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Abstract: In this paper, we propose a policy gradient-based semi-supervised speech recognition
acoustic model training. In practice, self-training and teacher/student learning are one of the widely
used semi-supervised training methods due to their scalability and effectiveness. These methods are
based on generating pseudo labels for unlabeled samples using a pre-trained model and selecting
reliable samples using confidence measure. However, there are some considerations in this approach.
The generated pseudo labels can be biased depending on which pre-trained model is used, and the
training process can be complicated because the confidence measure is usually carried out in
post-processing using external knowledge. Therefore, to address these issues, we propose a policy
gradient method-based approach. Policy gradient is a reinforcement learning algorithm to find
an optimal behavior strategy for an agent to obtain optimal rewards. The policy gradient-based
approach provides a framework for exploring unlabeled data as well as exploiting labeled data, and it
also provides a way to incorporate external knowledge in the same training cycle. The proposed
approach was evaluated on an in-house non-native Korean recognition domain. The experimental
results show that the method is effective in semi-supervised acoustic model training.

Keywords: speech recognition; semi-supervised training; reinforcement learning; policy gradient

1. Introduction

Deep neural network (DNN)-based acoustic modeling has resulted in significant improvements
in automatic speech recognition. For example, feed-forward deep neural network (FFDNN)-based
acoustic models have achieved more improvement compared to Gaussian mixture model (GMM)-based
acoustic models for phone-call transcription benchmark domains [1], and deep convolutional neural
network (CNN)-based acoustic models outperformed FFDNNs on a news broadcast and switchboard
task domains [2]. Recently, long short-term memory (LSTM)-based acoustic models have been reported
to be more effective than FFDNNs or CNNs [3]. Although DNN-based acoustic modeling is successful,
it requires a large amount of human labeled data to train acoustic models robustly. However, it is
an expensive and time consuming job to collect a large amount of human labeled data considering
various conditions, such as speakers, accents, channels, and multiple languages [4].

To handle the shortage of human labeled data, semi-supervised acoustic model training
research has been conducted to use unlabeled data. The most representative approaches are
graph-based learning, multi-task learning, self-training, and teacher/student learning. Graph-based
learning focuses on jointly modeling labeled and unlabeled data as a weighted graph whose nodes
represent data samples and whose edge weights represent pairwise similarities between samples [5,6].
The multi-task learning-based approaches focus on linearly combining the supervised cost with the
unsupervised cost [7,8]. Self-training-based methods focus on generating machine transcriptions for
unlabeled data using a pre-trained automatic speech recognition system and confidence measures,
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where confidence scores are computed with a forward–backward algorithm for a generated word
lattice [9], or confusion networks [10,11]. Teacher/student learning-based approaches use the output
distribution of the pre-trained model as a target for the student model to alleviate the complexity of
confidence measures for large scale training [12].

Of these methods, self-training and teacher/student learning-based methods are widely used
in practice due to their scalability and effectiveness [13–15]. However, there are some considerations
regarding these methods. The accuracy of generated pseudo labels is affected by the performance
of a pre-trained model, and there may even be no pre-trained model in the case of low-resource
domains. In addition, the complexity of the training can increase because confidence measures, such
as word lattice re-scoring, are usually carried out in post-processing. To alleviate the complexity issue,
teacher/student learning-based methods use the posterior of the teacher model as a target distribution,
but this method is a little complicated for incorporating external knowledge.

To handle these issues, we propose policy gradient method-based semi-supervised acoustic model
training. The policy gradient method provides a straightforward framework that exploits labeled data,
explores unlabeled data, and incorporates external knowledge in the same training cycle.

The rest of this paper is organized as follows. In Section 2, we briefly describe statistical speech
recognition using a DNN-based acoustic model. Section 3 describes conventional semi-supervised
acoustic model training methods. Section 4 presents our proposed approach in detail. Section 5
explains the experimental setting, and Section 6 presents the experimental results. Section 7 concludes
the paper and discusses future work.

2. Statistical Speech Recognition Using a DNN-Based Acoustic Model

In this section, we briefly describe statistical speech recognition using a DNN-based acoustic model.

