
applied
sciences

Article

A Hybrid Adversarial Attack for Different
Application Scenarios †

Xiaohu Du *,‡ , Jie Yu ‡, Zibo Yi, Shasha Li, Jun Ma, Yusong Tan and Qinbo Wu

College of Computer Science and Technology, National University of Defense Technology,
Changsha 410073, China; yj@nudt.edu.cn (J.Y.); yizibo14@nudt.edu.cn (Z.Y.); shashali@nudt.edu.cn (S.L.);
majun@nudt.edu.cn (J.M.); yusong.tan@nudt.edu.cn (Y.T.); qinbo.wu@nudt.edu.cn (Q.W.)
* Correspondence: duxiaohu18@nudt.edu.cn; Tel.: +86-155-8098-5235
† This paper is an extended version of our paper published in the 6th International Conference on Artificial

Intelligence and Security (ICAIS 2020).
‡ These authors contributed equally to this work.

Received: 28 April 2020; Accepted: 15 May 2020; Published: 21 May 2020
����������
�������

Abstract: Adversarial attack against natural language has been a hot topic in the field of artificial
intelligence security in recent years. It is mainly to study the methods and implementation of
generating adversarial examples. The purpose is to better deal with the vulnerability and security
of deep learning systems. According to whether the attacker understands the deep learning model
structure, the adversarial attack is divided into black-box attack and white-box attack. In this paper,
we propose a hybrid adversarial attack for different application scenarios. Firstly, we propose
a novel black-box attack method of generating adversarial examples to trick the word-level
sentiment classifier, which is based on differential evolution (DE) algorithm to generate semantically
and syntactically similar adversarial examples. Compared with existing genetic algorithm based
adversarial attacks, our algorithm can achieve a higher attack success rate while maintaining a lower
word replacement rate. At the 10% word substitution threshold, we have increased the attack success
rate from 58.5% to 63%. Secondly, when we understand the model architecture and parameters, etc.,
we propose a white-box attack with gradient-based perturbation against the same sentiment classifier.
In this attack, we use a Euclidean distance and cosine distance combined metric to find the most
semantically and syntactically similar substitution, and we introduce the coefficient of variation (CV)
factor to control the dispersion of the modified words in the adversarial examples. More dispersed
modifications can increase human imperceptibility and text readability. Compared with the existing
global attack, our attack can increase the attack success rate and make modification positions in
generated examples more dispersed. We’ve increased the global search success rate from 75.8% to
85.8%. Finally, we can deal with different application scenarios by using these two attack methods,
that is, whether we understand the internal structure and parameters of the model, we can all generate
good adversarial examples.

Keywords: adversarial attack; adversarial example; sentiment classification; deep learning

1. Introduction

In the past few decades, machine learning and deep learning techniques have achieved great
success in some applications. However, so far, there are some technologies that have proven to be
vulnerable. Some modified inputs can be easily distinguished by humans, but the neural network
model will be classified incorrectly [1]. Adversarial attacks on neural networks have attracted a lot of
attention. The main target of these attacks is a computer vision model for image classification [2,3].
Since the input features of these models are continuous, we can apply artificially indistinguishable

Appl. Sci. 2020, 10, 3559; doi:10.3390/app10103559 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4455-3128
http://www.mdpi.com/2076-3417/10/10/3559?type=check_update&version=1
http://dx.doi.org/10.3390/app10103559
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 3559 2 of 15

perturbations. Unlike image data, text input consists of individual words represented by word
embeddings, but we cannot directly perturb them and find another word because we need to consider
whether the context and the grammar are smooth. We call the perturbed words an adversarial example.

The adversarial example is a small modification to the input, which can change the judgment
of the classifier but is not easily detected by humans. These adversarial examples expose some of
the vulnerabilities of classifiers and can be used to evaluate and improve machine learning models.
Liang et al. [4] pointed out that, if we want to produce a very effective adversarial example, we need to
solve two problems. The first is to maintain the original meaning of the adversarial example sentences.
The second problem is making it difficult for humans to detect that the adversarial examples are
modified. Adversarial attacks can be divided into two cases: white-box attacks and black-box attacks.
The former can obtain the parameters and structure of the model, while the latter lacks this information.
Black-box attacks are more challenging because they often require a large number of queries on the
model. White-box attacks have some gradient-based methods for specific models. Alzantot et al. [5]
proposed a black-box based genetic algorithm (GA) to generate semantic and grammatically similar
adversarial examples. These examples are used to obfuscate the sentiment classification and textual
entailment models with good training results; their attack success rates have reached 97% and 70%,
respectively. Based on the above work, Wang et al. [6] proposed an improved genetic algorithm (IGA).
Compared with GA, IGA can achieve higher attack success rates while maintaining the transferability
of the adversarial examples. The use of differential evolution (DE) for generating adversarial images
has be proved to be effective [7]. Both GA and DE are population based optimization algorithms.
DE has mechanisms in the population selection phase that maintains the diversity. For that, we propose
a novel black-box attack for generating adversarial text examples based on differential evolution.

