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Abstract: This paper presents a novel robust control strategy for path following of an unmanned
surface vehicle (USV) suffering from unknown dynamics and rudder saturation. The trajectory
linearization control (TLC) method augmented by the neural network, linear extended state observer
(LESO), and auxiliary system is used as the main control framework. The salient features of the
presented strategy are as follows: in the guidance loop, a fuzzy predictor line-of-sight (FPLOS)
guidance law is proposed to ensure that the USV effectively follows the given path, where the
fuzzy method is introduced to adjust lookahead distance online, and thereby achieving convergence
performance; in the control loop, we develop a practical robust path following controller based on
enhanced TLC, in which the neural network and LESO are adopted to handle unmodeled dynamics
and external disturbances, respectively. Meanwhile, a nonlinear tracking differentiator (NTD) is
constructed to achieve satisfactory differential and filter performance. Then, the auxiliary system is
incorporated into the controller design to handle rudder saturation. Using Lyapunov stability theory,
the entire system is ensured to be uniformly ultimately bounded (UUB). Simulation comparisons
illustrate the effectiveness and superiority of the proposed strategy.

Keywords: path following; TLC method; LESO; predictor line-of-sight; fuzzy method; neural
network; NTD

1. Introduction

In recent years, unmanned surface vehicles (USV) have received significant attention, due to
their broad applications in the marine environment, such as ocean surveillance, gas exploration, and
marine transportation [1–3]. In these applications, the high tracking performance and complex external
environment make the USV path following control challenging.

Path following is a motion control scenario where the USV has to follow a predefined path without
a temporal constraint [4–6]. At present, various control methods have been proposed in the literature.
In [7], an adaptive control approach based on the backstepping technique was developed for an
unmanned marine surface vessel, which was also suitable for other unmanned vehicles. Using the
dynamic surface control (DSC) method, a practical path following control scheme was developed
for underactuated ships in [8], whose advantage was that it could deal with the practical condition
“waypoints based navigation”. The paper [9] presented an effective control approach for path following
of marine vehicles, where the input-output feedback linearization method being applied by defining
“hand position” as the output. In addition, a popular and effective guidance method adopted in path
following is line-of-sight (LOS) guidance [10–13]. The main idea is to implement a lookahead based
LOS guidance law mimicking a helmsman and generate a desired heading angle, which is fed into the
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inner dynamics loop. In [14], an integral LOS (ILOS) guidance law based on monotone cubic Hermite
interpolation was developed, and the main innovation was that it proposed a time-varying equation
for the lookahead distance. In [15], a novel guidance control method was presented for a marine
surface vehicle (MSV), in which the unknown sideslip angle was estimated using a reduced-order
ESO. The paper [16] proposed a sideslip-tangent LOS (SLOS) guidance strategy, where the sideslip
angle was eliminated by constructing a finite-time sideslip observer (FSO). Compared with [14,15],
the advantage was that it could handle a large sideslip angle. The paper [17] proposed an adaptive
LOS (ALOS) algorithm for unmanned aerial vehicles, in which an adaptive law was constructed to
handle the unknown sideslip angle.

On the other hand, in order to deal with complex interference, scholars have put forward many
excellent solutions [18,19]. A concise path following controller was designed for a podded propulsion
USV in [20], in which unmodeled dynamics and disturbances were handled by introducing the
neural network minimum parameter learning method. The paper [21] proposed a robust compound
control method subject to bounded uncertainties, where LESO was used to estimate the system
uncertainties. A novel sigmoid function based disturbance observer was designed to eliminate various
uncertainties effectively in [22], which was proven to be an efficient observer. The paper [23] developed
an online constructive fuzzy approximator by the decoupled structure learning mechanism, which
was incorporated into the dominant adaptive controller to identify unknown nonlinearities and
unknown external disturbances exactly. Besides, input saturation [24,25] is common and inevitable,
which may lead to system instability. In [26], a path following controller was presented for a surface
vessel, in which the auxiliary system developed could cope very well with input saturation without
any downtime. Considering disturbances and input saturation, the paper [27] addressed the course
tracking problem of ships, where the rudder saturation was compensated using an auxiliary dynamic
system. The paper [28] developed a novel trajectory tracking control method, in which a Gaussian
error function was introduced to approximate input saturation.

Motivated by the above observations, considering unknown dynamics, disturbances, and rudder
saturation, this article presents a novel path following control strategy for the USV. This paper covers
the following three contributions:

(1) An improved PLOS guidance law is constructed to calculate the desired heading angle and
estimate unknown sideslip angle. Compared with [13], a fuzzy method is incorporated into
the proposed PLOS guidance law to optimize the lookahead distance, thus achieving better
convergence quality.