2.1. Statistical Speech Recognition

Statistical speech recognition is a process which finds a word sequence W∗ that produces the
highest probability for a given acoustic feature vector sequence X = x1, x2, ..., xT as follows [16,17]:

W∗ ≈ argmaxWP(W|X) (1)

In practice, it is divided into the following components by applying Bayes’ rule:

argmaxWP(W|X) = argmaxW
P(X|W)P(W)

P(X)

= argmaxWP(X|W)P(W)

(2)

where P(X) is removed in recognition stage because the argmax operator does not depend on X. It is
hard to model P(X|W) directly. So, words are represented by subword units Q [18]

argmaxWP(X|W)P(W) = argmaxW ∑
Q

P(X|Q, W)P(Q, W)

≈ argmaxW ∑
Q

P(X|Q)P(Q|W)P(W)

≈ argmaxWmaxQP(X|Q)P(Q|W)P(W)

(3)

where P(W) is a language model, P(Q|W) is a pronunciation model and P(X|Q) is an acoustic model.
Figure 1 depicts the role of the probabilistic models for ASR systems to recognize a given sentence “This
is · · · ”. A language model, P(W), represents a priori probability of a word sequence. N-gram language
model is commonly used by assuming that the word sequence depends only on the previous N − 1
words. Figure 1 shows a 2-gram example. A pronunciation model, P(Q|W), plays a role to map words
to their corresponding pronunciation or subword units. Figure 1 shows that the words, “This” and
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“is”, are mapped to phoneme sequence “dh ih s”, and “ih z” respectively. An acoustic model, P(X|Q),
represents the probabilistic relationship between an input acoustic feature and the phonemes or other
subword units.

Input features : x0 x1 x2 x3 x4 x5 x6 · · ·

Acoustic model : . . .

Pronunciation model : dh ih s ih z · · ·

Language model : This is · · ·

P(x0|dh) P(x1|ih)

P(ih|dh) P(s|ih) P(z|ih)

P(is|This) P(· · · |is)

Figure 1. Probabilistic components for automatic speech recognition.

Among these probabilistic models, we focus on acoustic model, especially training in a
semi-supervised manner.

2.2. BLSTM-Based Acoustic Model

Various probabilistic models have been used for the acoustic model. In this study, we use
bidirectional long short-term memory (BLSTM) for the acoustic model. For a given input feature
sequence X = x1, · · · , xT , LSTM computes hidden vector at time, ht, using the function
H(xt, ht−1, ct−1) as follows [19–21]:

it = σ(Wxixt + Whiht−1 + bi) (4)

ft = σ(Wx f xt + Wh f ht−1 + b f ) (5)

at = tanh(Wxcxt + Whcht−1 + bc) (6)

ct = ft � ct−1 + it � at (7)

ot = σ(Wxoxt + Whoht−1 + bo) (8)

ht = ot � tanh(ct) (9)

where the W means weight matrices, the b means bias vectors, σ is the sigmoid function, i, f, o and c are
respectively the input gate’s activation vector, forget gate’s activation vector, output gate’s activation
vector and cell activation vector. BLSTM computes the forward hidden vector

−→
h t, and the backward

hidden vector
←−
h t at time t as follows [20]:

−→
h t = H(xt,

−→
h t−1,−→c t−1) (10)

←−
h t = H(xt,

←−
h t+1,←−c t+1) (11)

Then, the output is computed as follows [20]:

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by (12)

On top of the last layer, so f tmax function is used to obtain the probability of the kth class for
an input feature vector xt. For given input feature and target output dataset, (X, Y), the BLSTM
model parameter training is a general optimization problem to find parameters θ̂ that minimizes a loss
function, J (X, Y; θ), as follows:

θ̂ = argmin
θ

J (X, Y; θ) (13)
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where the argmin operation is carried out through gradient descent algorithm as follows:

θt+1 = θt − αt∇J (X, Y; θt) (14)

where αt is a learning rate.

