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Abstract: To meet the target value of cycle life, it is necessary to accurately assess the lithium–ion
capacity degradation in the battery management system. We present an ensemble model based on
the stacked long short-term memory (SLSTM), which is used to predict the capacity cycle life of
lithium–ion batteries. The ensemble model combines LSTM with attention and gradient boosted
regression (GBR) models to improve prediction accuracy, where these individual prediction values
are used as input to the SLSTM model. Among 13 cells, single and multiple cells were used as
the training set to verify the performance of the proposed model. In seven single-cell experiments,
70% of the data were used for model training, and the rest of the data were used for model validation.
In the second experiment, one cell or two cells were used for model training, and other cells were
used as test data. The results show that the proposed method is superior to individual and traditional
integrated learning models. We used Monte Carlo dropout techniques to estimate variance and obtain
prediction intervals. In the second experiment, the average absolute percentage errors for GBR, LSTM
with attention, and the proposed model are 28.6580, 1.7813, and 1.5789, respectively.

Keywords: lithium–ion battery; ensemble model; gradient boosted regression; long short-term
memory; attention mechanism

1. Introduction

Lithium–ion (Li–ion) batteries have the advantages of low cost, high energy density, and long
service life so that they can be widely used in mobile electronics and automotive industries [1,2]. For all
battery chemistries, Li–ion batteries degrade with each charge and discharge cycle. Therefore, the
accurate description and estimation of the degradation process of lithium–ion batteries have become
an important issue, in which the battery health status (SOH) and remaining useful life (RUL) are two
important indicators [3,4]. The accurate estimated value of SOH can make users maintain the battery
more reasonably, to improve the safe usage rate of the battery [5,6]. SOH is the indicator of the present
performance of the battery in terms of either capacity or resistance/power, while RUL indicates the rest
of the combined cycle and calendar life until the predefined end-of-life (EOL) level is achieved.

Model methods, data-driven methods, and hybrid methods often perform capacity reduction
and cycle life prediction. Model-based methods are based on degraded empirical or physical models;
however, constructing such a mathematical model is not an easy task. This method does not require
large amounts of data. The data-driven approach can capture strong nonlinearities without prior system
knowledge. Data-driven methods have been commonly used to predict cycle life and can represent
the inherent relationship of the battery without requiring professional knowledge of degradation
mechanisms [7]; however, this method requires a lot of data and computational cost. Hybrid methods
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show great potential for better prediction accuracy than model-based and data-driven prediction
methods [8]. Ensemble learning technology is one of the most popular hybrid methods, which improves
prediction accuracy by combining multiple learning algorithms [9]. The ensemble learning method
is a learning algorithm that can aggregate predictions generated by multiple learning algorithms to
enhance prediction performance.

Previous research has shown that ensemble learning algorithms generally outperform any
individual learning algorithm [9–13]. Most ensemble methods use the average value of multiple
models as the final prediction result; however, the prediction of ensemble learning in regression
problems does not necessarily guarantee that its prediction results will be better than a single model.
Therefore, a new method needs to be developed to test whether an ensemble model combining multiple
learning algorithms can provide better prediction performance than a single model. The long short-term
memory (LSTM) recurrent neural network (RNN) was used to analyze the capacity degradation of
lithium–ion batteries [14]. The LSTM model can be extended and added to other mechanisms such as
bidirectional, stacked, and attention mechanisms.

In this study, we propose an ensemble model based on a stacked long short-term memory (SLSTM)
model to the cycle life estimation of lithium–ion batteries. The final prediction output was obtained
by stacking LSTM models, rather than taking the average of the prediction values of each model.
Besides, the selected features and optimal hyperparameter values may affect the accuracy of cycle life
prediction. Few studies consider multiple features as input to the model. For example, Chen et al. [15]
and Wang and Mamo [16] used support vector machines with multiple features such as cycle and
temperature to predict the SOH of lithium–ion batteries. The best model hyperparameters are obtained
by using the differential evolution (DE) algorithm, and several features were also considered in this
study. LSTM with attention and gradient boosted regression (GBR) models were used as two single
models. Sections 2 and 3 describe the experimental data and a detailed description of the proposed
model, respectively. Section 4 describes model verification. Finally, we summarize the conclusions and
future research directions.

