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Abstract: The optimization design of engineering products involving computationally expensive
simulation is usually a time-consuming or even prohibitive process. As a promising way to relieve
computational burden, adaptive Kriging-based design optimization (AKBDO) methods have been
widely adopted due to their excellent ability for global optimization under limited computational
resource. In this paper, an entropy weight-based lower confidence bounding approach (EW-LCB) is
developed to objectively make a trade-off between the global exploration and the local exploitation in
the adaptive optimization process. In EW-LCB, entropy theory is used to measure the degree of the
variation of the predicted value and variance of the Kriging model, respectively. Then, an entropy
weight function is proposed to allocate the weights of exploration and exploitation objectively and
adaptively based on the values of information entropy. Besides, an index factor is defined to avoid
the sequential process falling into the local regions, which is associated with the frequencies of the
current optimal solution. To demonstrate the effectiveness of the proposed EW- LCB method, several
numerical examples with different dimensions and complexities and the lightweight optimization
design problem of an underwater vehicle base are utilized. Results show that the proposed approach
is competitive compared with state-of-the-art AKBDO methods considering accuracy, efficiency,
and robustness.

Keywords: Kriging; lower confidence bounding; entropy theory; product design; simulation-based
design optimization

1. Introduction

Computational simulation models, i.e., finite element analysis (FEA) and computational fluid
dynamic (CFD) models, have been widely used in engineering design problems to replace physical
experiments for reducing the time cost and shortening the product developing cycle. However, it is
still computationally prohibited to solve engineering design optimization problems directly relying
on simulation models, even though the storage capacity and computing efficiency of computers are
maintaining rapid growth [1,2]. A popular strategy to address this limitation is to adopt surrogate
models, also named the meta-model or approximate model, to replace the computational simulation
model during the optimization process. There are several varieties of surrogate models, such as
Polynomial response surface (PRS) model [3], Radial basis function (RBF) model [4,5], Kriging
model [6–8], and Support vector regression (SVR) model [9,10]. Among these surrogate models, the
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Kriging model has been intensively used in engineering design optimization because it can provide
not only the predicted value of an un-sampled point but also the predicted confidence interval of the
predicted value.

The Kriging model-based design optimization methods can be divided into two types [11]:
the off-line type and the on-line type. The off-line type uses all the computational resources to construct
the final Kriging model in one time and the model does not update during the optimization process.
Therefore, the determination of the sampling plan is crucial because the optimization process may fall
into the local optimum region if the number of samples is too small [12]. On the contrary, it would
waste computational burden if the number of samples is too large. To solve this dilemma, the on-line
type has been developed, in which an initial Kriging model is built in the earlier stage and then new
samples are added to update the Kriging model sequentially through certain criteria, e.g., maximum
mean square error [13], cross validate error [14], etc., during the design optimization process. The on-
line type can significantly reduce the computational burden compared with that of the off-line type
because the information of the Kriging model is well utilized [15,16].

The on-line type Kriging model-based design optimization methods are also called adaptive
Kriging-based design optimization (AKBDO). The target of AKBDO is to obtain the optimum using
less computational cost [17,18]. At the same time, the balance between exploration and exploitation
is important because it is critical for searching the global optimum. In detail, exploration means the
ability of the algorithm to explore the whole design space for the latent optimal region. On the other
hand, exploitation aims to identify the local area around the current optimum. Typically, there are
several sorts of adaptive sampling approaches of AKBDO with different ways of making a trade-off

between exploration and exploitation [19,20], such as the maximum-uncertainty adaptive sampling
approaches [20], the efficient global optimization (EGO) methods [21], the lower confidence bounding
(LCB) based methods [22], the aggregate-criteria adaptive sampling methods [19], and the multi-criteria
adaptive approaches [23,24]. Among these approaches, the efficient global optimization method
proposed by Jones [21] has been intensively adopted to handle realistic product design due to its high
efficiency and ease of operation. In this work, the expected improvement (EI) function is introduced to
quantify the improvement of an un-known point to the current best solution. The new point can be
obtained by maximizing the EI function, and the Kriging model can be updated adaptively by adding
the new point to the original sample set. The EI based EGO method has been intensively investigated
in recent years [25–27]. For example, Xiao [28] proposed a weighted EI to make the balance between
exploration and the exploitation more flexible; Zhan [29] proposed the EI matrix method to solve the
multi-objective problem. Another famous AKDBO method is the LCB- based method [30]. The LCB
function is an effective approach to balance exploration and exploitation by combining the predicted
value and variance in a simple way [31]. Subsequently, a parameterized LCB (PLCB) method was
proposed by using cool strategy to improve the ability to balance the exploration and exploitation
of the original LCB [32]. Cheng et al. [33] considered the coefficient of variation of predicted values
and variance to determine the weight factor adaptively during the sequential process. Further, some
variants of the LCB methods focus on upper confidence bounding, such as, the Gaussian process
upper confidence bounding (GPUCB) algorithm proposed by Srinivas et al., which considers the
upper confidence bound of noisy functions [34]. The parallel type of the GPUCB was developed by
Desautel et al. [35]. It mentions that LCB methods have been widely applied to solve real engineering
problems [36,37]. However, the weight factor for balancing the exploration and the exploitation of
the LCB based method remains an interesting problem. This is because most of the existing factor
approaches are subjective or problem dependent, which is not robust in application for all cases.