When we understand the model parameters and structure, we can use white-box attack.
Most white-box attacks are based on gradient methods. Greedy attack has proven to be a very effective
attack method [8]. However, it also has some problems. Tsai et al. [9] pointed out that greedy attack
may not guarantee optimal results. Another limitation is that substitute words often appear in the
close range of the sentence, especially in front. This greatly reduces the readability of the sentence and
even destroys the semantic meaning of the original text. They proposed a “global search” algorithm
that computes a perturbation to obtain candidate words, and then replaces the words of the more
perturbed locations. The larger the perturbation, the more sensitive the classifier is to changes in the
word. Global search results produce better examples than greedy attack and have a higher attack
success rate. When generating candidate words, the global search only uses the Euclidean distance
to find the nearest word. We consider combining Euclidean distance and cosine distance to find
similar words, and find that some of the original attack failed examples can be re-attacked successfully
when we use the cosine distance. In the process of generating the adversarial examples, the existing
methods modify the word without considering the dispersion of the modified position in the whole
sentence. In particular, the word replacement position of a greedy attack is often close in the sentence,
which greatly reduces the readability. Our method is essentially to use different metrics to measure
embedding distance to find similar words in generating candidate words and introduce the CV in the
Generate Adversary Function in [9]. We compare results of different CV weight on the success rate of
the attack, and finally get the best CV weight for generating adversarial examples.

In summary, our contributions in this work are as follows:

(1) We propose a novel black-box attack for generating adversarial text examples based on
differential evolution.

(2) We use a Euclidean distance and cosine distance combined metric to find the similar words when
generating perturbations and candidate words; the results show that the combining metric can
increase the attack success rate.

(3) We propose a white-box attack to generate adversarial examples in which the modified words
have high semantic relevance and their positions are more dispersed.

Appl. Sci. 2020, 10, 3559 3 of 15

(4) Finally, we prove that the global search attack with a coefficient of variation is more similar to the
original text and more imperceptible for humans, which is verified by human evaluation.

The rest of this paper is organized as follows: In Section 2, we describe the related works done
by the previous scholars, and some of them are our comparison objects. In Section 3, we describe our
methods in detail. Section 4 introduces the relevant contents of the experiment, including the target
model, data set, experimental parameters, experimental results, and so on. Finally, we analyze and
summarize the experiment. Section 5 introduces the final conclusions and future work.

2. Related Work

The first adversarial attack originates in 2014, when Szegedy et al. [1] find that deep neural
networks used for image classification could be tricked by a tiny pixel perturbations added to the input
image. They found that image classifiers have a high rate of misclassification, but humans have not
detected such changes in images. In 2017, Jia et al. [10] are the first to consider generating adversarial
examples on text-based deep neural networks. Since then, people have begun to pay attention to
generating adversarial examples for text.

2.1. Black-Box Attack on Text

Robin et al. [10] propose a black-box attack in 2017; this is the first job for the reading
comprehension system. The attack proposed by the author is to add distracting but meaningless
sentences to the end of the paragraph. These distracting sentences do not change the semantics of
paragraphs and answers, but they can trip up the neural network model. The distracting sentence can
be a carefully generated real sentence or an arbitrary sequence of words using 20 random common
words. Finally, the attack is considered successful when the neural network is queried iteratively
until the output changes. Later, Yicheng et al. [11] improve the work by changing the position of
noise words and expanding the false answer set used to generate the noise words. They provide new
adversarial examples that can help train more robust neural models. Yonatan et al. [12] propose in 2018
that interfered with the input data of neural machine translation applications in two ways: synthesis,
which changes the order of characters, such as swapping, and randomization in the middle (that is,
except for the first and last characters, Randomly change the order of characters); and completely
random (that is, randomly change the order of all characters) and keyboard typing error types.
They also collect typographical and typographical errors as adversarial examples. These take advantage
of typos in the data set. Gao et al. [13] present a novel algorithm, DeepWordBug. They use a new scoring
strategy to identify key tokens. If these tokens are modified, it will cause the classifier to misclassify.
They use simple character substitution for the highest-ranking tokens to minimize the edit distance of
the perturbation, and change the original classification. Their method has achieved good results in
tasks such as text classification, sentiment analysis, and spam detection, and reduces the prediction
accuracy of the current state-of-the-art deep learning models. In the same year, Alzantot et al. [5] used
genetic algorithms (GA) to minimize the number of word replacements in the original text, but, at the
same time, they can make the model wrong. They use crossover and mutation operations in genetic
algorithms to generate disturbances. Their attack targets are sentiment classification and textually
implied DNN models. In 2019, Ren et al. [14] propose a greedy algorithm called probability weighted
word saliency (PWWS) for text ad-versarial attack. They think that, compared with images, the main
difficulty of generating text adversarial examples is that the text space is discrete, and it is difficult to
make small perturbations along the gradient direction. The challenge is that the generated results need
to ensure vocabulary correctness, grammatical correctness, and semantic similarity. Therefore, on the
basis of the synonym replacement strategy, they introduce a new vocabulary replacement method that
is determined by the POS saliency and classification probability. Wang et al. [6] propose an improve
genetic algorithm (IGA) based on the above genetic algorithm. Compared with existing genetic-based
adversarial attacks, IGA changed from the random initialization of the GA to the first population.
Synonyms randomly replace each word to initialize the first population, making the population more

Appl. Sci. 2020, 10, 3559 4 of 15

diverse. It also allows replacing previously replaced words to avoid local minima. In the cross section,
in order to better simulate breeding and biological crossing, the text of the two parents is randomly
cut, and the two fragments are merged into a new text, instead of randomly selecting a word from
each position of the two parents. In 2020, Jin et al. [15] propose a black-box attack method called
TEXTFOOLER. Different from the above method, they define a new method for ranking the importance
of words; TEXTFOOLER first obtains the prediction score FY(X) for the Y label corresponding to the
original text X through the model, and the score FY(X\wi) of X after deleting the word wi. Then,
it calculates the importance score of wi according to the relationship between FY(X), FY(X\wi), Y,
and Ŷ. Finally, it replaces the words according to the importance score. This method achieves good
results in text classification and text implication tasks.

