, the curves begin to show strong hardening nonlinearity with the nonlinear 

phenomena, such as bend and jump. This is consistent with the cases in Figures 5 and 7, in which 

increasing a  strengthens the nonlinearity of stiffness. In addition, according to Figure 11a, it can be 

found that when a  is large, the resonance response is sensitive to the change of a . A small change 

in a  will cause a large difference in response. Therefore, a  should be adjusted to make the QZS 

isolator have a suitable nonlinearity to guarantee the vibration isolation performance. Compared 

with the transmissibility curves of the equivalent linear vibration isolator with the same supporting 

stiffness drawn by dashed line, the resonance response of the linear system is eliminated. Even 

though the value of a  is large, the resonance for the QZS isolator still has a lower frequency and 

smaller amplitude. 

  

(a)                                             (b) 

Figure 11. Effects of quadratic coefficient a  on displacement transmissibility T. (a) Trajectory of cam, 

where 2x a u  ; (b) displacement transmissibility T. 
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Figure 12 shows the effects of damping ratio ξ on absolute displacement transmissibility, when 

a  = 0.45 and Z  = 0.25. From the transmissibility curves of the QZS vibration isolator plotted by 

solid line, the growth of ξ can gradually suppress the resonance and nonlinearity in response, which 

reduces both the frequency and peak of resonance. In the equivalent linear vibration isolation system 

(dashed line), increasing ξ also weakens the peak of the transmissibility curve at resonance, but it 

cannot change the resonance frequency. Obviously, only the isolation frequency band of the 

nonlinear system can be improved. Compared with the linear vibration isolator, the resonance of the 

QZS isolator is more sensitive to the change of small damping ratio. Additionally, it should be noted 

that in the QZS isolation system, the vibration isolation capability at the high-frequency range will 

be sacrificed when increasing ξ to control the resonance. 

 

Figure 12. Effects of damping ratio ξ on displacement transmissibility T. 

In Figure 13, the displacement transmissibility curves of the QZS isolator under different 

excitation amplitude Z  are presented by solid line, when a  =0.45 and ξ = 0.12. The effects of Z  

on transmissibility are similar to that of a . Decreasing the value of Z  can reduce the resonance 

frequency, weaken the resonance intensity, disappear the nonlinear characteristics, and attenuate the 

vibration response. Thus, the QZS vibration isolator has better vibration isolation performance for 

excitation with small amplitude than for that with large amplitude. Note that this is not suitable for 

the equivalent linear vibration isolator, because the excitation amplitude has no effect on its 

displacement transmissibility, plotted by dashed line in Figure 13. Compared with the 

transmissibility of the equivalent linear isolator under different parameters, it can be concluded that 

after adding the NSC proposed in this paper, the resonance peak of the vibration response is greatly 

suppressed and moves to the left, which reduces the minimum vibration isolation frequency and 

expands the effective frequency range. Even at the high-frequency band where the linear vibration 

isolator works, the QZS vibration isolator still has superior vibration isolation performance. 

 

Figure 13. Effects of excitation amplitude Z  on displacement transmissibility T. 
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4.4.2. Vibration Isolation Performance under Multi-Frequency Wave Excitation 

The non-dimensional multi-frequency wave in Equation (28), referring to [25], is used as the 

input displacement excitation to analyze the vibration isolation performance of the QZS isolator 

when a  = 0.45, r = 1 and ξ = 0.10. 

m
0.25sin(0.11 ) 0.175sin(0.32 )

0.10 cos(0.18 ) 0.20 cos(0.36 )

Z ε τ ε τ

ε τ ε τ

   

   
  (28) 

where ε is the coefficient of excitation frequency. 

Figure 14 shows the time history of the steady-state displacement responses of the QZS vibration 

isolator and its equivalent linear isolator, at ε = 10. When only linear isolation is performed, the 

displacement response is greater than the excitation, showing the deterioration of vibration. After the 

NSC is introduced, the vibration is attenuated, and the maximum of the displacement response drops 

to 36.7% of the maximum excitation amplitude. Then, the spectrum results with respect to the non-

dimensional response frequency f  are given in Figure 15. The linear vibration isolator can reduce 

the vibration displacement at high excitation frequency, but that of the lowest excitation frequency is 

amplified to 213.1%, which leads to poor final isolation performance in the above time history. On 

the contrary, the QZS isolator reduces excitation amplitude at each frequency component by more 

than 73.7%. 

   

(a)                                                (b) 

Figure 14. Time history under multi-frequency wave excitation. (a) displacement excitation; (b) 

displacement responses of QZS and equivalent linear isolators. 

 

(a) 

 

(b) 

 

(c) 

Figure 15. Spectrums under multi-frequency wave excitation. (a) displacement excitation; (b) 

displacement response of QZS isolator; (c) displacement response of equivalent linear isolator. 
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Figure 16 shows the effects of ε on the root mean square (RMS) of the displacement response. 