In this paper, an entropy weight-based lower confidence bounding approach (EW-LCB) is proposed
to ascertain the weight of the LCB function adaptively and objectively. In the proposed EW-LCB
method, entropy theory is used to quantify the degree of variation of the predicted value and variance
of the Kriging model. Then, a new weighted formula is introduced to allocate the weights of exploration
and exploitation adaptively. To validate the performance of the proposed EW- LCB method, several
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numerical functions with different dimensions and complexities and an engineering problem are tested.
The computational efficiency, accuracy of the optimum, and the robustness are considered when
comparing EW-LCB with the existing famous AKBDO methods. Results showed that the performances
of the proposed EW-LCB approach were competitive on the test cases.

The remainder of this paper is organized as follows, in Section 2, the basis of the Kriging model
and several existing famous AKBDO methods are introduced. The details of the proposed approach
with the assistance of an illustrative example are described in Section 3. In Section 4, the effectiveness of
the proposed approach is tested on several numerical benchmark problems and an engineering design
optimization problem. Finally, some conclusions and possible future works are proüposed in Section 5.

2. Background

2.1. Kriging Model

The Kriging model was originally proposed by Krige [38] to predict the location of a mine hole in
a geostatistical community. Then, it was extended by Sacks et al. [6] for modeling an experiment of a
computer. The Kriging model is also called the Gaussian process model, which is a kind of interpolative
model. The Kriging model can be expressed as

ŷ(x) = β+ Z(x) (1)

where x represents the vector of the design variables, which is a d-dimensional vector x = {x1, x2, . . . , xd},
β is an unknown parameter which denotes the global tendency, Z() is a static Gaussian process with
zero mean and non-zero variance σ2, which represents the local deviation.

In the static Gaussian process, spatial correlation is used to organize the relationship between any
two samples. Generally, the squared exponential function is utilized, which can be expressed as

R(xi, x j;θ) = exp(−
d∑

k=1

θk(xk
i − xk

j)
p j) (2)

where θ and P are the hyper-parameters used to control the smooth and the correlation between two
sample points. Generally, the hyper-parameter vector P is set to be pi = 2; i = 1, 2, . . . , d [39].

The core point of the modeling process of the Kriging model is to determine the unknown
parameters. Because the responses obey the multivariable Gaussian distribution, the unknown
parameter can be obtained by maximum likelihood estimation (MLE) [14]. The likelihood function can
be organized as

L
(
y(x1), y(x2), . . . , (xN)

∣∣∣σ, β,θ
)
=

1

(2πσ2)
N
2

exp

−
N∑

i=1
(y(xi) − β)

2

2σ2

 (3)

where N is the number of samples.
Then, Equation (3) can be simplified by taking the natural logarithm,

ln(L) = −
N
2

ln(2π) −
N
2

ln
(
σ2

)
−

1
2

ln(|R|) −
(y− 1β)TR−1(y− 1β)

2σ2 (4)

where y is an N-dimensional vector that consists of the real responses, 1 is an N-dimensional vector
that consists of 1,

The values of β and σ2 can be obtained by setting the derivatives of Equation (4) concerning β and
σ2 to be 0,

β̂ =
fTR−1y

fTR−1f
(5)
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σ̂2 =

(
y− 1β̂

)T
R−1

(
y− 1β̂

)
N

(6)

Then, substituting Equations (5) and (6) into Equation (4), and remove the constant terms,
Equation (4) yields the concentrated ln-likelihood function

ln(L) = −
N
2

ln
(
σ̂2

)
−

1
2

ln(|R|) (7)

It is difficult to obtain an analytical solution of θ because of high non-linearity and
non-differentiality. Therefore, a numerical solution is obtained instead. The optimization algorithm,
such as the genetic algorithm (GA) [40] and particle swarm optimization algorithm (PSO) [41], can be
used to find the optimized values of θ.

The Kriging model is widely adopted in surrogate model-based engineering optimization because
it can provide both the predicted value and variance [42]. The predicted value of an un- sampled point
can be determined by minimizing the mean square error. Thus, the predicted value and variance can
be expressed as

ŷ(x) = β̂+ r(x)TR−1
(
y− 1β̂

)
(8)

ŝ2(x) = σ̂2

1− r(x)TR−1r(x) +
(1− 1TR−1r(x))2

1TR−11

 (9)

where r(x) is an N-dimensional vector representing the spatial correlation between the un-sample
point and the sample points, which can be defined by

r(x) =
{
R(x, x1), R(x, x2), . . . , R(x, xN)

}
(10)

2.2. Review of the Typical Adaptive Surrogate-Based Design Optimization Methods

The goal of the AKBDO methods is to obtain the optimum with a limited computational budget.
In this section, four popular AKBDO methods are briefly introduced.

2.2.1. The Lower Confidence Bounding Method

With a concise expression, the LCB method is a popular AKBDO method, which can be expressed as

lcb(x) = ŷ(x) − bŝ(x) (11)

where ŷ(x) and ŝ(x) are the predicted value and standard deviation, respectively. b is a factor
utilized to control the weight between the ŷ(x) and ŝ(x) for the sake of balancing the exploration and
the exploitation.

The goal of the LCB function is to identify the new sample points through the combination
of predicted value and variance by Equation (11). The point with small predicted value or large
uncertainty is chosen. Generally, a larger b means more emphasis on global exploration. On the
contrary, with a small b value, the algorithm turns more attention to local exploitation. Cox and John
reported that b = 2 and b = 2.5 can give a more efficient search [43].

