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Featured Application: The material reported in this article can be used as a photoanode of a
photoelectrochemical cell that splits water into hydrogen and oxygen. In this way, solar energy
can be converted into hydrogen energy.

Abstract: Co-doped and Ni-doped hematite (α-Fe2O3) nanorod arrays were prepared on
fluorine-doped tin oxide (FTO) conductive glass via aqueous chemical growth, in which the doping
and the formation of nanorods occurred simultaneously (i.e., in situ doping). These samples were
characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet (UV)–visible
spectrophotometry, linear sweep voltammetry and Mott–Schottky (M–S) measurement. Results
showed that the introduction of 5% Co or Ni into α-Fe2O3 (the molar ratio of dopant to Fe is 1:20)
did not change its crystal phase, morphology, energy gap and flat band potential. Both the undoped
and the doped α-Fe2O3 showed a direct band gap of 2.24 eV, an indirect band gap of 1.85 eV, and a
flat band potential of −0.22 V vs. saturated calomel electrode (SCE). At an applied potential of 0.2 V
vs. SCE, the Co-doped and the Ni-doped α-Fe2O3 exhibited a photocurrent of 1.28 mA/cm2 and
0.79 mA/cm2, respectively, which were 2.1 times and 1.3 times that of the undoped α-Fe2O3. After the
Co or Ni doping, the charge carrier concentration increased from 1.65 × 1025 m−3 to 3.74 × 1025 m−3

and 2.50 × 1025 m−3, respectively. Therefore, the increase in the photocurrent of the doped α-Fe2O3

was likely attributed to their enhanced conductivity.

Keywords: photoelectrochemical water splitting; hydrogen production; aqueous chemical growth;
hematite nanorod; in-situ doping

1. Introduction

Photoelectrochemical (PEC) water splitting is a promising technology for the direct conversion from
solar energy to hydrogen energy. Since Fujishima and Honda proposed electrochemical photolysis of
water at a TiO2 electrode in 1972 [1], extensive studies have been carried out in this field. Photoelectrodes,
which are the key component of a PEC system, should meet the following requirements: (1) appropriate
energy levels for conduction band and valence band; (2) effective separation of photogenerated
electron-hole pairs; (3) resistance to chemical- and photo-corrosion. Various semiconductor materials
such as TiO2 [2,3], α-Fe2O3 [4–6], ZnO [7,8], WO3 [9–11], SrTiO3 [12,13], BiVO4 [14,15], etc. have been
examined for their potential as photoelectrodes. Among them, α-Fe2O3 shows great potential due
to its favorable band gap (2.1–2.2 eV), abundant natural reserves, non-toxicity and high chemical
stability. Theoretically, its maximum photocurrent density is 12 mA/cm2 and the maximum energy
efficiency is 15% at 1.23 V vs. RHE (reference hydrogen electrode) under one solar irradiation (AM1.5,
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100 mW/cm2) [16]. However, the actual PEC activity of α-Fe2O3 is far below its theoretical value,
which was likely caused by a short hole diffusion length (2–3 nm) and a poor electrical conductivity
(10−2 cm2/V·s) [4,5,17]. Nanostructure design and doping are two common strategies to improve
PEC performances.

It has been reported that oriented one-dimensional (1D) α-Fe2O3 nanostructures such as nanorods
and nanotubes exhibit a higher PEC activity than nanoporous and nanogranular α-Fe2O3 [16,18,19].
This is because 1D nanostructures have the following merits. On the one hand, 1D nanostructures
provide a short transport pathway for photoinduced holes to reach the semiconductor–electrolyte
interface, which reduces the possibility of electron-hole recombination [17,20,21]. On the other hand,
the migration of photoinduced electrons towards a substrate would suffer less resistance if α-Fe2O3