2. Experimental Data

Thirteen cells from commercial Lithium Ferrous Phosphate (LFP)/graphite (A123 Systems, model
APR18650M1A, 1.1 Ah rated capacity) [2] were used for model verification. These 13 cells were cycled
in a temperature-controlled environmental chamber (30 ◦C) under various fast charging policies and
discharged with a constant-current constant-voltage (CC-CV) discharge at 4 C to 2.0 V with a current
cutoff of C/50. The rated capacity of each unit is 1.1 Ah, and the rated voltage is 3.3 V.

The entire data set consisted of three batches of cells running in parallel. The cell was tested using
a two-step fast charging policy. For example, a two-step strategy might include a 6 C charging step
from 0% to 50% state-of-charge (SOC), followed by a 4 C charging step from 50% to 80% SOC. The 72
charging policies represent different combinations of current steps in the 0% to 80% SOC range [2].
The batch test conditions were slightly different. For the “2017-05-12” batch, after reaching 80% SOC,
the test conditions during charging and after discharging were 1 min and 1 s, respectively. For the
“2017-06-30” batch, after reaching 80% SOC, the test conditions during charging and after discharging
were both 5 min. For the “2018-04-12” batch, after reaching 80% SOC, the test time during the charging
process, after the internal resistance test and before and after discharging, was 5 s.

For model verification, we selected thirteen cells from the “2017-05-12” and “2017-06-30” batches.
Table 1 shows the representation of 13 cells with their charging policies. In the first experiment, seven
cells are used, where the first 70% of the data on each cell was used for model training to predict
the remaining discharge capacity. In the second experiment, two groups (cell 1, cell 2, and cell 3)
and (cell 2_25, cell 2_26, and cell 2_27) were used, where the test condition of each group is under
the same charging policy. Several features such as discharge capacity, cycle number, temperature,
and internal resistance for each cell were used for model training to evaluate the performance of the
proposed model.
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Table 1. Summary of the thirteen cells.

Cell Barcode Cell Cycle Life Charging Policy Experiment

EL150800460655 2_5 444 3.6C (22%)—5.5C 1
EL150800460635 2_6 480 3.6C (2%)—4.85C 1
EL150800460208 2_11 483 4C 40%)—6C 1
EL150800460449 2_12 485 4C (4%)—4.85C 1
EL150800460480 2_14 487 4.4C (47%)—5.5C 1
EL150800460603 2_18 513 4.65C (44%)—5C 1
EL150800460501 2_19 527 4.65C (19%)—4.85C 1
EL150800460514 1 1852 3.6C (80%)—3.6C 2
EL150800460486 2 2160 3.6C (80%)—3.6C 2
EL150800460623 3 2237 3.6C (80%)—3.6C 2
EL150800460597 2_25 495 4.8C (80%)—4.8C 2
EL150800463611 2_26 461 4.8C (80%)—4.8C 2
EL150800460596 2_27 471 4.8C (80%)—4.8C 2

3. Prediction Models

In this study, we propose an ensemble model based on the SLSTM model for cycle life prediction.
The ensemble model is based on two models, LSTM with attention and GBR models, which are
introduced in this subsection.