2.2.2. The Parameterized Lower Confidence Bounding Method

The weight factor in the LCB method is constant, indicating that the contributions of the predicted
value and standard deviation will be fixed during the optimization process. Thus, the parameterized
lower confidence bounding (PLCB) method is proposed [32], which can be defined by

plcb(x) = ai ŷ(x) − biŝ(x) (12)



Appl. Sci. 2020, 10, 3554 5 of 23

where a new parameter ai is developed to regulate the influence of the predicted value during the
iteration process of design optimization. Meanwhile, the values of ai and bi vary during the iteration
process, where i is the iteration order of the sequential process. In detail, the values of the parameters
ai and bi can be expressed as

ai = 1, bi =
(
1 + cos

( iπ
m

))
/ sin

( iπ
m

)
(13)

where m is a parameter defined by the user, it is set to be m = 3 in Ref. [32].
According to Equation (12), the algorithm tends to focus on exploration when bi/ai has a larger

value, while it tends to focus on exploitation when bi/ai has a respective small value. Specifically, the
value of bi/ai in PLCB function has a larger value at the former iterations and has a relatively small
value as the algorithm goes on. Consequently, the PLCB algorithm shows a better ability to balance the
exploitation and the exploration when compared with the LCB method.

2.2.3. The Expected Improvement Method

The expected improvement method is a famous AKBDO method proposed by Jones [21].
The expected improvement function can be defined to measure the latent improvement of an unknown
point to the current optimum, which can be expressed as

I(x) = max(ymin −Y(x), 0) (14)

The expected improvement can be formalized as

E(I(x)) = E(max(ymin −Y(x), 0)) (15)

which can be expanded into

E[I(x)] = ( fmin − ŷ(x))Φ
(

fmin − ŷ(x)
s(x)

)
+ ŝ(x)φ

(
fmin − ŷ(x)

ŝ(x)

)
(16)

where Φ and φ are the cumulative density function and probability density function of the standard
normal distribution, respectively.

According to Equation (16), the first term mainly focuses on the exploitation and the second term
primarily concerns the exploration. The point with the maximum value of the EI function is regarded
as the new sample to update the Kriging model during the iteration process.

2.2.4. The Weighted Expected Improvement Method

Although the EI method can balance the exploration and the exploitation, its efficiency is
problem-dependent because the EI method provides a fixed compromise between the exploration
and the exploitation. To address this issue, a weighted expected improvement method (WEI) [28]
is developed, in which a tunable weight is adopted to adjust the contributions of exploration and
exploitation. The WEI can be given by

E[I(x)] = w( fmin − ŷ(x))Φ
(

fmin − ŷ(x)
s(x)

)
+ (1−w)ŝ(x)φ

(
fmin − ŷ(x)

ŝ(x)

)
(17)

where w is the weight coefficient. The larger value of w indicates that the WEI will focus more on
exploitation. Otherwise, the WEI method emphasizes exploration.

3. Proposed Approach

The goal of the proposed lower confidence bounding approach based on the entropy weight
algorithm (EW-LCB) is to obtain an optimal solution with less computational burden through a
sequential process. In EW-LCB, a new-weight factor is developed, which can allocate factors to balance
global exploration and local exploitation by quantifying the degree of variation of the predicted
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value and variance from the Kriging model, respectively. In detail, the entropy theory is adopted to
evaluate the relative discrepancy between the predicted value and uncertainty of the Kriging model.
The framework of the EW-LCB is shown in Figure 1, which is composed of six steps.
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To demonstrate the proposed EW-LCB approach more intuitively and detailed, a one- dimensional
toy example is utilized. The test function is adopted from [33], which can be expressed as

y = 0.5 sin(4π sin(x + 0.5)) +
1
3
(x + 0.5)2; x ∈ [0, 1] (18)

The objective is to obtain the minimum value of Equation (18). Meanwhile, this function has a
local optimal value y = −0.0445 at x = 0 and a global optimal value y = −0.1341 at x = 0.5312.

The details of the steps are elaborated as follows:

3.1. Step 1: Generate the Initial Sample Set

The generation of the initial sample set includes the determination of the number and location of
the initial sample points, which is a crucial component of the AKBDO. If too few points are generated,
the AKBDO can have a risk of falling into the local optimal because of the poor accuracy of the initial
Kriging model. On the other side, it may be a waste of computational burden if too many initial
samples are utilized, especially when dealing with costly engineering problems. For the tested cases,
a state-of-the-art initial sample size rule N = 10× d is used [21,44]. The sensitive analysis of the initial
sample size is discussed in the next section. Besides, how to allocate the locations of the initial samples
is another tricky issue. More uniformed distributed sample points are preferred because the initial
Kriging model can obtain more information about the landscape of the real function. Therefore, the
Latin Hypercube sampling (LHS) method [45] is used, which can guarantee that the samples distribute
along each dimension uniformly.

Due to the simple landscape of the illustration example, the initial sample points are set to be
x = [0, 0.5, 1], which is less than the recommended initial sample size. Herein, the responses of the
initial sample points are y = [−0.0445,−0.1229, 0.7343], which are obtained by calculating the numerical
function in Equation (18).
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3.2. Steps 2 and 3: Constructing the Kriging Model and Obtaining the Current Optimal Solution

In Step 2, the Kriging model is established based on the initial sample set based on the DACE
toolbox [46]. In detail, the regression function, the correlation function, and the initial value of θ are
set to be ‘Regpoly0’, ‘Corrgauss’, and (10d)−1/d, respectively. Besides, all the codes are executed based
on the computational platform with a 4.2 GHz Intel(R) Eight-Core (TM) i7-7700k Processor and 64 GB
RAM. The initial Kriging model of the illustrated example is plotted in Figure 2 in which, the black line
and blue dash line denote the real function and the initial Kriging model, respectively. Meanwhile, the
initial sample points are marked with blue triangles.
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In Step 3, the current optimal value was obtained through a genetic algorithm [47], where the
parameter setting is listed in Table 1.