To sum up, the above black-box attack method consists of many similarities. Because the black-box
does not know the internal structure and specific parameters of the model, scholars attempt to find
the optimal replacement in the word space by different methods. Some of them replace the words
first and then calculate the prediction score after the replacement, such as multiple iterations of GA to
find the optimal replacement. At the same time, they also try to find out the important score of the
replacement words and then replace them in order to minimize the word replacement ratio, such as
DeepWordBug and TEXTFOOLER. However, they all have the same goal, which is to find an optimal
adversarial examples.

2.2. White-Box Attack on Text

In terms of white-box attacks, the related works are not as much as black-box attacks, which are
mainly based on gradient methods. Ebrahimi et al. [16] propose a gradient-based white-box attack
method to generate adversarial examples. This attack aims at a character level RNN classifier and
greatly increases the error rates on text classification and machine translation.Cheng et al. [17] propose
a white-box method to generate adversarial examples against NMT and improve the robustness
of NMT. Greedy attack proves to be a very effective method of attack [8,9,18], and Yang et al. [8]
even show that greedy attack achieves state-of-the-art attack rates across various kinds of models.
However, it also has some problems. Tsai et al. [9] propose that it may not guarantee producing
the optimal results and sometimes spends too much time because the algorithm needs to search the
candidate words for every iteration, at the same time, due to the nature of being greedy, the algorithm
can replace sub-optimal words that do not contribute much to the final goal in an earlier position.
Another limitation is that replaced words tend to be in a close area of the sentence, especially in the
front. This greatly reduces the readability of the sentence and even destroys the semantic meaning
of the original text. They propose a “Global Search” algorithm, which obtains candidate words by
calculating a perturbation, and then replace the words in the position where the perturbation is larger.
The larger the perturbation, the more sensitive the classifier is to the change of the word. Results of
global search prove to generate better examples than the greedy attack and higher attack success rate,
which is the baseline used in our experiments. In addition, Lei et al. [19] propose a greedy method can
be very time consuming when the space of attacks is large and give the optimization scheme.

The related work of white-box attacks have proved to be very effective in text-based attacks,
but there are still some problems to be solved, such as a good algorithm in the replacement percentage,
attack success rate, word similarity, grammatical correctness, and semantic similarity can still have
better results. Based on the strategy of gradient generation perturbation, we propose a new white-box
attack method for sentiment classification task and make some progress in the above aspects.

2.3. Different Measures of Textual Similarity

An important problem is that the generated adversarial examples must not only fool the target
model, but also keep the perturbation undetected. A good adversarial example should convey the
same semantics as the original text, so we need some metrics to quantify the similarity. There are three
metrics that used on vectors and documents [20,21].

Appl. Sci. 2020, 10, 3559 5 of 15

Euclidean Distance. In text, Euclidean Distance measures the linear distance between two vectors
in Euclidean space.

Cosine Similarity. Cosine similarity represents the semantic similarity of two words by
calculating the cosine of the angle between two vectors. Cosine distance is more concerned with
the direction difference between two vectors. The smaller the angle between two vectors (the larger
the cosine value), the greater the similarity.

Word Movers Distance (WMD). WMD [22] mainly reflects the distance between documents, so it
is not suitable for finding similar words. Its semantic representation can be based on the embedding
vector obtained by word2vec. Of course, it can also be based on other word embedding methods.
This algorithm constructs the document distance into a combination of the semantic distances of the
words in the two documents. For example, the Euclidean distance is obtained from the word vectors
corresponding to any two words in the two documents and then weight and sum. The WMD distance
between two documents A and B is:

WMD(A, B) =
n

∑
i,j=1

T ij ·D(
−→
i ,
−→
j) (1)

where D(
−→
i ,
−→
j) is the Euclidean distance of the word vectors corresponding to the two words i and

j. The Bag Of Words model is used to get the word frequency of the word in the document (as the
weight of a word in the document), and the problem then becomes how to “carry“ all the word units
of document A to the corresponding word units of document B with the minimum cost, and finally
get the weight matrix T. The WMD algorithm is a special case of the EMD [23] algorithm, and some
improved algorithms based on WMD, such as WCD and RWMD.

3. Methods

3.1. Black-Box Attack on Text

In the black-box attack, we adopt the method based on a differential evolution (DE) algorithm
to generate an adversarial example, a differential evolution algorithm with a genetic algorithm (GA)
has some similarities. It has the choice stage to keep a population diversity mechanism; therefore,
in practice, it is expected to be more effective than other types of group evolution algorithms to find
a higher quality solution. In a black-box setting, the attacker does not know the model architecture
and parameters. They can only use the input provided to query the target model to get prediction
results and corresponding confidence scores. The whole algorithm of black-box attack is described
in Algorithm 1, which basically follows the idea of differential evolution algorithms. The overall
structure of the differential evolution algorithm is similar to the genetic algorithm. It also has mutation,
crossover, and selection operations, but it is different from the genetic algorithm. The main difference
from the basic genetic algorithm is the mutation operation. For example, in the genetic algorithm,
two children are generated by the intersection of two parent individuals, and, in the differential
evolution algorithm, the difference vector of two or several individuals is used to perturb. Then,
we will get the new individuals. In traditional genetic algorithms, offspring individuals replace their
parent individuals with a certain probability, and newly generated individuals in differential evolution
only replace individuals in a population when they are better than individuals in the population.
In traditional genetic algorithms, offspring individuals replace their parent individuals with a certain
probability, and newly generated individuals in differential evolution only replace individuals in a
population when they are better than individuals in the population.