preferentially grows along the (110) direction [17,22]. This could be explained by the anisotropic
conductivity of α-Fe2O3. The conductivity of α-Fe2O3 within the (001) basal plane (i.e., in the (110)
direction) is up to 4 orders of magnitude higher than that vertical to the [001] plane [17]. Since oriented
1D α-Fe2O3 nanostructures have these advantages, various preparation methods have been developed.
They include anodization [18], aqueous chemical growth [17,20], hydrothermal synthesis [2], chemical
vapor deposition (CVD) [22], electrochemical deposition [23], spin-coating deposition [24], and chemical
co-precipitation [25], etc. Among these methods, aqueous chemical growth attracts attention for its
mild synthesis condition and easy combination with doping.

Doping is another effective strategy for the improvement of PEC activities [26]. In the past decade,
numerous metal and non-metal elements such as Cr [16,27], Ti [28,29], Yb [30], Zn [31], Sn [6], Se [32],
Nb [33], Ta [33], S [5,34], P [35], etc. have been doped into α-Fe2O3. The effects of doping include:
(1) to increase the concentration of charge carriers and thus enhance the electrical conductivity [5];
(2) to extend the range of light absorption [36]; (3) to facilitate the separation of electron-hole pairs by
acting as electron traps [16].

The combination of these two strategies is expected to enhance the PEC performance further [5,6,16].
Moreover, it is desirable that the introduction of foreign elements and the formation of 1D nanostructures
occur simultaneously. However, the in situ doping may cause changes in the morphology and
crystallinity of α-Fe2O3. That is why mid or ex situ doping was proposed by some researchers [6,16].
For example, Shen et al. [16] doped Cr into the surface of as-prepared α-Fe2O3 nanorods through a
spin coating method so that the original nanorod structure was not damaged.

Considering Co and Ni are in the same group and the same period as Fe (i.e., VIII group and the 4th
period) in the periodic table of elements, and the three elements have similar chemistry, we hypothesize
that the in situ doping of Co or Ni into α-Fe2O3 may have little influence on the structure of α-Fe2O3.
The Co or Ni doping into α-Fe2O3 has been reported in the literature [25,36–38]. Hou et al. [36]
synthesized a three-dimensional branched Co-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array
by hydrothermal deposition. Their results suggested that the Co doping can effectively enhanced the
PEC activity of α-Fe2O3 via extending the light-absorbing region and accelerating the charge carrier
separation efficiency. Suresh et al. [37] prepared Co-doped α-Fe2O3 nanocrystalline via a hydrothermal
method and characterized the sample by various techniques. The Co-doped α-Fe2O3 showed a pure
α-Fe2O3 crystal phase without any impurity phases. The increase in the Co concentration could
effectively increase the agglomeration of the particles. But the PEC performance of the Co-doped
α-Fe2O3 was not investigated by them. Wang et al. [38] improved both the photocurrent and the onset
potential of α-Fe2O3 nanorod photoanodes by in situ Co and ex situ Sn co-doping. The Sn doping
mainly contributed to the increased carrier density, while Co doping mostly improved the surface
kinetics of oxygen evolution reaction on the Fe2O3 nanorods. Lassoued et al. [25] prepared Ni-doped
α-Fe2O3 nanoparticles by the chemical co-precipitation method and examined the photocatalytic
activity for the degradation of model organic pollutants. Their results suggested that the adding of Ni
didn’t change the crystal phase but decreased the size of the α-Fe2O3 nanoparticles. The incorporation
of 8 mol% Ni into the α-Fe2O3 decreased the band gap from 2.02 eV to 1.81 eV.
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In this study, in situ Co or Ni doped α-Fe2O3 nanorod arrays will be prepared on a conductive
substrate through aqueous chemical growth followed by annealing under air. The impacts of the Co
or Ni doping on the crystalline phase, the morphology, the light absorption and the PEC activity of
α-Fe2O3 nanorod arrays will be investigated.