Table 1. The parameter setting of the genetic algorithm.

Parameter Values

Population Size 100
Maximum generation 100
Crossover probability 0.95
Mutation probability 0.01

The minimum value of the current responses is −0.1229, which is larger than the actual global
optimal solution. Then, the current minimum value will be judged by the stopping criterion to decide
whether the active-learning process goes on or not in the next step.

3.3. Step 4: Check the Terminal Condition

Generally, there are two common ways to stop the sequential process. That is (1) the difference
between the current optimal solution and the actual one achieves at an acceptable level and (2) all the
computational resources are used up. In this work, these stopping criteria are adopted for different
scenarios. For the numerical functions, because the actual optimal solution is known, the stopping
criterion can be associated with this value to test the effectiveness of the proposed approach. Therefore,
the stop condition is defined as
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εr =

∣∣∣∣∣∣min(yk(xi)) − yr

yr

∣∣∣∣∣∣ < εg i = 1, 2, · · · , N (19)

where min(yk(xi)) is the minimum value of the current sample set, yr is the actual optimal solution, εg

is a user-defined tolerance. Generally, the adaptive algorithm will confront the stricter test in the case
of smaller tolerance. In this work, the value of εg is defined as 0.002 referring to [32].

However, for the engineering cases, the above stopping criterion for the numerical problem is
impractical because the engineering problem is always a black-box problem. Thus the value of the
actual optimal solution is unknown. Therefore, the sequential updating process terminates when the
maximum iteration is reached, which can be expressed as

k ≥ K (20)

where k and K denote the current iteration and the maximum iteration, respectively.
If the stopping criterion is satisfied, the sequential process will be terminated and the algorithm

goes to Step 6. Otherwise, the proposed algorithm goes to Step 5 for a new iteration. In this illustrated
example, the relative error between the current optimal solution and the actual one is 0.00084. Therefore,
the sequential process goes to Step 5.

3.4. Steps 5: Update the Sample Set through the Proposed EW-LCB

To accelerate the adaptive optimization process, the lower confidence bounding function based
on entropy theory is developed. Entropy theory was proposed by Shannon to quantify the degree of
chaos in molecular motion [48,49]. In this work, it is developed to quantify the degree of variation of
the predicted value and variance in the sequential optimization process. Herein, the proposed entropy
weight method is an objective weighting method, which adaptively assigns weight to the LCB function
according to the degree of variation of the predicted value and variances. Specifically, the entropy
weight method consists of three major steps: normalize the values of the predicted value and variances,
calculate the entropy value of the predicted value and variances, and determine the relative weight
of them.

The EW-LCB function is defined as

EWMLCB(x) = w1 ŷ(x) −w2ŝ(x) exp((−1)rr) (21)

where ŷ(x),ŝ(x) are the predicted value and estimated standard deviation of the tested point, respectively.
w1, w2 are the weights to reflect the contribution of the ŷ(x),ŝ(x), respectively. r represents the iterations
of the current optimization solution, which can be used to avoid the proposed approach falling in the
local optimal region.

To obtain the weights w1, w2, suppose that there are N samples with m indexes. The information
of the samples can be normalized by

Yi j =
Xi j −min

{
X1 j, X2 j, . . . , XN j

}
max

{
X1 j, X2 j, . . . , XN j

}
−min

{
X1 j, X2 j, . . . , XN j

} (22)

where Xi j represents the jth index of the ith sample. Equation (22) is used to normalize the lower and
upper bound. In this work, the value of m equals 2. Besides, the number of tested points is set to be
1000 to improve the robustness of the entropy weight method.

Then, the entropy value of each index can be determined by

E(p j) = −
1

ln(N)

N∑
i=1

pi j ln(pi j) j = 1, 2, · · · , m (23)
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where

pi j = Yi j/
N∑

i=1

Yi j (24)

If the value of pi j = 0, it indicates that the entropy of this tested point equals zero. In that case,
a definition is given to compensate for the insufficiency of the initial assumption in Equation (23),
which is defined as

lim
pi j→0

pi j ln(pi j) = 0 (25)

According to Equation (23), the degree of variation of each indicator can be ascertained.
The indicator with a larger value of information entropy has a smaller degree of variation. Subsequently,
the corresponding entropy weight should be small. As such, the entropy weight can be obtained by

w j =
1− E(P j)

m∑
j=1

(1− E(P j))

(26)

According to Equation (26), the weight of each index can be determined adaptively. Besides,
w j ∈ [0, 1] and

∑
w j = 1.

Here we give a brief explanation of the proposed EW-LCB criterion. The term w1 ŷ(x) is used for
local exploitation, which concerns the optimal value. On the other side, the term w2ŝ(x) exp((−1)rr)
focuses on global exploration, which pays more attention to the uncertainty of the Kriging model for
the potential global optimal region. If w1 � w2 exp((−1)rr), it means the algorithm focuses more on
global exploration. While w1 � w2 exp((−1)rr) means the algorithm focuses more on local exploitation.
The factor exp((−1)rr) serves as the catalyst to help the optimization process out of a local optimization
solution. However, this factor may decrease the convergence speed of the proposed algorithm because
the weight of the exploration will dominate EWLCB(x) when the current optimization solution is
repeated too many times. Finally, the point with the minimum value of EWLCB(x) is selected as the
new update point.