3.1. LSTM with an Attention Mechanism

Although the standard recurrent neural network is an extension of the conventional feed-forward
neural network, it has the problem of gradient vanishing or explosion. LSTM was developed to solve
these problems and achieve excellent performance. It has unique memory and forgetting modes
and can be flexibly adapted to the timing characteristics of network learning tasks. The units of the
LSTM model includes a forget gate, input gate, and output gate [17,18]. The forget gate is designed to
determine whether it needs to be discarded from the cell state. The input gate is designed to determine
whether new information should be stored in the cell state. The output gate is designed to determine
what information will be transferred from the cell state to the current hidden layer data. These gating
units are derived by

ft = σ
(
W f Xt + R f ht−1 + b f

)
(1)

where σ is the sigmoid function to keep the output value between 0 and 1; ht−1 and Xt are previous
layer data and the current input layer data;

(
W f , R f , b f

)
are the input weight, the recurrent weight,

and the bias of a forget gate.
it = σ(WiXt + Riht−1 + bi) (2)

where (Wi, Ri, bi) are the input weight, the recurrent weight, and the bias of an input gate. A tanh
layer is chosen to form the new memory as gt = tan h(WgXt + Rght−1 + bg), where

(
Wg, Rg, bg

)
are the

input weight, the recurrent weight, and the bias of a new memory. Then, the cell state is updated by
Ct = Ct−1 × f f + gt × it.

ot = σ(WoXt + Roht−1 + bo) (3)

where (Wo, Ro, bo) are the input weight, the recurrent weight, and the bias of an output gate. Finally,
we multiply it by the output of the sigmoid gate as ht = ot × tan h(Ct). Figure 1 shows the architecture
of the LSTM cell.
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Figure 1. Long short-term memory (LSTM) memory cell architecture redrawn from [19,20]. 
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Recently, the attention mechanism is usually used to analyze images and time-series data.
Compared with other ordinary deep learning models, combining attention with LSTM can obtain better
results. Note that the attention layer only helps to select the output of earlier layers that are critical to
each subsequent stage of the model. It allows the network to focus on specific information selectively.
It is accomplished by building a neural network focused on appropriate tasks. Detailed information
on the attention-based LSTM model can be found in [21–24]. In this study, the attention-based LSTM
model is used as a single model. The best model parameters are obtained from the DE algorithm.

3.2. Gradient Boosted Regression

Gradient boosting is a useful machine learning model that can obtain accurate results in various
practical tasks. It focuses on the errors caused by each step iteratively until the weak learners
are combined by finding suitable strong learners as the sum of consecutive weak learners [25–27].
The boosting iteration can be based on functional gradient descent. Let S =

{
(x1, y1), (x2, y2), . . . , (xn, yn)

}
be samples. A function f (x) is used to predict values based on the local loss function L(y, f (x)).
We minimize the expected value of the loss function to obtain the approximate value f̂ (x) of the function
f (x). GBR follows the regularization-method based on shrinkage and updates in each corresponding
area as follows:

fm(x) = fm−1(x) + v
lm∑
`=1

wm
` 1Rm

` (x) (4)

where v is called shrinkage to control the learning rate of the procedure and lm is the number of leaves
of tm defined by the rectangular regions Rm

`
. The coefficients wm

`
of a new tree can be fitted by retaining

the leaves rectangles Rm
1 , . . . , Rm

lm
of tm as wm

`
= 1∣∣∣Rm

`

∣∣∣ ∑
xεRm

`

(y− fm−1(x)). Parameters such as shrinkage (v),

number of trees (t), number of leaves (l), bag fraction, and interaction depth need to be determined by
using the DE algorithm. The ratio of bags is the observed score of the training data, which is randomly
selected to generate the next tree.

3.3. Propose Model

Figure 2 illustrates a novel framework for cycle life prediction using an ensemble model. In the
first level, two machine learning models, such as LSTM with attention and GBR models, are used
to generate predictions. These predicted values are used as input features for the final prediction
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with actual features. In the second level, the SLSTM model with a sliding window method is used
to predict the final predicted value. All hyperparameters of each model are derived using the DE
algorithm. The detail of the DE algorithm can be found in [28–30]. For example, five parameters need
to be determined in advance, such as lookback, batch size, neuro, steps per epochs, and epochs in the
LSTM model. The following steps can obtain the best hyperparameters.