2. Materials and Methods

2.1. Materials Preparation

Undoped α-Fe2O3 nanorod arrays were grown on fluorine-doped tin oxide (FTO) conductive glass
by an aqueous chemical growth method [20]. In a typical process, a sheet of FTO glass (15 mm × 25 mm)
was placed in a glass vial of 25 mL, leaning against the inwall of the vial as displayed in Figure 1.
An aqueous solution containing 0.1 M FeCl3 and 1 M NaNO3 was prepared and its pH was adjusted to
1.25 by HCl. Then a proper amount of the reactant solution was injected into the vial, leaving part of
the FTO substrate uncovered. The vial was sealed and heated at 95 ◦C for 10 h. After reaction, the FTO
substrate was rinsed by deionized water and precipitates on its non-conductive side was removed.
Last, the FTO substrate was annealed in a muffle furnace at 500 ◦C for 1 h. Co-doped and Ni-doped
α-Fe2O3 nanorod arrays were prepared in a similar process except that small amounts of CoCl2 or
NiCl2 were added into the aqueous solution. The molar ratio of dopants to photoelectrode materials
reported in the literature was normally in the range of 1% to 10% [2,30]. Thus, the molar ratio of the
dopants to Fe here was set at 1:20 (i.e., 5%).
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Figure 1. Schematic diagram of α-Fe2O3 photoanode preparation.

2.2. Materials Characterization

Crystalline structures of the as-prepared samples were detected by X-ray diffraction (XRD, Rigaku
D-MAX/2550, Tokyo, Japan) with Cu Kα radiation. The microscopic morphology of the samples was
characterized by scanning electron microscopy (SEM, JEOL JSM−6360LV, Tokyo, Japan). The optical
absorption property of the samples was analyzed by an ultraviolet (UV)–visible spectrophotometer
(Shimadzu UV-2401PC, Kyoto, Japan). The instrument was calibrated with blank FTO conductive glass
so that the UV-vis absorption spectra of the as-prepared α-Fe2O3 samples alone can be achieved.

2.3. Photoelectrochemical Measurements

The preparation of α-Fe2O3 photoanodes is illustrated in Figure 1. After the α-Fe2O3 was formed,
the blank of the FTO substrate was stuck to a Cu sheet by silver conductive adhesive. Then the margin
and the back of the FTO substrate was coated by insulation paste to achieve an active area of around
1 cm × 1 cm.
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A three-electrode cell system was assembled for the PEC measurement as Figure 2 shows.
The as-prepared α-Fe2O3 photoanode acted as working electrode, a Pt sheet (1 cm × 1 cm) as a counter
electrode, and saturated calomel electrode (SCE) as a reference electrode. 1 M KOH solution was used as
electrolyte. The PEC cell was continuously purged with Ar gas when it was in operation. Illumination
of AM1.5 and 100 mW/cm2 was provided by a solar simulator (America Newport Oriel69911). Linear
sweep voltammetry (LSV) test was performed on an electrochemical workstation (Shanghai Chenhua
CHI660B, China). The scanning rate was 5 mV/s and the scanning range was from −0.3 to 0.6 V vs.
SCE. The Mott–Schottky (M–S) test was also carried out on an electrochemical workstation (Princeton
Applied Research Company PARSTAT2273, TN, USA) at a frequency of 1000 Hz.
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3. Results and Discussion

3.1. Effects on Crystalline Phase

Figure 3a shows XRD profiles of the samples obtained from aqueous chemical growth without
annealing. The broad diffraction peak around 20◦ is assigned to amorphous SiO2 (JCPDS 51-1593),
which is the matrix of FTO glass. The diffraction peaks marked with bold dots belong to SnO2 (JCPDS
46-1088), a conductive film on the glass matrix. In addition to these background peaks, characteristic
diffraction peaks of crystalline β-FeOOH (JCPDS 34-1266) also exist. Figure 3b displays XRD profiles
of the samples after annealing at 500 ◦C for 1 h. By comparing Figure 3a,b, it was found that annealing
led to the transformation from β-FeOOH to α-Fe2O3 (JCPDS 33-064). Such a phase transformation
was also indicated by the color change of the sample from yellow to red (see Figure 4). In order to
find out whether the α-Fe2O3 are oriented, the intensity ratio of each characteristic peak relative to the
(1 0 4) peak, which shows the largest intensity, was calculated, and compared with the standard data
in JCPDS 33-064. The two sets of data are almost consistent with each other, indicating the α-Fe2O3 are
not oriented.