Appl. Sci. 2020, 10, 3559 6 of 15

Algorithm 1: Black-box Attack on Text
Input: Original text X, target model f, maximum iterations G, initial generation size S
Output: Adversarial text Xadv
1: y← f (X)

2: for i = 1→ S population do
3: P0

i ← Mutate(X, wi)

4: for g = 1→ G generations do
5: for i = 1→ S population do
6: Fg−1

i = f (P g−1
i)

7: Xadv = argmin(Fg−1
i)

8: if f (Xadv) 6= y then return Xadv
9: P g

1 ← Xadv
10: for i = 2→ S population do
11: P g

i ← Di f f erential(P g
i ,P g

j ,P g
k) 3 ≤ i 6= j 6= k ≤ S

12: Xadv = argmin(f (P g
i))

13: if f (Xadv) 6= y then return Xadv
14: else
15: Randomly Sample parent1, parent2 from P g−1

16: child = Crossover(parent1, parent2)

17: if f (child) 6= y then return child as Xadv
18: P g

i ← Mutate(child, w) Randomly word w in child
19: if f (P g

i) 6= y then return child as Xadv

The algorithm consists of the following steps:
Step 1: Mutation Given a text of n words X = {w1, w2, ..., wn}, we look for the most similar word

to replace one of them, then we get the mutated text. We use the counter-fitting method as word
embedding from [24]. We use Euclidean distance to calculate the N nearest neighbors of the word
to replace, whose cosine similarity with the word to be replaced are smaller than δ, and this word
embedding ensures that the neighbors we find are synonyms. Then, we use the Google language
model [25] to select the most context-appropriate K words, and replace a word in the original text with
these words respectively. Finally, we choose the word with the lowest confidence score of the model to
replace, and get the replaced text. We can get an initial population P0 of S individuals by repeating
this process of mutation S times. The prediction score of each individual can be obtained by querying
the victim model function f. In each generation of evolution, we select the individual with the lowest
prediction score of the target model and make it the first individual P g+1

1 in the next generation. If the
prediction tag of one of the members of the population is not the original tag, the attack is completed.
However, it is rare that only one word can change the model’s prediction, and most of the examples go
to the next step.

If there is no sample in the initial population that can change the prediction of the target model,
we do a different operation. For all individuals of the g-th generation, P g = {P g

1 ,P g
2 , ...,P g

n}. For each
individual, the algorithm continues to generate mutants according to the following formula:

P g
i

′
= P g

i + F · (P g
j −P

g
k) i = 1, 2, ..., n (2)

where P g
j and P g

k are two randomly selected individuals in the population, and i 6= j 6= k, and F is the

mutation factor, which is generally 0 to 2, so as to obtain the mutant P g
i

′
. If the prediction tag of one of

the individuals after differential operation is not the original tag, the attack is completed. Otherwise,
the algorithm proceeds to the next step.

Appl. Sci. 2020, 10, 3559 7 of 15

Step 2: Crossover In this step, the new individual is obtained from the mutant

individual P g
i

′
= {P g

i1

′
,P g

i2

′
, ...,P g

in

′
} and the parent individual P g

i = {P g
i1,P g

i2, ...,P g
in} through a

crossover operation.

child =

{
P g

i

′
if rand[0 1] ≤ CR

P g
i if rand[0 1] > CR

(3)

where rand [0 1] is a random number between [0 1], and CR is a constant between [0 1], which is called
a crossover factor. The greater the value of CR, the greater the probability of crossover. If the prediction
tag of one of the individuals after crossover is not the original tag, the attack is completed. Otherwise,
the mutation subroutine is applied to the resulting children.

Compared with the genetic algorithm, the black-box attack based on the differential evolution
algorithm has a higher attack success rate and a smaller word replacement rate. At the same time,
it is also superior to GA in terms of running time because GA uses Perturb every time a new word
is generated. Perturb is a multi-step process of finding similar word replacements, which will take
a lot of time. The more words a text needs to replace, the more time it takes, such as long sentences.
Our method only takes more time to generate the first generation of individuals. In the subsequent
evolution process, the difference operation is used to perform subtraction and multiplication based on
the existing words, which takes very little time.

3.2. Greedy Search Attack

Greedy search attack is our comparative experiment. We follow the greedy search algorithm
in [9,18], which starts from the first word and then selects the word that has the greatest influence
on the success of the attack according to different labels in the k nearest of each word. To find the
word with the closest Euclidean distance or cosine distance in word space E, if the modification of the
word causes the classifier logit output to be larger than the original and the label is pos or the logit
output is smaller than the original and the label is neg, the word is replaced. Otherwise, the word is
not modified. Finally, the attack is successful until the label of the classifier output is different from the
original, and the total number of replacement words is lower than our threshold.

3.3. White-Box Attack on Text

The white-box attack algorithm is described in Algorithm 2. The algorithm is divided into two
parts including generating candidate words and modifying the candidate words which have the
most influence on the classifier. We use the whole text as the research object. X represents word
embedding of the original input text. y and ŷ represent the original and adversarial label. For a
text of n words, X = {w1, w2, ..., wn}, and a valid adversarial example Xadv should conform to the
following requirements:

ŷ 6= y, and Sim(wi, w
′
i) ≤ threshold (4)

where Sim is the distance between wi and w
′
i in the word space. It should be less than a threshold.