In this illustrated example, the weight parameters are w1= 0.4961,w2 exp((−1)rr) = 0.5039 in the
first iteration. It is shown that the algorithm focuses more on global exploration than local exploitation.
Therefore, another sample point x = 0.4432 is added, and the corresponding Kriging model is refreshed,
which is shown in Figure 3.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 25 
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3.5. Step 6: Output the Optimal Solution

Once the terminal conditions are achieved, the optimal solution will be the output. As shown in
Figure 4, the optimal solution x = 0.5312 is obtained, which equals the global minimum.
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As shown in Figure 4, the trend of the actual function is recognized by the proposed approach
and the optimal value can be obtained although the global accuracy of the Kriging model is not at a
high level.

For comparison, four AKBDO methods, Expected improvement infill criterion (EI) [21], weighted
expected improvement infill criterion (WEI) [28], Lower confidence bounding infill criterion (LCB) [22],
and Parameterized lower confidence bounding (PLCB)[32], were tested on this case. To avoid the
randomness of the LHS and GA, all the methods were repeated 100 times. The statistical results
including the mean value and standard deviations of the function calls are summarized in Table 2.

Table 2. Comparison results of different approaches of the illustrated example.

Methods EI WEI LCB PLCB EW-LCB

Mean Value 7.64 7.86 7.98 7.66 6.48
Standard deviations 1.352 1.498 1.301 1.780 0.505

As listed in Table 1, the average number of function calls of the proposed approach is less than
those of the four AKBDO methods, indicating that the proposed EW-LCB approach performs better
than the four AKBDO methods concerning efficiency. Besides, the standard deviation of the proposed
EW-LCB approach is the smallest among all the methods, which means that the proposed approach
has the best robustness among all the compared methods in this demonstration case.

4. Tested Cases

4.1. Numerical Examples

In this subsection, ten widely used benchmark problems from Ref. [33,50–52] are used to illustrate
the effectiveness of the proposed EW-LCB method. Meanwhile, four famous AKBDO approaches,
EI, WEI, LCB, and PLCB, are tested to compare with the EW-LCB method. As the optimal solutions
for all benchmark problems can be obtained, the terminal condition is defined such that the relative
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error between the optimal solution obtained from the Kriging model and the true one is within
0.002. Therefore, the number of iterations is regarded as the merit of effectiveness. Considering the
randomness of the results, many AKBDO approaches repeat their algorithms dozens of times and
provide statistical results [53,54]. Furthermore, some approaches use the deterministic sampling and
optimization algorithms such as Hammersley and deterministic PSO [55–57] to avoid the randomness.
In this work, each method ran 100 times with different initial samples and their statistical results are
recorded in Table 3.

Table 3. The comparison of statistical optimization results.

Functions Items EI WEI LCB PLCB EW-LCB

PK
FEmean 29.82/3 30.13/4 29.68/2 31.99/5 26.97/1
FEstd 2.435/2 2.884/3 2.068/1 5.107/4 5.34/5

BA
FEmean 33.23/3 32.15/2 33.88/4 34.34/5 26.33/1
FEstd 3.989/3 3.777/2 5.664/4 6.144/5 2.78/1

SA
FEmean 32.12/3 36.15/5 34.88/4 31.23/2 27.92/1
FEstd 4.674/3 4.865/4 2.813/2 5.241/5 2.722/1

SC
FEmean 39.30/4 40.66/5 39.20/3 36.41/2 33.42/1
FEstd 3.965/3 3.634/1 3.785/2 5.292/4 5.320/5

HM
FEmean 45.76/4 46.22/5 44.12/3 41.34/2 35.22/1
FEstd 3.456/3 2.973/2 1.894/1 5.157/5 3.49/4

GP
FEmean 117.66/5 115.67/4 105.27 /3 97.77/2 89.27/1
FEstd 19.11/5 11.81/2 17.55/4 14.44/3 9.99/1

GF
FEmean Failed/5 Failed/5 Failed/5 140.42/2 116.67/1
FEstd Failed/5 Failed/5 Failed/5 75.66/2 30.63/1

L3
FEmean 300.4/3 534.6/4 540.4/5 167.1/1 199.2/2
FEstd 119.1/3 147.0/4 159.4/5 55.21/1 88.89/2

H3
FEmean 37.50/3 37.62/2 38.20/4 39.34/5 36.58/1
FEstd 3.50/4 3.46/3 3.29/2 3.64/5 2.56/1

H6
FEmean 107.03/4 105.13/3 103.67/2 114.1/5 101.16/1
FEstd 44.50/2 50.39/5 48.26/3 49.30/4 43.43/1

The expressions of benchmark problems are listed as,

• Peaks function (PK)

f (x) = 3(1− x1)
2e−x1

2
−(x2+1)2

− 10(
x1

5
− x1

3
− x2

5)e−x1
2
−x2

2
−

1
3

e−x2
2
−(x1+1)2

, x1,2 ∈ [−3, 3] (27)

• Banana function (BA)

f (x) = 100(x1
2
− x2)

2
+ (1− x1)

2, x1,2 ∈ [−2, 2] (28)