Figure 3 also shows that the XRD profiles of the Co-doped and the Ni-doped samples are almost the
same as that of the undoped one. Neither dopant-related phases nor a shift of the α-Fe2O3 diffraction
peaks was observed in the XRD profiles of the doped samples. This suggests the doping of Co or Ni
has few influences on the crystal structure of α-Fe2O3. This is probably because Co or Ni is successfully
doped into the crystal lattice of α-Fe2O3 due to their similar atomic structures and the amount of the
dopants was small. Similar results have been reported by others [36,39]. Hou et al. [36] believed that
Co could be easily incorporated into the crystal lattice of α-Fe2O3 and hence considered Co to be a
suitable dopant for α-Fe2O3. Li et al. [39] synthesized α-Fe2O3 nanowires on a FTO substrate and
diffused Sn from FTO to α-Fe2O3 by high-temperature sintering. Their SEM and XRD results revealed
that neither the structure nor the crystal phase of the α-Fe2O3 changed after Sn was incorporated.
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3.2. Effects on Morphology

Figure 5 displays the microscopic morphology of the as-prepared β-FeOOH and α-Fe2O3.
The β-FeOOH is presented as a nanorod array that vertically grows on the substrate (Figure 5a).
Theα-Fe2O3 samples also show a similar morphology except for a slight volume contraction (Figure 5b),
suggesting a topological transformation from β-FeOOH to α-Fe2O3. When Co or Ni dopant was
introduced, the morphology of the α-Fe2O3 remained almost the same as exhibited in Figure 5c,d.
The three α-Fe2O3 samples were all comprised of bunches of nanorods. Each bunch of nanorods had a
diameter of about 50 nm and each nanorod had a diameter of about 5–10 nm. The small diameter is
beneficial to the transport of photoinduced holes to the semiconductor-electrolyte interface, although
the α-Fe2O3 nanorods do not have the merit of a high conductivity since they are not oriented in the
(0 0 1) direction on the substrate [6,17,39].

3.3. Effects on Ultraviolet (UV)–Visible Absorption

Figure 6a shows the UV–visible absorption spectrum of theα-Fe2O3 nanorod array. The absorption
band is mainly located between 300 nm and 550 nm. Electron transition on the energy levels of
α-Fe2O3 can be divided into direct transition and indirect transition, corresponding to O2−

→Fe3+ and
Fe3+ 3d→3d, respectively [40]. The energy gaps of direct transition and indirect transition could be
estimated by Equations (4) and (5), which were derived from Equations (2) and (3). The plots of
(Ahv)2 or (Ahv)0.5 against hv (i.e., Tauc plots) of the undoped α-Fe2O3 are displayed in Figure 6b.
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The intersection of the linear extension of the Tauc plots with x axis represents the energy gap of
direct transition or indirect transition [41]. They are 2.24 eV and 1.85 eV, respectively, in the present
work. The energy gap of the direct transition estimated by the Tauc plot is close to its theoretical value
(2.1–2.2 eV). Vayssieres et al. [42] observed that the energy gap of α-Fe2O3 nanorods increased by
0.3–0.6 eV compared with α-Fe2O3 bulk due to the quantum confinement effect of nanorods. However,
the quantum confinement effect was not observed in this study.