Step 1. Extract the features such as cycle, capacity, internal resistance, and average temperature.
Step 2. Use mean absolute percentage error (MAPE) as the fitness function, which is obtained by

MAPE =

∑n
t=1

∣∣∣∣(Ct − Ĉt
)
/Ct

∣∣∣∣
n

∗ 100 (5)

where Ct is the actual capacity at cycle t, Ĉt is the predicted capacity at cycle t, and n is the prediction
length.

Step 3. Select the range of LSTM and GBR hyperparameters, and use the specified model to
calculate the MAPE value.

Step 4. Decide the values of DE algorithms such as NP, CR, and F, which are 50, 0.9, and 0.8,
respectively, in this study.

Step 5. Output the best value. For example, the optimal values for the lookback, batch size, neuro,
steps per epoch, and epochs of the proposed model in cell 2_5 are 8, 21, 15, 45, and 59, respectively.
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The LSTM model should include dropout parameters to reduce overfitting and enhance model
performance. Dropout is a regularization method. In this method, the cyclic connection with the
input of the LSTM cell may not be excluded from the activation and weight update in network
training. That is to say, two parameters (such as dropout and recursive dropout) are used for linear
transformation of the recursive state. Therefore, the Monte Carlo (MC) dropout technique is used
to obtain the variance and bias of the proposed model, and the sliding window method is used to
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construct its prediction interval. Converting a conventional network to a Bayesian network through
MC dropout is as simple as using the dropout technique for each layer during training and testing.
It is equivalent to sampling from the Bernoulli distribution and provides predictive stability across
samples [31]. The idea is to run the model several times with random dropout, which will produce
different output values. Then, we can calculate the empirical mean and variance of the output to obtain
the prediction interval for each time step. The sliding window is a temporary approximation of the
actual value of the time-series data. The window and segment sizes will increase until a smaller error
approximation is reached. After selecting the first segment, we select the next segment from the end of
the first segment; repeat the process until all time-series data are segmented.

4. Analysis Results

This section discusses the results of the proposed model on Li–ion battery capacity degradation
and cycles life prediction using single and multiple cells for training data. We compare the performance
of the proposed model with two individual models, such as GBR and LSTM with attention, and the
conventional ensemble-learning model. The average of the two predicted values from individual
models is used for the conventional ensemble-learning model. The confidence intervals of the proposed
model are reported.

4.1. Capacity Degradation Trend Prediction

Two experiments were carried out in this study. In the first experiment, seven cells were conducted.
For each cell, 70% of the data was used for training, and the remaining 30% of the data was used to
test the model. Table 2 shows the best parameters of the LSTM with attention and proposed models,
such as lookback, batch size, neuro, steps per epoch, and epochs.

Table 2. Optimal parameters of long short-term memory (LSTM) with attention model and stacked
long short-term memory (SLSTM) model.

Models Cells Lookback Batch Size Neuro Steps per Epoch Epochs

LSTM with attention

2_5 8 21 15 45 59
2_6 8 27 38 20 41

2_11 9 23 26 58 65
2_12 7 23 20 58 55
2_14 9 26 20 54 41
2_18 9 23 16 57 32
2_19 9 22 16 31 31

Proposed model
(SLSTM)

2_5 9 23 77 54 59
2_6 7 23 53 57 31

2_11 5 21 72 55 57
2_12 7 23 53 57 31
2_14 9 26 17 54 51
2_18 7 23 53 57 31
2_19 9 28 56 58 70

The MAPE and root mean square error (RMSE) were selected as measure criteria for the test data,
where RMSE is obtained by

RMSE =

√√
1
n

n∑
t=1

(Ct − Ĉt)
2

(6)

Table 3 shows the capacity degradation predictions of different models. The results indicate that
the proposed model outperforms the other two single models and the conventional ensemble learning
model. For example, on cell #2_5, the RMSE values of the GBR, LSTM with attention, conventional
ensemble learning, and proposed models are 0.0290, 0.0121, 0.0198, and 0.0047, respectively. LSTM
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with an attention model provides the second-best value for the prediction of lithium–ion capacity
trends. Due to the worst prediction result of the GBR model, the performance of the conventional
ensemble learning model becomes worse than that of the LSTM with the attention model. As a result,
the conventional ensemble learning model does not necessarily guarantee that its prediction results
will be better than a single model. For further clarification, Figures 3 and 4 show the prediction
performance of different models for cells #2_11 and #2_12, respectively.