3. Related Work

In this section, we describe semi-supervised acoustic model training for speech recognition
in terms of a cross entropy loss minimization problem, and review how conventional methods
obtain gradients ∇J (X, Y; θ) to update the model parameters. In particular, we focus on reviewing
the self-training and teacher/student learning methods because they are most related to the
proposed method.

3.1. Cross Entropy Loss

Semi-supervised acoustic model training can be formulated in terms of a cross entropy loss
minimization problem for a given L number of labeled data (Xl , Yl) = {(xi, yi)}L

1 and U number of
unlabeled data Xu = {xL+i}U

1 as follows:

J (θ) =
1

L + U

L+U

∑
i=1
Ji(θ) (15)

Here, the cross entropy loss Ji(θ) measures the difference in probability distributions between
the predicted labels and the ground truth labels for the ith input feature xi as follows:

Ji(θ) = −
C

∑
k=1

tk(yi) log Pθ(yi = k|xi)

where C is the number of classes or output states, tk(yi) is the distribution of the ground truth labels yi,
and Pθ(yi = k|xi) is the distribution of the predicted labels.

3.2. Gradient of the Labeled Data

For the case of labeled data (xi, yi) ∈ (Xl , Yl), the distribution of the ground truth labels tk(yi) is
given in the form of one-hot encoding, such that the gradient for the ith labeled data is defined as

∇Ji(θ) = −∇ log Pθ(yi = k|xi) (16)

3.3. Gradient of the Unlabeled Data

For the case of unlabeled data xi ∈ Xu, the ground truth distributions tk(yi) are not given, so it
is impossible to obtain the gradient of the cross entropy loss, ∇Ji(θ). To deal with this problem,
self-training and teacher/student learning-based methods generate a pseudo ground truth distribution
using a pre-trained model. Figure 2 shows the pseudo label generation process of self-training and
teacher/student learning using a pre-trained model, Pθs(y|xi).

Pθs (y|xi) argmax ỹi CM {xi, ỹi}U
1

Self-training

Teacher/student learning

≥ τ

{xi}U
1

Unlabeled
corpus Pθs (y|xi) {xi, Pθs (y|xi)}U

1

Figure 2. The pseudo label generation process of self-training and teacher/student learning.
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As shown in Figure 2, self-training-based approach generates a label, ỹi, which produces the
maximum posterior probability from a pre-trained model θ for an unlabeled input feature xi, and it is
taken as a pseudo ground truth label, as follows [13–15]:

ỹi = argmaxPθ(yi = k|xi) (17)

A confidence measure is then carried out to decide whether the sample is to be selected or not.
Finally, the gradient of the unlabeled data can be obtained as follows:

∇Ji(θ) =

{
−∇ log Pθ(ỹi|xi), CMθ(ỹi) ≥ γ

0.0, CMθ(ỹi) < γ
(18)

where CMθ(ỹi) is the confidence measure and γ is a threshold [22]. In some cases, normalized CMθ(ỹi)

can be used for the pseudo ground truth distribution as follows:

∇Ji(θ) = −CMθ(ỹi)∇ log Pθ(ỹi|xi) (19)

However, the confidence measure is usually carried out as post-processing using external
knowledge, such as language model, so it can increase the complexity of the semi-supervised learning.

To alleviate the complexity of the confidence measure in the self-training methods,
the teacher/student learning methods use the output distribution of a pre-trained model as a pseudo
ground truth distribution tk(yi), as follows [12]:

tk(ỹi) = Pθ(ỹi = k|xi) (20)

So, the gradient of the unlabeled data can be obtained from

∇Ji(θ) = −
c

∑
k=1

tk(ỹi)∇ log Pθ(ỹi = k|xi) (21)

In some sense, teacher/student learning can be understood as top-n pseudo label selection,
from the viewpoint of self-training.

3.4. Considerations on Low-Resource Domain

Although self-training and teacher/student learning-based methods are popular due to their
simplicity and effectiveness [13–15], the performance improvement highly depends on the robustness
of a pre-trained model because pseudo labels are generated as a result of decoding process. In other
words, if the pre-model is trained to be biased due to lack of a labeled training corpus, all generated
pseudo labels for unlabeled data will be biased and eventually will not contribute to improve the
performance. So, in this work, we focus on developing a semi-supervised training method that relaxes
the dependency on a pre-trained model.