The variation of ε means that the excitation frequency is changed, which causes multiple peaks on 

the RMS curves. When ε is small, neither the QZS vibration isolators nor the equivalent linear isolator 

can isolate the multi-frequency wave excitation. In this region where the excitation vibration is 

amplified, although the QZS isolator has lower peak of RMS, its vibration around ε = 1 and ε = 7 is 

worse than that of the equivalent linear isolator. With the increase of ε, it can be seen that adding the 

NSC makes the peaks move left, and the QZS vibration isolator plays the isolation function firstly. 

When ε = 10, its value of the displacement RMS is much smaller than the corresponding values of the 

excitation and equivalent linear isolator.  

 

Figure 16. Effects of coefficient ε on root mean square (RMS) of displacement. 

4.4.3. Vibration Isolation Performance under Random Excitation 

Using the displacement signal provided by the road surface to moving vehicles as the input 

excitation, the vibration isolation performance of the QZS vibration isolator under a random base 

excitation is analyzed. By virtue of the standard stated in [31], the power spectral density (PSD) 

function of road roughness Gq(n) can be given as:  

q q 0

0

( ) ( )( ) Wn
G n G n

n
  (29) 

where n is the spatial frequency; n0 is the reference spatial frequency taken as n0 = 0.1 m−1, and W is 

the frequency index taken as W = 2. Gq(n0) is the road roughness coefficient, and Gq(n0) = 64 × 10−6 m3 

when the B-class road profile is used.  

Since the road roughness is a stationary Gaussian random process with mean value of zero and 

traversal of various states, the target random process can be described by discrete spectrum. After 

non-dimensional processing, the simulated excitation signal 
r

Z  of the road roughness in time 

domain can be obtained as the curve shown in Figure 17a. Then, the time history curves of the 

displacement response of the QZS vibration isolator and its equivalent linear isolator are compared 

in Figure 17b when a  = 0.45, r = 1 and ξ = 0.10. The QZS isolator has good performance in isolating 

a random excitation, and the overall vibration of the system is significantly reduced. The equivalent 

linear vibration isolator only isolates the vibrations in high-frequency band, but the vibration peak 

value after isolation even exceeds the maximum value of the excitation. 
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(a)                                            (b) 

Figure 17. Time history under random excitation. (a) Displacement excitation; (b) displacement 

responses of QZS and equivalent linear isolators. 

Figure 18 shows the PSD of the displacement responses of the vibration isolator before and after 

the NSC is introduced. It can be observed in the figure that the trend of the PSD curves changing with 

the response frequency is consistent. Except for the weak vibration isolation at f  =0.04, the QZS 

vibration isolators can successfully decrease vibrations over the frequency range. However, for the 

equivalent linear vibration isolator, the vibration deteriorates when 0.11 < f  < 0.23, and its vibration 

isolation capability will not achieve that of the QZS isolator until f  is higher than 1. Besides, as 

shown in Figure 19, adding the NSC to the linear vibration isolation system makes the RMS of the 

displacement response decrease from 0.161 to 0.079. These demonstrate that the proposed QZS 

vibration isolator can also obtain better performance under random excitations. 

 

Figure 18. Power spectral density under random excitation. 

 

Figure 19. RMS of displacement under random excitation. 

  



Appl. Sci. 2020, 10, 3573 17 of 18 

5. Conclusions 

This paper proposes an NSC formed by the cam-roller mechanism with a quadratic polynomial 

trajectory. For the QZS vibration isolator equipped with the novel NSC, its static and dynamic models 

are established to investigate the high-static-low-dynamic stiffness and the dynamic characteristics 

under QZS condition. Additionally, the vibration isolation performance of the QZS vibration isolator 

is discussed under various excitations. The main conclusions are as follows: 

(1) The proposed QZS vibration isolator directly has a nonlinear stiffness expressed by a 

quadratic function, due to the adoption of the QCRM-NSC. When solving the dynamic response, the 

Taylor series expansion of stiffness is not required, and the error at large response displacement 

caused by approximate stiffness is avoided.  

(2) The structure parameters have a great influence on the displacement transmissibility of the 

QZS vibration isolator. Reducing the quadratic coefficient and excitation amplitude weakens the 

transmission and nonlinearity of the vibration response. Although a larger damping ratio causes an 

increase in the transmissibility at high-frequency range, it still performs well around the resonance. 

(3) Compared with the equivalent linear vibration isolator, the QCRM-NSC introduced in the 

QZS isolator greatly reduces the peak of the resonance response. Under sinusoidal excitation, multi-

frequency wave excitation, and random excitation, the QZS vibration isolation system has a lower 

starting vibration isolation frequency and a smaller displacement response. 

From the above, we can conclude that the proposed QZS vibration isolator maintains the 

excellent vibration isolation performance of nonlinear isolation. Meanwhile, the structure advantage 

of the QCRM-NSC makes it possible to reduce the calculation difficulty, and facilitates the application 

of NSCs in complex vibration isolation structures. 
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