(2) As a new control method in the USV motion control field, an enhanced TLC is adopted to design
a concise path following controller for USV. Compared with traditional TLC, the enhanced TLC
only needs one parameter to be adjusted.

(3) Both unknown dynamics and disturbances can be estimated by constructing a neural network and
LESO, respectively, and the rudder saturation is effectively resolved by using an auxiliary system.

The structure of this paper is as follows. The problem formulation and preliminaries are
introduced in Section 2. Section 3 presents a novel control strategy for the USV. Stability analysis is
given in Section 4. Section 5 is the simulation result verification. Finally, Section 6 gives the conclusions
and future works.

2. Problem Formulation and Preliminaries

Notations: |•| represents the absolute operator. ‖•‖ represents the Euclidean norm. •̂ denotes the
estimate value. •̃ = •̂ − • denotes the error.
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2.1. USV Model

In this section, we first define the frames: the Earth-fixed inertial frame X0OY0 (i) and the
body-fixed frame XpOYp (b), as illustrated in Figure 1. Then, we only consider the horizontal motion
of the USV, namely, neglecting roll p, pitch q, and heave w.

Earth-fixed Interial Frame
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q
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Figure 1. The Earth-fixed inertial and the body-fixed frame.

From [17], the kinematic equation of the USV can be modeled by:
ẋ = u cos ψ− v sin ψ

ẏ = u sin ψ + v cos ψ

ψ̇ = r
(1)

where (x, y, ψ) is the position and orientation of the USV in (i) and u, v, and r include the frame (b)
surge, sway, and yaw velocities, respectively.

Considering the actual situation of USV navigation, the Norrbin nonlinear model [27] with respect
to USV steering control is given by: {

ψ̇ = r
ṙ = − 1

T r− α
T r3 + K

T δ
(2)

where δ is the rudder angle, α is the Norrbin coefficient, T is the time constant, and K is the
gain constant.

Combining the system (1) and (2), the nonlinear mathematical model of the USV is written as:

ẋ = u cos ψ− v sin ψ

ẏ = u sin ψ + v cos ψ

ψ̇ = r
ṙ = f (r) + ∆ f (r) + bµ + d
y1 = x
y2 = y

(3)
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where f (r) = − 1
T r− α

T r3, b = K
T , and y1, y2 denote the output signal; ∆ f (r), d represent unknown

dynamics and multiple disturbances, respectively. µ = δ is the input of the USV. Considering the
saturation characteristics of the rudder, it can be described as:

µ =


µmax, i f µ0 > µmax

µ0, i f µmin ≤ µ0 ≤ µmax

µmin, i f µ0 < µmin

(4)

where µmax and µmin represent the amplitudes of input saturation. From [29], we know µmax = 35◦,
µmin = −35◦.

Remark 1. Here, the frequency of d is low compared to the USV dynamics, and it is also filtered by a nonlinear
tracking differentiator. Hence, d is considered to be slow time-varying disturbance [30].

Our control objective is to design a robust adaptive path following control strategy with completely
unknown dynamics, disturbances, and rudder saturation, so that the USV tracks the reference path
(xd, yd) with an arbitrarily small error.

2.2. Preliminaries

Assumption 1. The multiple disturbances are bounded with |d| ≤ dmax, where dmax is unknown positive constant.

Lemma 1 ([31]). Considering following system:

Ẋ = Ac (t) X (5)

where Ac is continuous and bounded. Let Ql (t) be a bounded, positive, symmetric matrix, such as 0 < λ3 I ≤
Q (t) ≤ λ4 I. There exists a symmetric matrix P (t) meeting:

AT
c (t) P (t) + P (t) Ac (t) + Ṗ (t) + Q (t) = 0 (6)

where P (t) =
∫ ∞

t h̄T (ι, t) Q (t) h̄ (ι, t) dι, ‖h̄ (ι, t)‖ ≤ o1e−o2(t−t0), 0 < λ1 I ≤ P (t) ≤ λ2 I.

Trajectory linearization control (TLC) [32–35]: TLC has proven to be an effective robust control
method, whose structure is shown in Figure 2. It is clearly noticed that TLC consists of an open-loop
dynamic inversion and a linear time-varying (LTV) feedback regulator, in which the dynamic inversion
transforms the tracking problem into a time-varying nonlinear tracking error adjustment problem,
and the LTV regulator achieves robust stability and performance along the nominal trajectory. Hence,
TLC produces robust stability and anti-interference ability, for which TLC has been widely applied to
a model-scaled helicopter [33], a 6DOF aircraft [34], and a car-like ground vehicle [35]. However, TLC
is rarely used in the control of a USV.