4. Semi-Supervised Acoustic Model Training Using Policy Gradient

In this section, we briefly describe reinforcement learning (RL) and then show how self-training
and teacher/student learning-based methods can be dealt with from the aspect of RL problem.

This work is motivated by RL based speech processing [23,24], and the fundamental idea of the
proposed approach is to deal with the acoustic model from the aspect of a policy network.
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4.1. Policy Gradient

In a RL setting, an agent interacts with the environment via its actions and receives a reward.
This transitions the agent into a new state, so that it gives a sequence of states, actions, and rewards
known as a trajectory, τ [25–27].

S0, A0, R1, S1, A1, R2, . . . (22)

If the total reward for a given trajectory τ is represented as r(τ), a loss of a RL is defined as a
negative expected reward as follows:

J (θ) = −Eπθ
[r(τ)] (23)

where r(τ) is a reward when following a policy πθ , which is a probability distribution of actions given
the state

πθ(At = a|St = s), ∀At ∈ A(s), St ∈ S (24)

where A(s) is a set of actions at state s and S is a set of states. The model parameters can be optimized
as a gradient descent as follows:

θt+1 = θt − αt∇J (θ) (25)

The gradient of the loss function ∇J (θ) can be derived using a log-trick as follows [25,27]:

∇J (θ) = −∇
∫

πθ(τ)r(τ)dτ (26)

= −
∫

πθ(τ)∇logπθ(τ)r(τ)dτ (27)

= −Eπθ
[r(τ)∇logπθ(τ)] (28)

Then, expanding the definition of πθ(τ),

πθ(τ) = P(s0)
T

∏
t=1

πθ(at|st)p(st+1, rt+1|st, at) (29)

∇logπθ(τ) =
T

∑
t=1
∇logπθ(at|st) (30)

Finally, the gradient can be defined as follows:

∇J (θ) = Eπθ
[

T

∑
t=1
∇Jt(θ)] (31)

where
∇Jt(θ) = −Gt∇logπθ(at|st) (32)

4.2. Relation between Gradients of Cross Entropy Loss and Reward Loss

It should be noted that the gradients of cross entropy loss and expected reward can be considered
virtually the same as weighted negative log likelihood as shown in Equations (19) and (32). This implies
that the conventional methods can be dealt with from the aspect of policy gradient method. To deal
with semi-supervised learning from the aspect of RL, action and reward must be defined and Table 1
summarizes the difference between labeled data and unlabeled data. For the labeled data, action at

is the same as the ground truth label yt, and reward Gt is 1.0 because the ground truth label yt is the
action that we exactly expected. However, for the unlabeled data, action is sampled from the policy
network instead of argmax(), and reward Gt for the action is assigned by a Q-function Q(ỹt).
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Table 1. Semi-supervised learning from the aspect of policy gradient.

Type st at Gt

Labeled xt yt 1.0
Unlabeled xt ỹt ∼ Pθ(yt = k|xt) Q(ỹt)

In the policy gradient method based approach, sampling-based pseudo label generation can
reduce the excessive dependency of the pre-trained model, and the Q-function plays a role to regularize
the model not to be skewed using external knowledge in the same training cycle.

4.3. Semi-Supervised Learning Using Policy Gradient

The proposed semi-supervised training consists of interleaved training and fine-tuning.
Fine-tuning just performs one-epoch supervised training for the human-labeled data after finishing
interleaved training. Figure 3. illustrates the proposed semi-supervised training procedure. For the
labeled corpus, gradients of cross entropy loss between the ground truth labels and predictions are
used to update model parameters. However, gradients of reward loss between sampled pseudo labels
and predictions are used for unlabeled corpus.