• Sasena function (SA)

f (x) = 2 + 0.01(x2 − x1
2)

2
+ (1− x1)

2 + 2(2− x2)
2 + 7sin(0.5x1)sin(0.7x1x2) , x1,2 ∈ [0, 5] (29)

• Six-hump camp-back function (SC)

f (x) = (4− 2.1x1
2 +

x1
4

3
)x1

2 + x1x2 + (−4 + 4x2
2)x2

2, x1,2 ∈ [−2, 2] (30)
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• Himmelblau function (HM)

f (x) = (x1
2 + x2 − 11)

2
+ (x2

2 + x1 − 7)
2
, x1,2 ∈ [−10, 10] (31)

• Goldstein–Price function (GP)

f (x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x1
2
− 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2)], x1,2 ∈ [−2, 2]

(32)

• Generalized polynomial function (GF)

f (x) = u2
1 + u2

2 + u2
3

ui = ci − x1(1− xi
2), i = 1, 2, 3

c1 = 1.5, c2 = 2.25, c3 = 2.625, x1,2 ∈ [−5, 5]
(33)

• Levy 3 function (L3)

f (x) = sin2(πω1) +
2∑

i=1
(ωi − 1)2[1 + 10 sin2(πωi + 1)] + (ω3 − 1)2[1 + sin2(2πω3)]

ωi = 1 + xi−1
4 , i = 1, 2, 3, xi ∈ [−10, 10]

(34)

• Hartmann 3 function (H3)

f (x) = −
4∑

i=1
αi exp

− 3∑
j=1

βi j(x j − pi j)
2


0 ≤ x1, x2, x3 ≤ 1
(35)

where

α =


1

1.2
3

3.2

 β =


3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 P =


0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

 (36)

• Leon (LE)

f (x) = 100(x 2−x3
1

)2
+(x 1−1)2; x1, x2 ∈ [−10, 10] (37)

The statistical results of 100 times for five AKBDO approaches are summarized in Table 3.
In Table 3, the FEmean represents the mean of iteration times illustrating the efficiency of the method,
while FEstd denotes the variance of function evaluations, which can reflect the robustness of each
method [58]. In Table 3, the numbers after the mean or standard deviation are the rank of the compared
method for each numerical case. For example, 26.97/1 means the mean value is 26.97 while the method
ranks first. The numbers marked in bold represent the first rank among the five AKBDO approaches.
It can be inferred that the EW-LCB ranks first in most of the test problems, which indicates that the
proposed EW-LCB outperforms the other compared approaches considering effectiveness. To further
demonstrate the robustness of the proposed approach, Figure 5 plots the box plot of FEmean of all
100 runs.



Appl. Sci. 2020, 10, 3554 13 of 23Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 25 

 
Figure 5. The box plot of the FEmean with different methods. 

  

Figure 5. The box plot of the FEmean with different methods.



Appl. Sci. 2020, 10, 3554 14 of 23

Table 4 shows the average ranking of the performance of five AKBDO for all the tests. The average
ranking of EW-LCB is the best among the five approaches. It is then followed with PLCB, LCB, EI,
and WEI. When it comes to the robustness of the compared approaches, the proposed EW- LCB performs
better than the PLCB, LCB, and WEI methods, while it is slightly inferior to the EI method. To evaluate
whether the differences between the proposed EW-LCB method and the other four approaches are
significant or not, the p values over multiple test cases are obtained by using the Bergmann–Hommel
procedure [59]. The statistic test results are listed in Table 5. As shown in Table 5, all the pi-values are
less than 0.05, indicating that there are significant differences in the efficiency performance between
the proposed EW-LCB and the other four approaches.

Table 4. Average ranking results for all AKBDO approaches considering all numerical cases.

Metrics EI WEI LCB PLCB EW-LCB

Average rank FEmean 3.70 4.00 3.22 3.10 1.10
FEstd 2.50 3.40 2.90 3.70 2.30

Table 5. The p-values obtained in the numerical examples by the difference significance test.

i Hypothesis p-Values

1 EI vs. EW-LCB 0.0028
2 WEI vs. EW-LCB 0.0001
3 LCB vs. EW-LCB 0.0016
4 PLCB vs. EW-LCB 0.0056

To demonstrate the influences of initial sample sizes, the other two initial sample sizes were
studied. The initial sample points are all generated by the LHD method, and function SA and L3 were
selected as function SA needs a small sample size, while function L3 needs a large sample size. Table 6
shows the results of comparisons. The numbers after ‘/’ represent the efficiency metric ranking of
each method. It is easy to see that the initial sample sizes have a great influence on the function of
SA. For function SA, EW-LCB always ranks first, while the ranks of EI, WEI, LCB, PLCB change a lot.
For instance, PLCB ranks second when the initial sample sizes are 5d and 15d, while when it comes to
the size of 10d, the rank changes to fourth. As for function L3, the numbers of the sample size of EI, WEI,
LCB change little, while the numbers of the sample size of PLCB and EW- LCB change significantly
when the initial sample size transforms from 5d to 10d. This represents that PLCB and EW-LCB may
perform well with a small sample size in the case of a quite complex function while EI, WEI, and LCB
only represent this feature when the function is simple. This is attributed to the objective weighting
factors in PLCB and EW-LCB, which are able to allocate factors to balance global exploration and local
exploitation. In summary, the EW-LCB method shows the greater ability in balancing between global
exploration and local exploitation compared to the other four AKBDO methods.