In the first loop, we obtain a perturbed embedding X
′

by the gradient-based method, and then traverse
every word in X

′
, in order to find the word with the closest Euclidean distance or cosine distance in

word space E, and then generate a list of candidate words. In this candidate words list, every word in
the original text has been modified. The subsequent second loop will choose to modify these words
successively according to priority. We attack the classifier with this list. If the label is not the same as
the original input, the loop ends. Otherwise, the algorithm continues to calculate the gradient to get a
new X

′
. After obtaining a list of valid candidate words, we will make a modification order selection.

Appl. Sci. 2020, 10, 3559 8 of 15

Algorithm 2: White-box Attack on Text
Input: Original text X = {w1, w2, ..., wn}, target model f, perturbation δ

Output: Adversarial text Xadv
1: y← f (X)

2: Initialization : Xadv ← X, δ← 0, success = False,candidates← ∅, finCandidates← ∅
3: Filter out the stop words in X.
4: while not success do
5: X

′ ← X + δ / back propagation
6: for wi in X

′
do

7: candidates← extracting the top N synonyms using Euclidean and Cosine
distance for wi.

8: candidates← POScheck(candidates)
9: for ki in candidates do

10: X
′ ← Replace wi with ki in Xadv

11: Pi ← f (X
′
)

12: w∗ ← argmax(Pi)

13: f inCandidates← f inCandidates append w∗

14: ŷ← f (finCandidates)
15: if ŷ 6= y then break
16: grad← ||δ||2
17: selected← 0, list← ∅, Ω← ∅
18: while not success do
19: selectedX = selected.index(0)
20: for x in total(grad) and selected[x] 6= 1 do
21: CV1 = CV(list append x), CV2 = CV(list append selectedX)

22: if grad[x] + λ · CV1 > grad[selectedX] + λ · CV2 then
23: selectedX ← x
24: Ω← Ω append x
25: selected[selectedX] = 1, list← list append selectedX
26: for wi in Ω do
27: if distance < threshold and i

len(x) < r then Xadv ← Replace wi
28: if ŷ 6= y then
29: success = True
30: return Xadv
31: else
32: return None

In the second loop, first, we will take the gradient of the first loop. We set a full 0 tensor with
the same dimensions as the original text, with selected for recording the position of the selected word,
list for the sequence of selected words, and positions for the last modified order. Then, start the loop
selection. First, we select the index number selectedX whose value is 0 from the selected, the number
of words in the text is the traversal range, and the variable is represented by x, when selected [x] 6= 1,
calculating the coefficient of variation CV1 of x added to the list and the CV2 of the selectedX added
to the list, if the weighted sum of gradient and CV1 is greater than the sum of gradient and CV2,
we then replace selectedX with x, add x to positions, update selected and list, let selected [selectedX] =
1, and add selectedX to list. Finally, a modification sequence is generated. Then, we modify them in
order until the output of the classifier is different from the original text. In the process, we can set the
word distance threshold, word replacement rate, and other parameters, and compare different results
under different parameters. The whole attack process of white-box attack is shown in Figure 1.

Appl. Sci. 2020, 10, 3559 9 of 15

Embedding Candidates

Classifier

Grad+λCV
Modification
Sequence

Fulfill Request

Adversarial
Text

Original
 Text

same label

different label

same label different label

word distance

replace ratio

Grad

Figure 1. The whole attack process of white-box attack.

Simply put, we combine the gradient of the word we want to modify and coefficient of variation of
the text position of all modified words after the word is modified, and use these two data to determine
the order of modification.

We can control the degree of dispersion of the word’s position by the weight value λ of the CV.
When λ is too large, the modified words will be more dispersed. The order of modification is closer to
the global search algorithm when λ is smaller; when λ = 0, the algorithm becomes the global search.

4. Experiments

4.1. Dataset and Target Model

The dataset contains 25,000 IMDB film reviews specifically for sentiment analysis. The mood of
the comment is binary. Labels are pos(positive) and neg(negative). We randomly segment 25,000 data
into 20,000 examples as training sets and 5000 examples as test sets.

We use the CNN model and some of its hyperparameters [26] as our target model. In this model,
there are filter windows of 3, 4, and 5 with 100 feature maps each, a dropout rate of 0.5, and a max
pooling layer. The batch size has been modified to 64. We use 20,000 examples to train the model and
test the model with 5000 examples. The results of this model are that the accuracy of training sets is 1
and the accuracy of testing sets is 0.89.

4.2. Evaluation

4.2.1. Black-Box Attack Based on Differential Evolution

We randomly sample 200 correctly classified examples from the IMDB test set to evaluate our
algorithm. We choose examples of correct classification to avoid the impact of model accuracy.
Our purpose is to make the model prediction error, that is, the original prediction is positive. The model
will be judged as negative after the adversarial attack, so that our attack is considered successful.

We limit the attacker to maximum G = 20 iterations. We also fix the maximum percentage of each
text change to 10% and 20%. We believe that the quality of the text will decrease if the modification
ratio exceeds 20%. Although the success rate of black-box attack based on a genetic algorithm has
reached 97%, its word replacement rate has reached 25%. If an attack fails within the iteration limit or
exceeds a specified threshold, it is considered a failure. Table 1 shows the attack success rate under
different F-values and percentage of modified words. From our results, we can see that we can achieve
a high success rate by making small changes to the text. In addition, our algorithm is significantly
better than the genetic algorithm in word modification percentage and attack success rate.