Eg = 1240/λ (1)

αhν = B(hν − Eg)n (2)

A = αbc (3)

[(A/Bbc)hν]2 = hν − Eg for direct transition (4)

[(A/Bbc)hν]0.5 = hν − Eg for indirect transition (5)Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13 
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Eg: energy gap in eV between a conduction band and a valence band
λ: wavelength in nm
α: absorption coefficient
hν: the energy of a photon
B: a constant
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n: a constant 0.5 for direct transition and 2.0 for indirect transition
A: absorbance
b: the thickness of light-absorbing substance
c: the concentration of light-absorbing substance
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Figure 6. Optical absorption features of the α-Fe2O3 nanorod arrays: (a) ultraviolet (UV)–visible
absorption spectra; (b) Tauc plots.

The UV–visible absorption spectra of the doped samples are not displayed in Figure 6 as they
overlap with the undoped one. As the UV–visible absorption spectra are almost the same this suggests
that the Co or Ni doping has little influence on the optical absorption of α-Fe2O3. Inducing a red shift
of absorption onset is one of the reasons for an enhanced PEC performance [4,36]. However, in this
study, this reason was excluded. Similar to this study, other researchers [5,43] also observed the doping
of foreign elements did not change the energy gap of α-Fe2O3.

3.4. Effects on Photoelectrochemical Performance

3.4.1. Current-voltage (I-V) Plots

Figure 7 shows the I-V plots of the as-prepared α-Fe2O3 samples. The equilibrium potential of
water oxidation (i.e., E(H2O/O2)) is 0.1572 V vs. SCE in 1 M KOH electrolyte. For the undoped α-Fe2O3

in dark, the initial potential for the occurrence of current is 0.36 V, more positive than the equilibrium
potential due to the existence of overpotential. When the undoped α-Fe2O3 sample is under solar
irradiation, the initial potential moves to −0.22 V, much more negative than the equilibrium potential,
indicating an obvious PEC effect. The doped α-Fe2O3 samples exhibit a similar initial potential to the
undoped α-Fe2O3 under illumination. The initial potential of photocurrent is generally considered
as flat band potential. The three samples have similar flat band potentials, which suggests that the
doping of 5% Co or Ni does not change the energy band structure of the α-Fe2O3 nanorod array [42].
This conclusion is consistent with that derived from the Tauc plots (see Section 3.3).

In addition to the initial potential, photocurrent at a certain potential is another index of the PEC
activity. At 0.2 V vs. SCE, the photocurrent density of the Co-doped and the Ni-doped α-Fe2O3 are
1.28 mA/cm2 and 0.79 mA/cm2, respectively, which are 2.1 times and 1.3 times that of the undoped
α-Fe2O3. This result suggests the incorporation of Co and Ni into α-Fe2O3 nanorod array could
enhance its PEC activity. The photocurrent densities of doped and undoped α-Fe2O3 reported in the
literature are summarized in Table 1.
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Figure 7. Current-voltage (I-V) plots of the α-Fe2O3 nanorod arrays: (a) Co-doped α-Fe2O3 under solar
irradiation; (b) Ni-doped α-Fe2O3 under solar irradiation; (c) undoped α-Fe2O3 under solar irradiation;
(d) undoped α-Fe2O3 in dark.

Table 1. Photocurrent densities of doped and undoped α-Fe2O3 at a certain potential versus reversible
hydrogen electrode (RHE) reported in the literature.

Samples Photocurrent (mA/cm2) Potential (V vs. RHE) Reference No.

undoped 0.00498 0.85 16
Cr-doped 0.00903 0.85 16
undoped 0.72 1.23 4
S-doped 1.42 1.23 5
undoped 0.58 1.23 5
Sn-doped 1.54 1.23 6
Y-doped 0.0022 0.442 30
P-doped 3 1.23 44

Sn-doped 1.86 1.23 39
undoped 0.523 0 17
Undoped 0.61 1.27 Present work
Ni-doped 0.79 1.27 Present work
Co-doped 1.28 1.27 Present work

3.4.2. Mott–Schottky Plots

In order to explain why the PEC activity of α-Fe2O3 was enhanced by Co or Ni doping, M–S plots
of both doped and undoped α-Fe2O3 samples were measured and shown in Figure 8. All the samples
exhibited a positive slope, indicating they are all n-type semiconductors with electrons as majority
charge carriers. The slope of the linear part of the M-S plots could be used to estimate the concentration
of charge carriers (Nd) according to Equation (6).