{xt, y∗t }L
1

Labeled
corpus

Pθt (y|xt) ∇J (θt)

θt+1 = θt − αt∇J (θt)

{xt}U
1

Unlabeled
corpus

Pθt (y|xt)

θt+1 = θt − αtGt∇J (θt)

Sampling ỹt

∇J (θt)

P(ỹt| · · · )

⊗
Gt

Figure 3. Block diagram of the proposed semi-supervised training procedure.

Algorithm 1 describes the proposed training procedure in detail. In the algorithm, Iu and Il are
respectively the number of unlabeled and labeled data blocks composed of about one-hour speech
data, and (Xl , Yl)

i and (Xu)i indicates the ith block.
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Algorithm 1 Proposed learning procedure

Require: A training set (Xl , Yl), (Xu), initial values θ0

1. Interleaved training

1: while not converged do
2: for i = 1 to Iu do
3: if i mod m == 0 then
4: Select labeled data (xt, yt) ∈ (Xl , Yl)

i%Il

5: at ← yt
6: Gt ← 1.0
7: θt+1 ← θt − αtGt∇θ Pθ(at|xt)
8: end if
9: Select unlabeled data xt ∈ (Xu)i

10: at ∼ Pθ(yt = k|xt)
11: Gt ← Q(at)
12: θt+1 ← θt − αtGt∇θ Pθ(at|xt)
13: end for
14: end while

2. Fine-tuning

15: for i = 1 to Il do
16: Select a labeled data subset (xt, yt) ∈ (Xl , Yl)

i

17: at ← yt
18: Gt ← 1.0
19: θt+1 ← θt − αtGt∇θ Pθ(at|xt)
20: end for

The proposed algorithm is affected by the following three parameters:

• Modulus m controls the interleaving rate. Human labeled data is used once every m iterations.
• Temperature T controls the reliability of generated pseudo labels when using

temperatured-so f tmax(), as follows [28]:

Pθ(yt = k|xt) =
exp(zk/T)

∑j exp(zj/T)
(33)

• Q-function Q(ỹt) is used to weight the sampled action at. Two types of Q-functions are
investigated. One is a fixed reward that reflects relative reliability of single sampled action
compared to the human labeled action, and the other is a state-level n-gram to consider reliability
of the sampled action sequence, as follows:

Q(ỹt) =

{
r

P(ỹt|ỹt−1 . . .)
(34)

5. Experimental Setting

In this section, we describe the experimental setting in detail.

5.1. Non-Native Korean Database

The in-house non-native Korean corpus for Korean speaking education contains about 133 h of
123,617 sentences spoken by 417 non-native Korean speakers. The speech data were recorded at a
rate of 16 kHz. All utterances were recorded so as not to have reading errors such as insertions or
deletions. The non-native speakers were Asians from China, Japan, and Vietnam. The gender and
spoken language proficiency levels were evenly distributed among the speaker. For the corpus, 13 h
have been transcribed by humans and another 120 h are not labeled. For the labeled corpus, one hour of
the training data was randomly held out without overlapping as part of the test set. Each 20 ms speech
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frame was represented by 40-dimensional Mel filter bank (MFB) features by using the Kaldi toolkit [29].
The 600-dimensional MFB features considering seven left and right contexts were used to represent
each frame. For distributed BLSTM training, one iteration of data is composed of about one-hour of
speech data. So, the numbers of labeled, Il , and unlabeled data, Iu, are 12 and 120, respectively.

5.2. Alignment for the Human Labeled Corpus

A Gaussian Mixture Model-hidden Markov model (GMM-HMM) acoustic model was trained
using the Kaldi toolkit to generate a force-aligned transcription for labeled data. The GMM-HMM was
built using the “s5” procedure provided by the Kaldi toolkit. For the forced-aligned transcriptions,
physical GMM n-grams were obtained using KenLM toolkit [30].

5.3. BLSTM Training

The Pytorch toolkit was used to implement the proposed approach and to train the BLSTM
model parameters [31]. the BLSTM was configured with 6 layers each with 320 units and a
temperatured-so f tmax() with 2920 units corresponding to the physical GMMs. The training batch size
was 30 and AdaDelta [32] optimization with an initial learning rate set to 1.0 is used. Any regularization
nor dropout is not applied, and fifteen epochs of training were performed.