Although the proposed model provides better prediction performance, it has a longer computation
time than other models, as shown in Table 4. This is the limitation of our proposed model.
The computation time of the LSTM with the attention model is the lowest; however, the time
required to find the optimal parameters of the LSTM with the attention model will take several hours,
depending on the number of iterations in the DE algorithm.

Table 3. Capacity degradation prediction of different models.

Cells
GBR Model LSTM with Attention Ensemble Learning Proposed Model

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

2_5 1.7129 0.0290 0.9936 0.0121 1.2959 0.0198 0.3049 0.0047
2_6 1.9143 0.0319 0.5822 0.0068 1.1689 0.0182 0.1669 0.0024

2_11 1.5997 0.0266 0.7603 0.0082 1.1079 0.0158 0.2782 0.0036
2_12 1.8556 0.0314 0.3497 0.0046 0.8109 0.0136 0.1912 0.0026
2_14 1.7974 0.0291 0.8646 0.0097 1.2588 0.0162 0.2681 0.0041
2_18 1.7245 0.0287 0.3201 0.0042 0.8357 0.0129 0.1959 0.0025
2_19 1.5872 0.0252 0.9389 0.0124 1.1991 0.0183 0.2656 0.0045

Table 4. The computation time of different models (in seconds).

Cells GBR Model LSTM with Attention Ensemble Learning Proposed Model

2_5 78.6 65.4 141.0 261.6
2_6 69.6 23.7 94.8 150.0
2_11 82.2 88.8 173.4 269.4
2_12 77.4 71.4 150.6 205.2
2_14 80.4 51.4 134.4 210.0
2_18 78.6 43.3 121.8 177.0
2_19 64.8 25.6 90.6 225.6
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Figure 3. Prediction performance of different models on cell #2_11 cell: (a) prediction performance 
and (b) absolute error. 
Figure 3. Prediction performance of different models on cell #2_11 cell: (a) prediction performance and
(b) absolute error.
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The MC dropout method is used for variance estimation to construct a prediction interval.
The proposed model was run 100 times with random dropout, which will produce different output
values. We can calculate the mean and variance of the prediction results from these different output
values, and then use the conventional formula to construct the prediction interval. Figure 5 shows
the prediction interval of the proposed model on 2_11 and 2_12 cells at a 95% confidence level, where
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In the second experiment, one or two cells were used as training data, and other cells were used as
test data to verify the proposed model. The training data can be one cell or two cells. Table 5 lists the
performances of different models. The average MAPE values of GBR, LSTM with attention, and the
proposed model are 1.2734, 0.9029, and 0.7294. The results show that the proposed model performs
better than the GBR model and the LSTM with the attention model in all cases. For the test data such
as cells #3 and #2_27, two training cells can provide better predictive performance than one training
cell. Figure 6 shows the prediction performance of the proposed model using one cell or two cells as
training data for cell #2_27. This shows that the proposed model can accurately predict the degradation
trend of lithium–ion battery capacity.
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Table 5. The prediction performance of different models using one cell or two cells as training data.

Training Data Test Data
GBR Model LSTM with Attention Proposed Model

MAPE RMSE MAPE RMSE MAPE RMSE

1 2 2.0698 0.0257 1.9664 0.0241 1.7802 0.0219
3 2.0254 0.0254 1.9340 0.0239 1.7519 0.0217

1 & 2 3 0.1297 0.0022 0.0406 0.0017 0.0330 0.0019

2_25 2_26 1.1099 0.0194 0.5025 0.0188 0.2467 0.0118
2_27 1.4351 0.0220 0.5599 0.0194 0.3058 0.0123