1/C2 = (2/e0εε0Nd) [(E − Efb) − kT/e0] (6)

In this equation, C is the space charge capacitance per m2 active area, e0 is the elementary
charge (1.6 × 10−19 C), ε is the dielectric constant of α-Fe2O3 (14.2), ε0 is the permittivity of vacuum
(8.85 × 10−12 F/m), E is the applied potential, Efb is the potential of flat bands, k is Boltzmann’s constant
(1.3806505 × 10−23 J/K), and T is the absolute temperature (298 K).



Appl. Sci. 2020, 10, 3567 9 of 12

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

In this equation, C is the space charge capacitance per m2 active area, e0 is the elementary charge 

(1.6 × 10−19 C), ε is the dielectric constant of α-Fe2O3 (14.2), ε0 is the permittivity of vacuum (8.85 × 10−12 

F/m), E is the applied potential, Efb is the potential of flat bands, k is Boltzmann’s constant (1.3806505 

× 10−23 J/K), and T is the absolute temperature (298 K). 

 

Figure 8. Mott–Schottky plots of the α-Fe2O3 nanorod arrays. 

The concentration of charge carriers derived from the slope and the Efb derived from the 

intercept of the M–S plot are listed in Table 2. The Efb of both doped and undoped α-Fe2O3 samples is 

around −0.22 V, indicating the doping has little influence on the Efb. This conclusion is consistent 

with that obtained from I-V plots (see Figure 7). The charge carrier concentration of the undoped 

α-Fe2O3 is 1.65 × 1025 m−3, which is in the same order of magnitude as those reported in the literature 

[5,6,39,44]. After Co or Ni doping, the charge carrier concentration increased to 3.74 × 1025 m−3 and 

2.50 × 1025 m−3, respectively, which are 2.3 times and 1.5 times that of the undoped sample. The 

increase in the charge carrier concentration means the improvement of the electrical conductivity, 

which may contribute to the enhanced PEC activity of the doped samples. Zhao et al. [45] reported 

that the heterogeneous interface of nickel and iron oxide exhibited a high electrocatalytic activity for 

hydrogen evolution reaction in alkaline media. In the present work, whether the Co or Ni doping 

promotes the electrocatalytic performance of α-Fe2O3 nanorods has not been investigated. It is 

necessary to figure this question out in future because an improved electrocatalytic activity may be 

one of the potential reasons for the enhanced photocurrents observed for the doped α-Fe2O3 

samples. This question could be solved by comparing the I-V plots of the doped samples and the 

undoped sample in dark. 

Table 2. Charge carrier density and flat potential of the α-Fe2O3 samples determined by Mott–

Schottky plots. 

Samples Slope Charge Carrier Density (m−3) Flat-Band Potential Efb (V) 

undoped 6.04 × 103 1.65 × 1025 −0.226 

Co-doped 2.66 × 103 3.74 × 1025 −0.220 

Ni-doped 3.98 × 103 2.50 × 1025 −0.218 

Furthermore, the higher photocurrent of the Co-doped α-Fe2O3 compared with the Ni-doped 

sample may be attributed to a larger carrier density (see Figure 7 and Table 2). However, this 

observation could not justify that the Co doping outperformed the Ni doping since the dopant 

concentrations were not known. In fact, the PEC activity of a doped photoelectrode depends not 

only on the identity of the dopant but also on the dopant concentration, distribution and the 

morphology and microstructure of the doped photoelectrode [46]. In order to compare the effects of 

Figure 8. Mott–Schottky plots of the α-Fe2O3 nanorod arrays.