6. Experimental Results

In this experiment, we measured the performance of a supervised model and a self-trained
model as a baseline system. The supervised model was trained using the 12-h human labeled data,
and self-training model was trained by the conventional self-training method for the 120-h unlabeled
data using the supervised model as a pre-trained model.

The performance was measured by frame accuracy, and Table 2 shows the results. As shown,
there is a little improvement with self-training-based approach. However, it seems natural because
about 48% of pseudo labels are expected to contain errors by the pre-trained model. So, optimizing for
the erroneous pseudo labels is not expected to improve the performance.

Table 2. Baseline performance.

Model Frame Acc (%)

Supervised 52.03
Self-training 52.71

Table 3 shows the performance of the proposed method. The hyper parameters such as, modulus
m, temperature T, and Q-function Q(at), are tuned sequentially. For the different three modulus m,
the best performance is obtained by training labeled data and unlabeled data interleavely by setting
m as 1. However, there is little accuracy degradation even if labeled data was used once every in
3 iterations. Temperature, T, controls the randomness of pseudo label generation. The smaller the
value, the same as using argmax(), and the same as selecting randomly at large. In this experiment,
there is a slight improvement by setting T as smaller than 1.0. It implies that sampling-based pseudo
label generation gives more chance to explore correct generation than argmax(). Q-function, Q(at),
plays role to weight the reliability of sampled pseudo label. Assuming that the reliability of human
labels is 1.0, it may be reasonable that the reliability of pseudo labels is lower than 1.0. In this case,
0.8 shows the best accuracy for the case of constant value. For the case of considering temporal
reliability using n-gram. In this case, 5-gram shows the best performance.
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Table 3. The proposed method performance.

m T Q(at) Frame Acc (%)

M
od

ul
us 3 1.0 1.0 54.12

2 1.0 1.0 54.58
1 1.0 1.0 54.62

Te
m

pe
ra

tu
re 1 0.9 1.0 55.42

1 0.8 1.0 55.56
1 0.7 1.0 55.47
1 0.6 1.0 55.36

Q
-f

un
ct

io
n

1 0.8 0.9 55.62
1 0.8 0.8 56.11
1 0.8 0.7 55.81
1 0.8 3-gram 57.11
1 0.8 5-gram 57.31
1 0.8 10-gram 57.22

In general, entropy minimization is considered in the semi-supervised training-based on the
assumption that classifier’s decision boundary should not pass through high-density regions of the
marginal data distribution [33,34]. Figure 4 shows the histogram of logPθ(ỹ|x) of unlabeled data in
this experiment. It shows that the model’s predictions become more confident or entropy decreases
by tuning the hyper-parameters. It implies that the proposed method is effective for semi-supervised
training for acoustic model.

−0.40 −0.35 −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00
logPθ( ̃yt|xt)

0

2

4

6

8

10

12

14

16

Oc
cu
ra
nc
e

m=1
T=0.8
Q(at) = 0.8
Q(at) = 5-gram

Figure 4. Histogram of logPθ(ỹ|x) for unlabeled data.

7. Conclusions

Although self-training or teacher/student learning-based semi-supervised acoustic model training
methods are among the most popular approaches, these methods are not effective if a pre-trained
model is not matched to unlabeled data or there is no pre-trained model.
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To deal with the problem, we proposed a policy gradient method-based semi-supervised acoustic
model training method. The proposed method provides a straightforward framework for exploring
unlabeled data as well as exploiting the pre-trained model, and it also provides a way to incorporate
various external knowledge in the same training cycle. The experimental results show that the proposed
method outperforms the conventional self-training method because the proposed method provides a
way to balance exploiting the pre-trained model and exploring unlabeled data, and to weight pseudo
labels according to static or temporal reliability.

In our future work, we are plan to use end-to-end speech recognition framework for more
sophisticate modeling, and investigate more reward functions, and also apply advanced techniques
developed in RL-based learning.