Dynamic 

inverse

LTV

regulator
USV+

+

-

( ),d dx y

m

mm 0
m ( ),x y

Figure 2. TLC scheme diagram.
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Neural network: For unknown continuous function ∆ f (X) (Rm → R), it can be approximated
over a compact set ΦX ⊆ Rm with the following radial basis function neural network (RBFNN):

∆ f (X) = W∗TS (X) + ε (7)

where X ∈ ΦX denotes the input, W∗ ∈ Rl denotes the ideal weight, and l is the node number.
From [36], we know that the number of NN nodes determines the approximation ability, and the ideal
weight vector is written as:

W∗ = arg min
Ŵ

{
sup

X∈ΨX

∣∣∣∆ f (X)− ŴTS (X)
∣∣∣} (8)

S (X) = [S1 (X) , ..., Sl (X)]T represents the RBF vector, which is defined by:

Si (X) = exp

(
−‖X− ρi‖2

2h2
i

)
, i = 1, ..., l (9)

where ρi and hi are the center and spread, respectively, and the approximation error ε is bounded with
|ε| ≤ ε̄, where ε̄ is unknown positive constant.

3. Path Following Control Strategy

3.1. Structure of the Proposed Control Strategy

A novel path following control strategy is shown in Figure 3. We can see from Figure 3 that
it consists mainly of the fuzzy predictor line-of-sight (FPLOS) guidance and the composite control
strategy. The proposed FPLOS guidance strategy can not only provide the desired heading angle,
but also compensate for the unknown sideslip angle. The proposed composite control strategy consists
of two parts: the first part is that TLC controller ensures that the actual heading tracks the guidance
heading; the second part is that the compensation controller is capable of solving unmodeled dynamics,
multiple disturbances, and rudder saturation by using the NN, reduced-order LESO, and auxiliary system,
respectively. Meanwhile, a nonlinear tracking differentiator (NTD) provides a satisfactory differentiation
and filtering effect. In the control loop, µm, µl, and µn represent the outputs of NN, LESO, and auxiliary
system, respectively; µr is a robust term.
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Figure 3. The block diagram of the proposed control strategy for the USV.
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3.2. Guidance System Design

In this section, a predictor is used to estimate the unknown sideslip angle induced by wind,
waves, and currents. Then, an FPLOS guidance law is proposed, where the lookahead distance is
optimized using the fuzzy method.

3.2.1. Estimation of Sideslip Angle

As is illustrated in Figure 4, consider that the desired continuous path (xd (θ) , yd (θ)) to be tracked
is parameterized by a path variable θ. Then, the path-tangential angle φp is given by:

φp (θ) = atan2
(
y′d (θ) , x′d (θ)

)
(10)

where x′d (θ) = ∂xd
/

∂θ and y′d (θ) = ∂yd
/

∂θ.

e
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Figure 4. Geometrical illustration of LOS guidance.

For the USV located at (x, y), the errors xe and ye in XpoYp are written as:[
xe

ye

]
=

[
cos φp − sin φp

sin φp cos φp

]T [
x− xd (θ)

y− yd (θ)

]
(11)

where ye and xe denote cross- and along-track errors, respectively.
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Calculating the derivative of (11) along (1) yields:

ẋe = u cos
(
ψ− φp

)
− v sin

(
ψ− φp

)
+ φ̇p

[
− (x− xd) sin φp + (y− yd) cos φp

]︸ ︷︷ ︸
ye

− θ̇

√
x′d

2 + y′d
2 cos

(
φp + ϕ

)
= U cos

(
ψ− φp

)
cos β−U sin

(
ψ− φp

)
sin β

+ φ̇pye − up

ẏe = u sin
(
ψ− φp

)
+ v cos

(
ψ− φp

)
− φ̇p

[
− (x− xd) cos φp + (y− yd) sin φp

]︸ ︷︷ ︸
xe

= U sin
(
ψ− φp

)
cos β + U cos

(
ψ− φp

)
sin β

− φ̇pxe (12)

where U =
√

u2 + v2 > 0, 0 < Umin ≤ U ≤ Umax, and β = atan2 (v, u) denotes the sideslip angle. up

is the virtual target speed to stabilize xe, which is selected as:

up = θ̇

√
x′d

2 (θ) + y′d
2 (θ) (13)

Note that the sideslip angle is relatively small in practice [25], and we have:{
ẋe = U cos

(
ψ− φp

)
−U sin

(
ψ− φp

)
β + φ̇pye − up

ẏe = U sin
(
ψ− φp

)
+ U cos

(
ψ− φp

)
β− φ̇pxe

(14)

In order to exactly compensate for the unknown sideslip angle, two predictors are developed as:{
˙̂xe = U cos