It is worth noting that, under the 10% replacement rate threshold, GA and DE have only about
a 60% attack success rate, which is far lower than the white-box attack algorithm mentioned later.
It shows that there is still a lot of room for improvement in a black-box attack. Once the threshold of
the word replacement rate is increased to 20%, we see that both GA and DE exceed 90% in the attack
success rate, and our method even approaches 100%. This shows that the word replacement rate is

Appl. Sci. 2020, 10, 3559 10 of 15

an important factor affecting the success rate of attack. Algorithms that do not strictly limit the word
replacement rate are not good algorithms.

Table 1. Attack success rate with different word modifiers and F values.

GA F = 0.1 F = 0.3 F = 0.5 F = 1.2 F = 1.5

10% modified 58.5% 63% 62.5% 56.5% 55% 53%
20% modified 91% 96% 94.5% 94.5% 96% 97.5%

The mutation factor F can be used to control the degree of scaling of the difference vector
between two random individuals. F value has a great influence on the success rate of the final attack.
Experiments show that the smaller the F value, the higher the attack success rate at low replacement
rates. When the F value is larger, the attack success rate is higher at a relatively higher replacement
rate. Moreover, when F is 0.3, the attack success rate of our algorithm is higher than that of the
genetic algorithm in terms of 10% and 20% word substitution rate. The example output generated by a
black-box attack is shown in Table 2. From the results, the examples we generated can maintain the
original sentence form to some extent.

Table 2. Original text and adversarial example of black-box attack.

Original Text Prediction = Positive.

absolutely fantastic whatever i say wouldn’t do this underrated movie the justice it
deserves watch it now fantastic.

Adversarial Text Prediction = Negative.

absolutely fantastic whatever i say wouldn’t do this underestimated movie the justice it
deserve watch it now fantastic.

Original Text Prediction = Negative.

poorly directed short film shot on hi def or betacam it appears it screams student film
video all the way the premise is limited in scope and the short actually feels a lot
longer than it runs some interesting acting moments and some decent production
value but not enough to lift this film from the hole it has fallen into.

Adversarial Text Prediction = Positive.

poorly directed gunshot film shot on hi def or betacam it appears it shrieks student film
video all the way the premises is limited in scope and the short actually feels a lot
longest than it runs some interesting acting moments and some decent production
value but not enough to lift this film from the hole it has fallen in.

4.2.2. White-Box Attack with the Coefficient of Variation

Our experimental goal is to generate adversarial examples to confuse the classifier. As long as the
prediction result of the adversarial example is different from the original comment result, the attack is
considered successful. At the same time, we need to exclude the influence of classifier accuracy on
the experimental results, so we select 500 correctly classified examples. Our experiments have the
same word distance threshold and word replacement rate, the word Euclidean distance is set at 50 and
the word replacement rate is set at 0.1, and k is set at 35 in the greedy attack. Finally, we add cosine
distance experiments for greedy attack and global attack.

We calculate the attack success rate corresponding to several different cosine distance thresholds.
The experimental results are shown in Figure 2. We can see that the smaller the cosine distance is,
the higher the success rate the attack will have because the word angle is larger and their similarity is
smaller. Greedy attack and global attack without cosine distance had original success rates of 65.8%
and 75.8%. In the global attack, there is increased cosine distance, even if the cosine distance is set
to 0.9848; the final success rate will increase to 77.4%, while the greedy attack has no new successful

Appl. Sci. 2020, 10, 3559 11 of 15

examples. There is no significant change in the number of increases between the cosine of 0.9848
and 0.6428. An angle of more than 0.6428 will have a significant increase in the number of successful
attacks. In addition, we do an experiment to find candidate words only by cosine distance as a contrast.
We find that, in the case of high cosine distance threshold, the attack success rate is very low, but finally
when the cosine distance threshold is 0, it can also achieve a high attack success rate, which shows,
that in terms of word similarity, the effect of cosine distance is worse than that of European distance.
We can use the cosine distance as a supplement of European distance to improve the overall attack
success rate. The evaluation of adversarial examples shows that greedy attack still shows that the
replacement locations are sometimes close, or even in the front of the text, for which readability is
not good, while the replacement position of global attack is relatively random. The following human
evaluation also shows this conclusion. The example output generated by black-box attack is shown in
Table 3.

Table 3. Original text and three adversarial examples of white-box attack.

Original Text, Prediction = Negative.

The Pallbearer is a disappointment and at times extremely boring with a love story that just doesn’t
work partly with the casting of Gwyneth Paltrow (Julie). Gwyneth Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are a laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Greedy Attack Text, Prediction = Positive.

on despite has given tempered well outside well surprisingly boring with a love story that just doesn’t
work partly with the casting of Gwyneth Paltrow (Julie). Gwyneth Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are a laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Global Attack Text, Prediction = Positive.

The Pallbearer is a artist and at times extremely boring with affection love story that just doesn’t
work partly with the american of Paltrow Paltrow (Julie). Paltrow Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are a laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Global Attack Text with CV, Prediction = Positive.

The Pallbearer is affection artist and at times extremely boring with a love story that just doesn’t
work partly with the casting of Gwyneth Paltrow (Julie). Paltrow Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are affection laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Because greedy attack may make the word modification position close and result in poor
readability, global search improves this situation to some extent, but it does not have the ability
to effectively control the dispersion of word modification positions because the modified word is
selected from big to small according to the gradient magnitude. We propose a method to control the
dispersion of the modified position by adding the coefficient of variation, and control the dispersion
degree of the modified position by the weight of CV. We introduced the CV factor into the global
search with a combining metric. Finally, we use global attack with the combined metric and set the
cosine distance threshold to 0.9848 to maintain the word’s high similarity, and compare the attack
success rate under different CV weight. We select 500 comments used by greedy attacks and calculate
the attack success rate under different CV weight(λ).