Author Contributions: Conceptualization, H.C. and H.B.J.; methodology, H.C. and H.B.J.; software, H.C. and
H.B.J.; validation, H.C., S.J.L. and H.B.J.; formal analysis, H.C.; investigation, H.C.; resources, S.J.L.; data curation,
S.J.L.; writing–original draft preparation, H.C.; writing–review and editing, H.C.; visualization, H.C.; supervision,
H.C.; project administration, J.G.P.; funding acquisition, J.G.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT) (2019-0-2019-0-00004, Development of
semi-supervised learning language intelligence technology and Korean tutoring service for foreigners).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Seide, F.; Li, G.; Yu, D. Conversational speech transcription using context-dependent deep neural networks.
In Proceedings of the Twelfth Annual Conference of the International Speech Communication Association,
Florence, Italy, 27–31 August 2011.

2. Sainath, T.N.; Mohamed, A.r.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for
LVCSR. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada , 26–31 May 2013; pp. 8614–8618.

3. Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large
scale acoustic modeling. In Proceedings of the Fifteenth Annual Conference of the International Speech
Communication Association, Singapore, 14–18 September 2014.

4. Liu, Y.; Kirchhoff, K.; Liu, Y.; Kirchhoff, K. Graph-based semisupervised learning for acoustic modeling in
automatic speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 2016, 24, 1946–1956.
[CrossRef]

5. Liu, Y.; Kirchhoff, K. Graph-based semi-supervised learning for phone and segment classification.
In Proceedings of the INTERSPEECH 2013—14th Annual Conference of the International Speech
Communication Association, Lyon, France, 25–29 August 2013; pp. 1840–1843.

6. Liu, Y.; Kirchhoff, K. Graph-based semi-supervised acoustic modeling in DNN-based speech recognition.
In Proceedings of the 2014 IEEE Spoken Language Technology Workshop (SLT), South Lake Tahoe, NV, USA,
7–10 December 2014; pp. 177–182.

7. Ranzato, M.; Szummer, M. Semi-supervised learning of compact document representations with deep
networks. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland,
5–9 July 2008; pp. 792–799.

8. Dhaka, A.K.; Salvi, G. Sparse autoencoder based semi-supervised learning for phone classification with
limited annotations. In Proceedings of the GLU 2017 International Workshop on Grounding Language
Understanding, Stockholm, Sweden, 25 August 2017; pp. 22–26.

9. Wessel, F.; Ney, H. Unsupervised training of acoustic models for large vocabulary continuous speech
recognition. IEEE Trans. Speech Audio Process. 2005, 13, 23–31. [CrossRef]

10. Wang, L.; Gales, M.J.; Woodland, P.C. Unsupervised training for Mandarin broadcast news and conversation
transcription. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, Honolulu, HI, USA, 15–20 April 2007; Volume 4, pp. 353–356.

11. Yu, K.; Gales, M.; Wang, L.; Woodland, P.C. Unsupervised training and directed manual transcription for
LVCSR. Speech Commun. 2010, 52, 652–663. [CrossRef]

http://dx.doi.org/10.1109/TASLP.2016.2593800
http://dx.doi.org/10.1109/TSA.2004.838537
http://dx.doi.org/10.1016/j.specom.2010.02.014


Appl. Sci. 2020, 10, 3542 12 of 13

12. Parthasarathi, S.H.K.; Strom, N. Lessons from building acoustic models with a million hours of speech.
In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6670–6674.

13. Liao, H.; McDermott, E.; Senior, A. Large scale deep neural network acoustic modeling with semi-supervised
training data for YouTube video transcription. In Proceedings of the 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013; pp. 368–373.

14. Huang, Y.; Yu, D.; Gong, Y.; Liu, C. Semi-supervised GMM and DNN acoustic model training
with multi-system combination and confidence re-calibration. In Proceedings of the INTERSPEECH
2013—14th Annual Conference of the International Speech Communication Association, Lyon, France,
25–29 August 2013; pp. 2360–2364.