(
ψ− φp

)
−U sin

(
ψ− φp

)
β̂ + φ̇pŷe − up − kx x̃e

˙̂ye = U sin
(
ψ− φp

)
+ U cos

(
ψ− φp

)
β̂− φ̇p x̂e − kyỹe

(15)

where kx and ky are the design parameters, x̃e = x̂e − xe, ỹe = ŷe − ye are the prediction errors, and β̂

is the estimation of β. The corresponding adaptive updating law is selected as:

˙̂β = γ
[
U sin

(
ψ− φp

)
x̃e −U cos

(
ψ− φp

)
ỹe
]

(16)

The,n x̃e, ỹe, and β̃ are written as:
˙̃xe = −U sin

(
ψ− φp

)
β̃− kx x̃e

˙̃ye = U cos
(
ψ− φp

)
β̃− ky β̃

˙̃β = γ
[
U sin

(
ψ− φp

)
x̃e −U cos

(
ψ− φp

)
ỹe
] (17)

Theorem 1. The proposed update law (16) makes the errors x̃e and ỹe to converge to origin, thus ensuring that
the system (17) is uniformly asymptotically stable (UAS).

Proof of Theorem 1. Define the Lyapunov function by:

V1 =
1
2

x̃2
e +

1
2

ỹ2
e +

1
2

γ−1 β̃2 (18)
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Differentiating V1 along (16) and (17) yields:

V̇1 = x̃e
(
−U sin

(
ψ− φp

)
β̃− kx x̃e

)
+ ỹe

(
U cos

(
ψ− φp

)
β̃− ky β̃

)
+ β̃

(
U sin

(
ψ− φp

)
x̃e −U cos

(
ψ− φp

)
ỹe
)

≤ −kx x̃2
e − kyỹ2

e (19)

Hence, we know that the system (17) is UAS.

3.2.2. FPLOS Guidance Law

Then, the FPLOS guidance law is given by:

ψd = φp + arctan
(
− ŷe

∆
− β̂

)
(20)

where ∆ is the user-specified lookahead distance.

Remark 2. Different from the existing LOS guidance in [15,20], ∆ of this paper changes with the movement of
the USV. The greatest advantage of this proposed guidance strategy is to optimize ∆ through the fuzzy method,
thereby producing an aggressive behavior to decrease ye faster. Here, the inputs of the designed fuzzy system are
ye and ẏe, and the output is Γ. the lookahead distance ∆ is designed as ∆ = ∆min + Γ (∆max − ∆min).

The velocity up is designed to stabilize xe as the virtual input, which is determined by:

up = U cos
(
ψ− φp

)
−U sin

(
ψ− φp

)
β̂ + k1 x̂e (21)

where k1 denotes a positive constant.
From (13) and (21), the update law θ can be described by:

θ̇ =
U cos

(
ψ− φp

)
−U sin

(
ψ− φp

)
β̂ + k1 x̂e√

x′d
2 (θ) + y′d

2 (θ)
(22)

Based on the above analysis, (15) can be rewritten as:{
˙̂xe = −k1 x̂e + φ̇pŷe − kx x̃e
˙̂ye = −c1ŷe − φ̇p x̂e − kyỹe

(23)

where c1 = U√
∆2+(ŷe+∆β̂)

2 .

Theorem 2. Consider the application of (20) and (22) in the system (23). If we choose k1 > kx
2 , c1 >

ky
2 ,

the errors x̂e and ŷe are bounded, and the system (23) is UUB.

Proof of Theorem 2. Design a Lyapunov function as follows:

V2 =
1
2

x̂2
e +

1
2

ŷ2
e (24)
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Differentiating (24) and combining (23) and Young’s inequality [15], one has:

V̇2 = −k1 x̂2
e − c1ŷ2

e − kx x̂e x̃e − kyŷeỹe

≤ −
(

k1 −
kx

2

)
x̂2

e −
(

c1 −
ky

2

)
ŷ2

e +
kx

2
x̃2

e +
ky

2
ỹ2

e

≤ −2λV2 + Ω (25)

where λ = min
{

k1 − kx
2 , c1 −

ky
2

}
, Ω = kx

2 x̃2
e +

ky
2 ỹ2

e .
Integrating on both sides of (25) yields:

V2 ≤
(

V2 (0)−
Ω
2λ

)
e−2λt +

Ω
2λ

(26)

Obviously, V2 is eventually bounded by Ω
2λ , and the system (23) is UUB.

3.3. Composite Control Strategy

3.3.1. TLC Control Design

Define X = [X1, X2]
T = [ψ, r]T, F (X) = [X2, f (X2)]

T, G1 (X) = [0, b]T, G2 (X) = G3 (X) = [0, 1]T,
h (X) = X1. We have: {

Ẋ = F (X) + G2 (X)∆ f (X1) + G1 (X) µ + G3 (X) d
Y = h (X)

(27)

In addition, there exist three functions G0 (X), G4 (X), G5 (X), which satisfy: G1 (X) G0 (X) = G3 (X),
G1 (X) G4 (X) = G2 (X), G3 (X) G5 (X) = G2 (X).