Table 6. Results of different initial sample points for functions SA and GF.

Functions Initial Sample Size EI WEI LCB PLCB EW-LCB

SA
n = 5d 27.55/4 28.98/5 27.02/3 24.12/2 23.34/1
n = 10d 32.12/3 36.15/5 34.88/4 31.23/2 27.92/1
n = 15d 41.67/4 43.98/5 41.12/3 40.20/2 38.03/1

L3
n = 5d 393.6/3 524.5/5 513.4/4 142.5/1 173.2/2
n = 10d 300.4/3 534.6/4 540.4/5 167.1/1 199.2/2
n = 15d 403.4/3 525.4/4 536.5/5 166.6/1 206.1/2

4.2. Engineering Application

In this section, an underwater vehicle base design problem is utilized to verify the effectiveness
of the proposed method. The base is a braced structure for vibration devices in the hull of an
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underwater vehicle. The main capability of the base provides a platform for the installation of some
imported vibration equipment and avoids the vibration transmitting to the hull directly. Meanwhile,
the mechanical impedance of the base has a determination effect in reducing the level of noise.
Specifically, the mechanical impedance is expected at a high level under all computational frequencies.
The structural profile of the base adjoined to the hull of the underwater vehicle is depicted in Figure 6.
The fixed structural and material parameters of the cylindrical shell and the base are listed in Table 7.
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Table 7. The values of the fixed structural and material parameters.

Fixed Parameters Values

Elastic modulus E 2.09× 105 MPa
Density ρ 7850 kg/m3

Poisson’s ratio µ 0.3
The length of the Hull L 12,000 mm
The radius of the Hull R 3300 mm
Rib space l 600 mm
Size of the ribs’ 14× 224/26× 80 mm
The radius of the base web opening r 75 mm
Width of the base web opening d 210 mm

In this work, the objective is to maximize the minimum difference of the impedance between the
scheme in design and the required impedance value under the same frequency. Simultaneously,
the weight of the optimized scheme should be less than that of the allowable one. Therefore,
the optimization problem can be described as,

f ind x = [x1, . . . , x6]

max f (x) = min
{
I(x,ωi) − I(x0,ωi); i = 1, 2, . . . , k

}
s.t. g(x) = W(x) −W(x0) < 0

(38)

where x represents the vector of the design variables, which is a six-dimensional vector.ωi is the ith

computational frequency. In detail, the design variables of this problem are the thickness of the panels
of the base. Figure 7 plots the schematic diagram and Table 8 lists the meanings and value space of
the design variables, respectively. I(x,ωi) and W(x) represent the impedance value under a specific
computational frequency and the weight of the base, respectively.I(x,ωi) and W(x0) are the required
impedance value at the ith computational frequency and the allowable base weight, respectively.
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Table 8. The meaning and ranges of the design variables.

Design Variables Ranges

Former half
The thickness of the base panel t1 40–90 mm
The thickness of the base web t3 10–60 mm

The thickness of the base bracket t5 12–40 mm

Remaining half
The thickness of the base panel t2 40–90 mm
The thickness of the base web t4 10–60 mm

The thickness of the base bracket t6 12–40 mm

Generally, the responses of the impedance curve are obtained through the finite element simulation
software ANSYS 18.1. The computational platform is with a 4.01 GHz Intel(R) Eight-Core (TM) i9-9900ks
Processor and 64 GB RAM. In this simulation, the boundary condition is fixed for all the translation
degrees at both sides of the shell. The loading is a unit vertical force at point A as depicted in Figure 7.
The ribs are simulated by the Beam 188 element and the rest of the model is simulated by the Shell
181 element. The number of elements has to be more than 34,000 to get a desirable accuracy of
the impedance value, as shown in Figure 8. Then, the frequency step is set to be 2.5 Hz and the
computational frequency ranges from 0 to 350 Hz. To improve the efficiency of the optimization,
minimal convex polygon technology is adopted to pre-process the impedance curve. In that case, the
global feature of the curve and the minimum impedance value of the impedance curve are preserved.
However, these complex and multimodal features, which may disturb the convergence speed of
the optimization process, are filtered. Figure 9 illustrates the impedance curves before and after
pre-processing on the scheme x =[60, 60, 30, 30, 24, 24].Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 25 
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Figure 9. The impedance curves before and after pre-processing.

As shown in Figure 9, the red line denotes the real impedance curve, which fluctuates significantly
under different frequencies. The black line is the impedance curve after the pre- processing operation,
which is smooth and the minimum value of the original curve remains the same. The blue line is the
required impedance curve under different frequencies. Moreover, the allowance weight for this case is
3.027t and the maximum iteration of this case is set to be 50. To eliminate the randomness of the initial
samples and the genetic algorithm, all methods use the same 60 initial LHS samples and the same
setups of the genetic algorithm. Moreover, all the methods are repeated 20 times to avoid randomness
occurring even though the setups are the same. The statistical optimization results of this problem
with all compared methods of under 20 runs are summarized in Table 9. Furthermore, the detailed
design variables, optimal, and weights of all runs are listed in Table A1 in the Appendix A.

Table 9. The statistical optimization results of the engineering case with different methods.