Appl. Sci. 2020, 10, 3559 12 of 15

0.0 0.2 0.4 0.6 0.8 1.0
cosine distance

0.0

0.2

0.4

0.6

0.8

at
ta

ck
 su

cc
es

s r
at

e

greedy attack with cosine
global attack with cosine
global attack with two metric
greedy attack with two metric

Figure 2. The total success rate of greedy attack and global attack added cosine distance.

In order to prove the validity of adding the CV factor when determining the modification order,
we select 50 comments that are correctly classified by the classifier and the algorithm attack is successful,
and calculate the CV value of the adversarial examples under different λ. When the CV weight value
is 0, our method becomes the global search attack [9].

Experiments shown in Table 4, when λ is larger, the degree of dispersion of the modified positions
of the adversarial example is larger (CV value is larger), and the final attack success rate has a slight
decrease overall, which indicates that the word with a larger gradient magnitude has more influence
on the classifier. We analyze the adversarial examples and find that some examples of the original
attack failure will be re-attacked successfully after joining CV, and some examples of the original
successful attack will fail the attack after joining CV. Taken as a whole, the attack success rate basically
decreases as λ increases, but this change is very small. The experiments also show that even if we
set the λ to 30 after we add the cosine distance, the attack success rate still reaches 76.2%, which still
exceeds the original global attack success rate of 75.8%. Thus, our methods can improve the attack
success rate and make the modification positions in an adversarial example more dispersed.

Table 4. The attack success rate and CV value under different λ.

λ 0 1 5 10 20 30

CV value 0.487 0.589 0.70 0.73 0.827 0.886
attack rate 77.4% 77.6% 76.6% 76.8% 77% 76.2%

4.2.3. Human Evaluation

In order to illustrate that adversarial text with more dispersion words modification could lead to
being more similar to the original text and more imperceptible for humans, we select five volunteers to
score the similarity between the adversarial examples and the original text from 1 to 5. We randomly
chose 10 comments with positive and negative examples and their adversarial examples generated by
greedy search, global search, and the global search with CV. This is used to prove the similarity between
the original text and adversarial examples. On the other hand, we select 15 comments including the
original text, greedy text, global text, and global text with CV, and then ask volunteers to identify which
of them are modified adversarial examples. This is used to prove the imperceptibility for humans.
After counting all the scoring results, in terms of similarity, we calculate the average score, the global
text with CV similarity score is 3.642, the global text score is 3.612, and the greedy text score is 2.91.
Because the greedy text often modifies the front words by a large amount, it can obviously find the
difference from the original text. In terms of imperceptibility, the global text with CV has a detectable
ratio of 0.37, the global text has a detectable ratio of 0.4, and the greedy text has a detectable ratio of

Appl. Sci. 2020, 10, 3559 13 of 15

0.46. We find that the scores of global attack and global attack with CV are close, and they are better
than greedy attacks.

5. Conclusions and Future Work

In this paper, we propose a hybrid adversarial attack for different scenarios. Specifically, we adopt
different attack measures for whether we understand the deep neural network internal structure
and specific parameters. If we do not understand the above information, it is suitable for us to use
a black-box attack, so we propose a new black-box attack method based on a differential evolution
algorithm, and generate adversarial examples with low word substitution ratio and high attack success
rate. Since black-box attack does not need to know the model parameters and structure, it also has
better universality to attack different natural language processing tasks. At the same time, in the case
of a white-box attack, for the problem of greedy search, we propose the factors of increasing CV in the
modification position of words to prevent the position of words from being too close. Our algorithm
proves that the placement of word modifiers in the adversarial example can be more dispersed with the
addition of CV factors. It makes up for the poor readability of the greedy attack example. Our approach
maintains a high attack success rate and makes the locations of changes in the adversarial example
more diffuse through the CV factor. In pursuit of a high attack success rate, we improve the quality
of the adversarial example. We compare the two types of adversarial attacks above against different
scenarios with existing attack methods. Our method has a certain degree of improvement in word
replacement rate and attack success rate.

In our experiments, although we try to find the most similar words, some of them didn’t
look the same in real life, according to the example of adversarial actually generated. For example,
the substitution of some synonyms does not conform to the context of movie reviews. Therefore,
word embedding trained for a specific data set will greatly improve this situation. Word embedding
that better reflects word similarity can also enhance our work. At the same time, the adversarial
example can reveal the vulnerability of the NLP model, and we can use it to improve the robustness
of the model. Although we find what is most similar to a word, in a specific context, the original
words should conform the most to the original context. In defense against attack, we can use the
idea of adversarial attack to restore the text. Before entering the classifier, we first preprocess the text,
which will improve the security and robustness of the model. This will be future work.

Author Contributions: Writing—original draft preparation, X.D.; methodology, X.D. and J.Y.; writing—review
and editing, Z.Y., J.Y. and J.M.; supervision, J.Y., Y.T. and Q.W.; funding acquisition, J.Y. and S.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of China
(No. 2018YFB0204301).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Estrach, J.B.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing
properties of neural networks. In Proceedings of the 2nd International Conference on Learning
Representations (ICLR 2014), Banff, AB, Canada, 14–16 April 2014.

2. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial Examples in the Physical World. In Artificial Intelligence
Safety and Security; Chapman and Hall/CRC: London, UK, 2018; pp. 99–112.

3. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting adversarial attacks with momentum.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 9185–9193.

4. Liang, B.; Li, H.; Su, M.; Bian, P.; Li, X.; Shi, W. Deep text classification can be fooled. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
pp. 4208–4215.

Appl. Sci. 2020, 10, 3559 14 of 15

5. Alzantot, M.; Sharma, Y.S.; Elgohary, A.; Ho, B.J.; Srivastava, M.; Chang, K.W. Generating Natural Language
Adversarial Examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, 31 October–4 November 2018.

6. Wang, X.; Jin, H.; He, K. Natural language adversarial attacks and defenses in word level. arXiv 2019,
arXiv:1909.06723.

7. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput.
2019, 23, 828–841. [CrossRef]

8. Yang, P.; Chen, J.; Hsieh, C.J.; Wang, J.L.; Jordan, M.I. Greedy attack and gumbel attack: Generating
adversarial examples for discrete data. arXiv 2018, arXiv:1805.12316.

9. Tsai, Y.T.; Yang, M.C.; Chen, H.Y. Adversarial Attack on Sentiment Classification. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Florence, Italy,
28 July–2 Augusy 2019; pp. 233–240.

10. Jia, R.; Liang, P. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark,
7–11 September 2017; pp. 2021–2031.

11. Wang, Y.; Bansal, M. Robust Machine Comprehension Models via Adversarial Training. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 575–581.

12. Belinkov, Y.; Bisk, Y. Synthetic and natural noise both break neural machine translation. arXiv 2017,
arXiv:1711.02173.

13. Gao, J.; Lanchantin, J.; Soffa, M.L.; Qi, Y. Black-Box Generation of Adversarial Text Sequences to Evade Deep
Learning Classifiers; IEEE: Piscataway, NJ, USA, 2018; pp. 50–56.

14. Ren, S.; Deng, Y.; He, K.; Che, W. Generating Natural Language Adversarial Examples through Probability
Weighted Word Saliency. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, 28 July–2 Augusy 2019; Association for Computational Linguistics: Stroudsburg,
PA, USA, 2019; pp. 1085–1097. [CrossRef]

15. Jin, D.; Jin, Z.; Zhou, J.T.; Szolovits, P. Is BERT Really Robust? A Strong Baseline for Natural Language
Attack on Text Classification and Entailment. arXiv 2020, arXiv:2002.06261.

16. Ebrahimi, J.; Rao, A.; Lowd, D.; Dou, D. HotFlip: White-Box Adversarial Examples for Text Classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Melbourne, Australia, 15–20 July 2018; pp. 31–36.

17. Cheng, Y.; Jiang, L.; Macherey, W. Robust Neural Machine Translation with Doubly Adversarial Inputs.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
28 July–2 August 2019; pp. 4324–4333.

18. Kuleshov, V.; Thakoor, S.; Lau, T.; Ermon, S. Adversarial Examples for Natural Language Classification
Problems. 2018. Available online: https://openreview.net/forum?id=r1QZ3zbAZ (accessed on 20 May 2020)

19. Lei, Q.; Wu, L.; Chen, P.Y.; Dimakis, A.; Dhillon, I.; Witbrock, M. Discrete Adversarial Attacks and
Submodular Optimization with Applications to Text Classification. arXiv 2018, arXiv:1812.00151.

20. Zhang, W.E.; Sheng, Q.Z.; Alhazmi, A.; Li, C. Adversarial attacks on deep learning models in natural
language processing: A survey. arXiv 2019, arXiv:1901.06796.

21. Wang, W.; Tang, B.; Wang, R.; Wang, L.; Ye, A. A survey on Adversarial Attacks and Defenses in Text. arXiv
2019, arXiv:1902.07285.

22. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K. From word embeddings to document distances.
In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 957–966.

23. Rubner, Y.; Tomasi, C.; Guibas, L.J. A Metric for Distributions with Applications to Image Databases; IEEE:
Piscataway, NJ, USA, 1998.

24. Mrkšic, N.; OSéaghdha, D.; Thomson, B.; Gašic, M.; Rojas-Barahona, L.; Su, P.H.; Vandyke, D.; Wen, T.H.;
Young, S. Counter-fitting Word Vectors to Linguistic Constraints. In Proceedings of the NAACL-HLT,
Atlanta, GA, USA, 12–17 June 2016; pp. 142–148.

http://dx.doi.org/10.1109/TEVC.2019.2890858
http://dx.doi.org/10.18653/v1/P19-1103
https://openreview.net/forum?id=r1QZ3zbAZ

Appl. Sci. 2020, 10, 3559 15 of 15

25. Chelba, C.; Mikolov, T.; Schuster, M.; Ge, Q.; Brants, T.; Koehn, P.; Robinson, T. One billion word benchmark
for measuring progress in statistical language modeling. arXiv 2013, arXiv:1312.3005.

26. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014;
pp. 1746–1751.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Black-Box Attack on Text
	White-Box Attack on Text
	Different Measures of Textual Similarity

	Methods
	Black-Box Attack on Text
	Greedy Search Attack
	White-Box Attack on Text

	Experiments
	Dataset and Target Model
	Evaluation
	Black-Box Attack Based on Differential Evolution
	White-Box Attack with the Coefficient of Variation
	Human Evaluation

	Conclusions and Future Work
	References