The concentration of charge carriers derived from the slope and the Efb derived from the intercept
of the M–S plot are listed in Table 2. The Efb of both doped and undoped α-Fe2O3 samples is around
−0.22 V, indicating the doping has little influence on the Efb. This conclusion is consistent with that
obtained from I-V plots (see Figure 7). The charge carrier concentration of the undoped α-Fe2O3 is
1.65 × 1025 m−3, which is in the same order of magnitude as those reported in the literature [5,6,39,44].
After Co or Ni doping, the charge carrier concentration increased to 3.74× 1025 m−3 and 2.50 × 1025 m−3,
respectively, which are 2.3 times and 1.5 times that of the undoped sample. The increase in the charge
carrier concentration means the improvement of the electrical conductivity, which may contribute to the
enhanced PEC activity of the doped samples. Zhao et al. [45] reported that the heterogeneous interface
of nickel and iron oxide exhibited a high electrocatalytic activity for hydrogen evolution reaction
in alkaline media. In the present work, whether the Co or Ni doping promotes the electrocatalytic
performance of α-Fe2O3 nanorods has not been investigated. It is necessary to figure this question
out in future because an improved electrocatalytic activity may be one of the potential reasons for the
enhanced photocurrents observed for the doped α-Fe2O3 samples. This question could be solved by
comparing the I-V plots of the doped samples and the undoped sample in dark.

Table 2. Charge carrier density and flat potential of the α-Fe2O3 samples determined by
Mott–Schottky plots.

Samples Slope Charge Carrier Density (m−3) Flat-Band Potential Efb (V)

undoped 6.04 × 103 1.65 × 1025 −0.226
Co-doped 2.66 × 103 3.74 × 1025 −0.220
Ni-doped 3.98 × 103 2.50 × 1025 −0.218

Furthermore, the higher photocurrent of the Co-doped α-Fe2O3 compared with the Ni-doped
sample may be attributed to a larger carrier density (see Figure 7 and Table 2). However, this observation
could not justify that the Co doping outperformed the Ni doping since the dopant concentrations were
not known. In fact, the PEC activity of a doped photoelectrode depends not only on the identity of the
dopant but also on the dopant concentration, distribution and the morphology and microstructure of
the doped photoelectrode [46]. In order to compare the effects of different dopants, Co-doped and
Ni-doped α-Fe2O3 nanorod arrays with the same dopant concentration and distribution should be
synthesized in future.
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4. Conclusions

In situ doping of 5% Co or Ni into α-Fe2O3 nanorod arrays was performed by a facile aqueous
chemical growth method followed by annealing at 500 ◦C. The doping did not change the crystal
structure, morphology, energy gap and flat band potential of the α-Fe2O3 nanorod arrays, but enhanced
its PEC activity. At 0.2 V vs. SCE, the Co-doped and the Ni-doped α-Fe2O3 exhibited a photocurrent
density of 1.28 mA/cm2 and 0.79 mA/cm2, respectively, which were 2.1 times and 1.3 times that of
the undoped α-Fe2O3. The charge carrier concentration of the Co-doped and the Ni-doped α-Fe2O3

were 2.3 times and 1.5 times that of the undoped α-Fe2O3. Therefore, the increase in the photocurrent
density of the doped α-Fe2O3 was likely attributed to the enhanced conductivity. In the future,
the following work will be conducted. (1) Materials characterization such as energy dispersive X-ray
spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) or inductively coupled plasma-mass
spectrometry (ICP-MS) will be performed in order to provide direct evidence of the incorporation of
Co or Ni. (2) The influence of dopant concentrations on the PEC performance will be investigated
and the optimal concentration will be obtained. (3) The effects of Co doping and Ni doping will be
compared by synthesizing samples with the same dopant concentration and distribution.
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