2_25 & 2_26 2_27 0.8704 0.0113 0.4139 0.0144 0.2585 0.0128

Average 1.2734 0.0177 0.9029 0.0171 0.7294 0.0137
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4.2. Cycle Life Prediction

The cycle life prediction of the proposed model is evaluated by using an absolute percentage error
(APE), which is given by

APE(%) =

∣∣∣ACL− PĈL
∣∣∣

ACL
∗ 100 (7)

where ACL represents actual cycle life and PĈL represents the predicted cycle life. The lowest APE
value indicates that the model has better performance. Table 6 provides the performance of the different
models by the cycle life of a single cell experiment. The actual cycle life values for seven cells are given
in the second column of Table 6. In addition, Table 7 shows the estimated life cycle of six cells under
one cell or two cells as training data with the actual cycle life for four test cells. For cells #2_26 and
#2_27, The results show that by averaging the experimental results, the model has better performance
than the single model.
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Table 6. The cycle life prediction results of different models using 70% of the total data as training data.

Cells ACL
GBR Model LSTM with Attention Ensemble Learning Proposed Model

PCL APE PCL APE PCL APE PCL APE

2_5 444 471 6.0811 453 2.0270 471 6.0811 446 0.4504
2_6 480 507 5.6250 484 0.8333 507 5.6250 479 0.2083

2_11 561 596 6.2389 565 0.7130 589 4.9911 561 0.0000
2_12 477 505 5.8700 474 0.6289 492 3.1447 475 0.4192
2_14 483 520 7.6605 486 0.6211 505 4.5549 481 0.4141
2_18 494 525 6.2753 490 0.8097 509 3.0364 492 0.4049
2_19 487 523 7.3922 497 2.0534 521 6.9815 486 0.2053

Table 7. The cycle life prediction results of different models using one cell or two cells as training data.

Training Data Test Data ACL
GBR Model STM with Attention Proposed Model

PCL APE PCL APE PCL APE

1
2 1145 338 70.4803 1177 2.7948 1177 2.7948
3 1140 207 81.8421 1146 0.5263 1142 0.1754

1 & 2 3 1140 1176 3.1579 1134 0.5263 1139 0.0877

2_25
2_26 461 487 5.6399 451 2.1692 451 2.1692
2_27 471 498 5.7325 460 2.3355 460 2.3355

2_25 & 2_26 2_27 471 447 5.0955 460 2.3355 462 1.9108

Average APE 28.6580 1.7813 1.5789

5. Conclusions

Our research uses an ensemble model based on stacked long short-term memory, which combines
the LSTM with attention and gradient boost regression models to predict the cycle life of lithium–ion
batteries. The model hyperparameters are obtained by using the DE algorithm. The performance
of the proposed model is compared with a single model using single and multiple cells for training.
The first experiment used data from seven cells to verify the performance of the proposed model,
where 70% of the data was used for model training, and the remaining data were used for model
verification. The second experiment used one cell or two cells as the training set, and other cells to
verify the model’s predictive ability. In most cases, the comparison results verify that the proposed
model is superior to the single model in predicting the capacity decline trend. In the first experiment,
the maximum APE value for predicting cycle life is 0.4504. In the second experiment, the average
APE values of GBR, LSTM with attention, and the proposed model are 28.6580, 1.7813, and 1.5789,
respectively. These results show that the proposed model has a better cycle life prediction performance
than other models. In addition, the prediction variance of the model can be obtained using the MC
dropout technique, which can provide prediction uncertainty. From the analysis results, we conclude
that the proposed model can provide more accurate and reliable prediction results; however, the
calculation time required for the ensemble model is longer than that of the single model.

In the future, the capacity degradation and cycle life prediction of other ensemble learning models
in different types of lithium–ion batteries are worth investigating. In addition, the number of single
models used in ensemble models can be increased to more than five. In Table 5, we found that two
cells as training data provide better prediction accuracy than one cell; however, this result comes from
a small experiment. Further large-scale experimental data analysis is worthy of studying the results of
transfer learning.
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