15. Huang, Y.; Wang, Y.; Gong, Y. Semi-Supervised Training in Deep Learning Acoustic Model. In Proceedings of
the INTERSPEECH 2016—17th Annual Conference of the International Speech Communication Association,
San Francisco, CA, USA, 8–12 September 2016; pp. 3848–3852.

16. Jelinek, F. Continuous speech recognition by statistical methods. Proc. IEEE 1976, 64, 532–556. [CrossRef]
17. Jelinek, F. Statistical Methods for Speech Recognition; MIT Press: Cambridge, MA, USA, 1997.
18. Fosler-Lussier, J.E. Dynamic Pronunciation Models for Automatic Speech Recognition. Ph.D. Thesis,

University of California, Berkeley Fall, CA, USA, 1999.
19. Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification

and recognition. In Proceedings of the ICANN 2005—International Conference on Artificial Neural
Networks, Warsaw, Poland, 11–15 September 2005; pp. 799–804.

20. Graves, A.; Jaitly, N.; Mohamed, A.-r. Hybrid speech recognition with deep bidirectional LSTM.
In Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc,
Czech Republic, 8–12 December 2013; pp. 273–278.

21. Zeyer, A.; Doetsch, P.; Voigtlaender, P.; Schlüter, R.; Ney, H. A comprehensive study of deep bidirectional
LSTM RNNs for acoustic modeling in speech recognition. In Proceedings of the 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
pp. 2462–2466.

22. Jiang, H. Confidence measures for speech recognition: A survey. Speech Commun. 2005, 45, 455–470.
[CrossRef]

23. Kala, T.; Shinozaki, T. Reinforcement learning of speech recognition system based on policy gradient and
hypothesis selection. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 5759–5763.

24. Zhou, Y.; Xiong, C.; Socher, R. Improving end-to-end speech recognition with policy learning. In Proceedings
of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary,
AB, Canada, 15–20 April 2018; pp. 5819–5823.

25. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996,
4, 237–285. [CrossRef]

26. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
27. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning

with function approximation. In Advances in Neural Information Processing Systems; NIPS: San Diego, CA,USA,
2000; pp. 1057–1063.

28. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
29. Povey, D.; Ghoshal, A.; Boulianne, G.; Burget, L.; Glembek, O.; Goel, N.; Hannemann, M.; Motlicek, P.;

Qian, Y.; Schwarz, P.; et al. The Kaldi speech recognition toolkit. In Proceedings of the IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding, Waikoloa, HI, USA, 11–15 December 2011; number
EPFL-CONF-192584.

30. Heafield, K. KenLM: Faster and smaller language model queries. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, Edinburgh, UK, 30–31 July 2011; pp. 187–197.

31. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;
Lerer, A. Automatic Differentiation in PyTorch. In Proceedings of the NIPS Autodiff Workshop, Long Beach,
CA, USA, 9 December 2017.

32. Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.

http://dx.doi.org/10.1109/PROC.1976.10159
http://dx.doi.org/10.1016/j.specom.2004.12.004
http://dx.doi.org/10.1613/jair.301


Appl. Sci. 2020, 10, 3542 13 of 13

33. Grandvalet, Y.; Bengio, Y. Semi-supervised learning by entropy minimization. In Proceedings of the NIPS
2005—Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 5–8 December 2005,
pp. 529–536.

34. Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; Raffel, C.A. Mixmatch: A holistic approach
to semi-supervised learning. In Proceedings of the NIPS 2019—Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 5050–5060.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Statistical Speech Recognition Using a DNN-Based Acoustic Model
	Statistical Speech Recognition
	BLSTM-Based Acoustic Model

	Related Work
	Cross Entropy Loss
	Gradient of the Labeled Data
	Gradient of the Unlabeled Data
	Considerations on Low-Resource Domain

	Semi-Supervised Acoustic Model Training Using Policy Gradient
	Policy Gradient
	Relation between Gradients of Cross Entropy Loss and Reward Loss
	Semi-Supervised Learning Using Policy Gradient

	Experimental Setting
	Non-Native Korean Database
	Alignment for the Human Labeled Corpus
	BLSTM Training

	Experimental Results
	Conclusions
	References