First, when ∆ f (X1) = 0 and d = 0, define the nominal state X∗d . We obtain:

Ẋ∗d = F (X∗d) + G1 (X∗d) µ̄ (28)

where µ̄ denotes the nominal input, and NTD [37] is applied to produce X∗d and Ẋ∗d by Xd, which can
be written as: 

fh = fhan
(
X∗d (k)− Xd (k) , Ẋ∗d (k) , R1, h1

)
X∗d (k + 1) = X∗d (k) + h1Ẋ∗d (k)
Ẋ∗d (k + 1) = Ẋ∗d (k) + h1 · fh

(29)

where R1 is an acceleration factor and h1 is the sampling period.

Remark 3. In this paper, NTD can better realize differential and fast convergence performance by the acceleration
factor R1, thus avoiding unnecessary set-point jump.

Then, µ̄ is calculated by inverting (28). One has:

µ̄ = G1(X∗d)
† (Ẋ∗d − F (X∗d)

)
(30)

where † denotes the pseudo inverse operator, and it is defined as P† = PT(PPT)−1.
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Define the tracking error E = X− X∗d = [E1, E2]
T , and linearizing the first equation of (27) along

the nominal
(
X∗d , µ̄

)
yields: [

Ė1

Ė2

]
= A1 (t)

[
E1

E2

]
+ B1 (t)

[
µ̃11

µ̃12

]
︸ ︷︷ ︸

:=µ̃

(31)

where A1 (t) =
(

∂F
∂X + ∂G1

∂X µ
)
|X∗d ,µ̄, B1 (t) = G1 (X) |X∗d ,µ̄, µ̃ denotes the LTV stabilizing controller.

A proportional-integral (PI) control law is designed to stabilize error, which is expressed as:

[
µ̃11

µ̃12

]
︸ ︷︷ ︸

:=µ̃

= −Kp1

[
E1

E2

]
− KI1


∫

E1dt∫
E2dt

 (32)

Define the augmented error EΩ = [
∫

E1dt,
∫

E2dt, E1, E2]
T . We have:

ĖΩ = AcEΩ =

[
02×2 I2×2

−B1KI1 A1 − B1Kp1

]T

EΩ (33)

where 02×2 and I2×2 represent 2× 2 the zero matrix and identity matrix, respectively.
To provide local exponential stability, the desired Ac is designed as:

Ac =

[
02×2 I2×2

diag (−a111,−a121) diag (−a112,−a122)

]T

(34)

where a1j1, a1j2 > 0, j = 1, 2 are the adjustment according to the pole assignment technique,
which satisfy:

a1j1 = ω2
j

a1j2 = 2ωj

(35)

where ωj is the bandwidth. Obviously, ωj becomes the only parameter to be tuned. Then, we have:

KI1 = −B†
1diag (−a111,−a121)

Kp1 = −B†
1 (A1 − diag (−a112,−a122))

(36)

Hence, the feedback control law is expressed as:

µ̃ = −Kp1E− KI1

∫
Edt (37)

3.3.2. Adaptive Compensation Control Design

Define Ψ1 = ET
ΩP (t), Ψ2 = ET

ΩP (t) G33, Ψ3 = ET
ΩP (t) G22, Ψ4 = ET

ΩP (t) G11, G11 = [02, G1]
T ,

G22 = [02, G2]
T , G33 = [02, G3]

T . For unknown dynamics, RBFNN with l nodes is employed to
approximate ∆ f (X), and the corresponding controller is selected as:

µm = G4 (X) vm (38)
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where vm = ∆ f̂ (X) = ŴTS (X). The update law with “κ-correction” is taken to be:

˙̂W = σ1
(
Ψ3S (X)− κ1

(
Ŵ −W0

))
(39)

where σ1, κ1 represent positive constants, W0 is the initial value, Ŵ is the estimate of W, and the
estimation error is W̃ = Ŵ −W.

Then, an LESO [38] is constructed to estimate external disturbance, which can be written as:ζ̇1 = −v1ζ1 −v2
1X2 −v1

(
f (X2) + ∆ f̂ (X) + bµ

)
d̂ = ζ1 + v1X2

(40)

where d̂ denotes the estimate of d; the estimate error is d̃ = d̂− d; ζ1 is the state; v1 > 0 is the observer
gain. Define d̂ = ηs, the compensation controller µl is given as µl = G0 (X) ηs.