Methods
f(x)(×105 Ns/m)

Max Mean Std Succeeded

EI 4.031 3.998 0.03060 20/20
WEI 4.042 3.983 0.04316 20/20
LCB 3.857 3.733 0.08629 5/20

PLCB 3.892 3.723 0.12230 11/20
EW-LCB 4.062 4.027 0.01953 20/20

As illustrated in Table 9, the best value of the proposed method is 4.062× 105Nm/s, which is the
maximum optimal value among all methods. Moreover, the proposed method has the maximum mean
value on the objective among all the listed methods. It indicates the effectiveness of the proposed
approach. Regarding robustness, the proposed method also performs best among all these methods
because the proposed method obtains the minimum standard deviation. It is worth mentioning
that the LCB and PLCB methods obtain some infeasible solutions. In detail, there are 15 and 9 runs
that have failed for the LCB and PLCB methods respectively. The results show that the proposed
method is a stable and effective method to solve this engineering optimization problem. Figure 10
shows the impedance curves of the optimal scheme of the proposed approach and the original scheme.
As illustrated in Figure 10, the impedance curve of the optimal scheme is better than that of the
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original scheme because the impedance curve has larger impedance values in the frequencies which
are critical to the performance of the base as shown in the sub-figure of Figure 9. On the other side,
in the frequencies which are not critical to the performance of the base, the optimal scheme has smaller
values than those of the original scheme. Therefore, the proposed approach is an effective method for
this engineering case.
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5. Conclusions

To balance exploration and exploitation during the sequential process of the AKBDO, an EW-
LCB approach was developed in this work to obtain an optimal solution with less computational
resources. In the proposed EW-LCB approach, entropy theory was adopted to quantify the degree of
variation of the predicted value and variance of the Kriging model, respectively. Then, the weights
were assigned to the LCB function automatically according to the relative values of the entropy theory.
Meanwhile, an index factor was defined, which changed with iterations of the appearance of the
current optimum, to avoid the sequential process being lost in the local optimum. The updated point
was generated by minimizing the EW-LCB function, and the Kriging model updated sequentially.
To test the performance of the proposed EW-LCB methods, four typical AKBDO methods including
EI, WEI, LCB, and PLCB were adopted for comparison on ten widely used benchmark numerical
functions and an engineering case. Results show that the proposed EW-LCB approach can obtain the
optimum with the desired accuracy using less computational burden. Moreover, the proposed method
has competitive robustness compared with state-of-the-art methods.

It is of note that the proposed method can handle constrained optimization problems by transferring
the constrained optimization to the unconstrained one using the penalty methods. In practical
engineering cases, simulation models with different fidelities always are available, as part of our future
work, the developed EW-LCB method will be extended to the multi-fidelity scenario.
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Appendix A

Table A1. Detailed optimization results of the engineering case with different methods.

Methods
Variables (Rounded)

f(x)
(×105 Ns/m)

Weight (t)

t1 mm t3 mm t5 mm t2 mm t4 mm t6 mm Allowance
3.0327

EI

88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158
88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158
88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158
88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158

WEI

88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
83 60 13 40 20 12 3.974 3.0266
82 60 13 40 21 12 3.964 3.0281
88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
82 60 13 40 21 12 3.964 3.0281
83 60 13 40 20 12 3.974 3.0266
88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
83 60 13 40 20 12 3.974 3.0266
82 60 13 40 21 12 3.964 3.0281
88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
83 60 13 40 20 12 3.974 3.0266
82 60 13 40 21 12 3.964 3.0281

LCB

81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
69 51 25 43 20 19 3.688 3.0617
76 50 21 44 15 22 3.647 3.0499
81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
69 51 25 43 20 19 3.688 3.0617
76 50 21 44 15 22 3.647 3.0499
81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
69 51 25 43 20 19 3.688 3.0617
76 50 21 44 15 22 3.647 3.0499
81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
78 47 21 47 14 20 3.651 3.0303
70 51 25 49 12 21 3.632 3.0461
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Table A1. Cont.

Methods
Variables (Rounded)

f(x)
(×105 Ns/m)

Weight (t)

t1 mm t3 mm t5 mm t2 mm t4 mm t6 mm Allowance
3.0327

PLCB

78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
45 51 33 46 35 17 3.533 3.1076
84 38 28 44 15 19 3.684 3.0270
78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
45 51 33 46 35 17 3.533 3.1076
84 38 28 44 15 19 3.684 3.0270
78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
45 51 33 46 35 17 3.533 3.1076
84 38 28 44 15 19 3.684 3.0270
78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
67 59 39 40 11 12 3.645 3.0369
45 51 35 47 33 16 3.524 3.1050

EW-LCB

88 60 12 40 15 12 4.015 3.0065
87 60 12 40 17 12 4.017 3.0187
87 60 12 40 17 12 4.016 3.0187
85 60 12 40 18 12 4.016 3.0118
84 60 12 40 18 12 4.015 3.0034
88 60 12 40 15 12 4.015 3.0065
87 60 12 40 17 12 4.017 3.0187
87 60 12 40 17 12 4.016 3.0187
85 60 12 40 18 12 4.016 3.0118
84 60 12 40 18 12 4.015 3.0034
88 60 12 40 15 12 4.015 3.0065
87 60 12 40 17 12 4.017 3.0187
87 60 12 40 17 12 4.016 3.0187
85 60 12 40 18 12 4.016 3.0118
84 60 12 40 18 12 4.015 3.0034
89 59 12 40 16 12 4.061 3.0143
89 58 12 40 16 12 4.056 3.0026
88 60 12 40 16 12 4.062 3.0172
89 60 12 40 14 12 4.060 3.0047
89 60 12 40 15 12 4.059 3.0155

Note: the weights which are larger than the allowable ones are marked by red.
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