Then, a robust term is developed to eliminate the estimation errors of NN and LESO, which is
designed as:

µr = G0 (X) vr (41)

where vr = ϑ̂ sgn (Ψ3). The corresponding adaptive law is:

˙̂ϑ = σ2
(
Ψ2 − κ2

(
ϑ̂− ϑ0

))
(42)

where σ2, κ2 are two positive constants.
In order to handle rudder saturation, the following auxiliary dynamic system is introduced:

Θ̇ =

 −KΘΘ− |Ψ3·∆µ|+0.5∆µ2

|Θ|2
·Θ + ∆µ, |Θ| ≥ χ1

0, |Θ| < χ1

(43)

where Θ is the auxiliary state vector, ∆µ = µ − µ0, KΘ is a positive design parameter, and χ1 is a
positive parameter.

Therefore, the total control law is summarized as:

µ0 = µ̄ + µ̃ + µn − µr − µm − µl (44)

where µn = KnΘ, and Kn is a positive design parameter.

4. Stability Analysis

Based on the control law of the above design, we have:

ĖΩ = Ac (t) EΩ + o (•) + G11 (X)∆µ + G22 (X) ( f (X2)− vm)

+ G33 (X) (d− ηs − vr) + G11 (X) knΘ (45)

where o (•) is the high order term of Taylor expansion. From [29], it shows that o (•) is bounded, which
meets: ‖o (•)‖ ≤ `‖EΩ‖2, ∀ ‖EΩ‖ < ς, and ` is the normal number.

Theorem 3. For the controlled system (3), suppose Assumption 1 holds. With the application of control laws
(20) and (44), disturbance observer (40), the auxiliary system (43), the adaptive laws (16), (39), and (42), one
can appropriately select parameters: Q (t), kx, ky, k1, R1, h1, v1, KΘ, Kn, σj, κj, ωj (j = 1, 2), and the tracking
errors can converge to a residual set of the origin. Then, the final controlled system is UUB.
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Proof of Theorem 3. Select the Lyapunov function:

V = V2 +
1
2

ET
ΩP (t) EΩ +

1
2

σ−1
1 W̃TW̃ +

1
2

σ−1
2 ϑ̃2 +

1
2

d̃2 +
1
2

Θ2 (46)

In light of (6), the derivative of V is:

V̇=V̇2 −
1
2

ET
ΩQ (t) EΩ + Ψ1o (•) + Ψ4∆µ− W̃T

(
Ψ3S (X)− σ−1

1
˙̂W
)

+ Ψ2
(
G5 (X) ε + d̃− ϑ̂sgn (Ψ2)

)
+ Ψ4KnΘ + σ−1

2 ϑ̃ ˙̂ϑ+d̃ ˙̂d + ΘΘ̇ (47)

When
∥∥G5 (X) ε + d̃

∥∥ ≤ ϑ, substituting (39), (40), and (42) into (47) yields:

V̇ ≤ V̇2 −
1
2

ET
ΩQ (t) EΩ + Ψ1o (•) + Ψ4∆µ− W̃T

(
Ψ3S (X)− σ−1

1
˙̂W
)

− ϑ̃
(
|Ψ2| − σ−1

2
˙̂ϑ
)
+ Ψ4KnΘ+ΘΘ̇

≤ V̇2 −
1
2

ET
ΩQ (t) EΩ + Ψ1o (•) + Ψ4∆µ− κ1

(
ŴT −WT

) (
Ŵ −W0

)
− κ2

(
ϑ̂− ϑ

) (
ϑ̂− ϑ0

)
−
(

v2
1 − 1

)
d̃2 +

∥∥W̃TS
∥∥2

2
+

ε̄2

2
+ Ψ4KnΘ+ΘΘ̇ (48)

Using Young’s inequality yields:

Ψ4KnΘ ≤ Kn

2
|Ψ4|2 +

Kn

2
Θ2

−κ1

(
ŴT −WT

) (
Ŵ −W0

)
≤ −κ1

2

∥∥∥ŴT −WT
∥∥∥2

+
κ1

2
‖W −W0‖2

−κ2
(
ϑ̂− ϑ

) (
ϑ̂− ϑ0

)
≤ −κ2

2
(
ϑ̂− ϑ

)2
+

κ2

2
(ϑ− ϑ0)

2 (49)

Then, (48) can be rewritten as:

V̇ ≤ −
(

k1 −
kx

2

)
x̂2

e −
(

c1 −
ky

2

)
ŷ2

e −
1
2
(λ3 − 2`ςλ2) ‖EΩ‖2

− κ1

2

∥∥∥ŴT −WT
∥∥∥2
− κ2

2
(
ϑ̂− ϑ

)2 −
(

v2
1 − 1

)
d̃2 + Ψ4∆µ + ΘΘ̇

+
Kn

2
|Ψ4|2 +

Kn

2
Θ2 +

∥∥W̃TS
∥∥2

2
+

ε̄2

2
+

κ1

2
‖W −W0‖2 +

κ2

2
(ϑ− ϑ0)

2

+
kx

2
x̃2

e +
ky

2
ỹ2

e (50)

When |Θ| ≥ χ1, combining (43) and Young’s inequality, one has:

ΘΘ̇ = −KΘΘ2 − |Ψ3 · ∆µ| − 1
2

∆µ2 + ∆µΘ

≤ −
(

KΘ −
1
2

)
Θ2 − |Ψ3∆µ| (51)
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Substituting (51) into (50) yields:

V̇ ≤ −
(

k1 −
kx

2

)
x̂2

e −
(

c1 −
ky

2

)
ŷ2

e −
1
2
(λ3 − 2`ςλ2) ‖EΩ‖2

− κ1

2

∥∥∥ŴT −WT
∥∥∥2
− κ2

2
(
ϑ̂− ϑ

)2 −
(

v2
1 − 1

)
d̃2 −

(
KΘ −

1
2
− Kn

2

)
Θ2

+ (b− 1) |Ψ3∆µ|+Kn

2
|Ψ4|2 +

∥∥W̃TS
∥∥2

2
+

ε̄2

2
+

κ1

2
‖W −W0‖2

+
κ2

2
(ϑ− ϑ0)

2 +
kx

2
x̃2

e +
ky

2
ỹ2

e

≤ −2Ξ1V + Λ1 (52)

where Ξ1 = min
{

k1− kx
2 , c1−

ky
2 , 1

2 (λ3− 2`ςλ2) , κ1
2 , κ2

2 , v2
1 − 1, KΘ− 1

2 −
Kn
2

}
, Λ1 = (b− 1) |Ψ3∆µ|+

Kn
2 |Ψ4|2 +

‖W̃TS‖2

2 + ε̄2

2 + κ1
2 ‖W−W0‖2 + κ2

2 (ϑ− ϑ0)
2 + kx

2 x̃2
e +

ky
2 ỹ2

e .
When |Θ| < χ1, note the following fact:

ΘΘ̇ = 0
Kn

2
Θ2 ≤ −Kn

2
Θ2 + Knχ2

1

Ψ4∆µ ≤ 1
2
|Ψ4|2 +

1
2

∆µ2 (53)

Substituting (53) into (50) yields:

V̇ ≤ −
(

k1 −
kx

2

)
x̂2

e −
(

c1 −
ky

2

)
ŷ2

e −
1
2
(λ3 − 2`ςλ2) ‖EΩ‖2

− κ1

2

∥∥∥ŴT −WT
∥∥∥2
− κ2

2
(
ϑ̂− ϑ

)2 −
(

v2
1 − 1

)
d̃2 − Kn

2
Θ2 +

1
2

∆µ2

+
1
2
(Kn + 1) |Ψ4|2 + Knχ2

1 +

∥∥W̃TS
∥∥2

2
+

ε̄2

2
+

κ1

2
‖W −W0‖2

+
κ2

2
(ϑ− ϑ0)

2 +
kx

2
x̃2

e +
ky

2
ỹ2

e

≤ −2Ξ2V + Λ2 (54)

where Ξ2 = min
{

k1 − kx
2 , c1 −

ky
2 , 1

2 (λ3 − 2`ςλ2) , κ1
2 , κ2

2 , v2
1 − 1, Kn

2

}
, Λ2 = 1

2 ∆µ2+ 1
2 (Kn + 1) |Ψ4|2 +

Knχ2
1 +
‖W̃TS‖2

2 + ε̄2

2 + κ1
2 ‖W −W0‖2 + κ2

2 (ϑ− ϑ0)
2 + kx

2 x̃2
e +

ky
2 ỹ2

e .
From (52) and (54), we have:

V̇ ≤ −2ΞV + Λ (55)

where Ξ = min {Ξ1, Ξ2}, Λ = max {Λ1, Λ2}, and the selected parameters satisfy: λ3 > 2`ςλ2, v2
1 > 1,

KΘ > 1
2 + Kn

2 , b > 1.
Solving (55), we have:

V ≤
(

V (0)− Λ
2Ξ

)
e−2Ξt +

Λ
2Ξ

(56)

Hence, we know that V is bounded by Λ
2Ξ , and all errors are guaranteed to be UUB.
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5. Numerical Simulations

In this section, we conduct simulation studies using the MATLAB/Simulink environment.
Meanwhile, two cases are applied to evaluate the performance of the proposed strategy, and
the simulation results are compared with PLOS [13], the backstepping adaptive method [39], and the
PID method. In addition, the following root mean squared error (RMSE) and mean integral absolute
(MIA) value describing the error πe (τ) are considered:

RMSE = ∑N
i=1

√
|πe(τ)|2

N

MIA = 1
t∞−t0

∫ t∞
t0
|πe (τ)| dτ

(57)

where N is the number of simulation steps.
The parameters of the USV can be obtained by [29], and the initial value is [x, y, ψ]T = [0, 2, 0]T ,

[u, v, r]T = [1, 0, 0]T . The design parameters are chosen as follows: Q (t) = 0.5I4×4, kx = 3, ky = 2,
k1 = 8, γ = 5, ∆max = 6, ∆min = 2, R1 = 0.06, h1 = 0.02, σ1 = 10, κ1 = 2, σ2 = 0.001,
κ2 = 0.02, ωj = 1.5 (j = 1, 2), v1 = 10, KΘ = 2, χ1 = 0.1, Kn = 3. The desired path is chosen
as [xd, yd]

T = [10 sin (0.1θ) + 1.1θ, θ]T . In addition, the unmodeled dynamics and the time-varying
external disturbances are selected as ∆ f = 0.3 f (r), d (t) = 0.8 + 0.4 sin (0.1t) + 0.3 cos (0.2t),
respectively.

Remark 4. It is worth noting that we can improve the control ability of the controller by choosing appropriate
design parameters. For example: the bandwidth ωj of enhanced TLC is selected by the pole assignment
technique; R1 of NTD is relatively sensitive. As R1 becomes larger, the tracking speed becomes faster; as v1 of
LESO increases, the error d̃ will become smaller. Therefore, we should choose the parameters according to the
actual situation.

Case 1. To verify the performance of the FPLOS guidance law, a comparison simulation is conducted
between FPLOS and PLOS under the same design parameters.

Simulation results are provided in Figures 5–10, and the performance indices are reported in
Table 1. Figure 5 shows that the designed FPLOS provides faster convergence speed and tracking
performance than PLOS. The control inputs are given in Figure 6, and it is noted that the rudder
saturation problem was effectively compensated by the auxiliary system. Figure 7 depicts that the
actual heading could accurately track the desired heading using the designed FPLOS. Figure 8 depicts
that the predictor was capable of identifying unknown sideslip angle. The errors xe and ye are shown
in Figures 9 and 10. It can be seen from Figure 10 that ye had fast convergence performance using
the proposed FPLOS. The main reason was that the lookahead distance ∆ was optimized reasonably
by the fuzzy algorithm, thus achieving better convergence quality. It is shown from Table 1 that the
RMSE and MIA values of FPLOS were [0.04941, 0.3473, 0.06539], [0.03204, 0.176, 0.0139], respectively,
and they were only [9.42%, 53.3%, 87%] and [74.7%, 33.65%, 30.01%] of PLOS. Therefore, the designed
FPLOS had better performance in terms of the convergence and stability.

Table 1. Performance comparisons of different methods. MIA, mean integral absolute. FPLOS, fuzzy
predictor line-of-sight.

Value

Method RMSE (xe) RMSE (ye) RMSE (E1) MIA (xe) MIA (ye) MIA (E1)

TLC + FPLOS 0.04941 0.3473 0.06539 0.03204 0.176 0.0139
TLC + PLOS 0.5242 0.6508 0.07489 0.04284 0.523 0.04631
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Case 2. Under the same condition and design parameters as Case 1, to prove the effectiveness of the
designed TLC method, we provide a comparative simulation in TLC, backstepping, and the PID method.

Simulation results are displayed in Figures 11–16, and the performance indices are summarized in
Table 2. Figure 11 presents the comparisons of the control performance, from which we can find that the
designed TLC method exhibited better convergence performance than backstepping and the PID method
even though being perturbed by unknown dynamics and external disturbances. Figure 12 depicts that
the calculated control input exceeded the operation condition of the actuators, thus causing the problem
of rudder saturation. It can also be seen from Figure 12 that an auxiliary system was incorporated into
the proposed controller to handle this problem. Figure 13 shows that the actual heading could track
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the guidance heading with arbitrarily small error. Figure 14 demonstrates sideslip angle estimation
errors, and it can be clearly observed that the predictor could accurately estimate unknown sideslip
angle. Figures 15 and 16 illustrate the tracking errors of the three control methods. It was evident that the
errors of the designed TLC method could quickly converge to a small region around the origin. However,
the errors of backstepping and PID were still fluctuating. Table 2 summarizes the comparison of the
RMSE and MIA values of the three methods. It can be easily seen that the designed TLC method had
higher tracking precision. All results demonstrated that our proposed control strategy exhibited superior
control performance.
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Figure 11. Path following performance.
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Figure 16. Cross-track errors ye.

Table 2. Performance comparisons of different methods.

Value

Method RMSE (xe) RMSE (ye) RMSE (E1) MIA (xe) MIA (ye) MIA (E1)

TLC + FPLOS 0.04941 0.3473 0.06539 0.03204 0.176 0.0139
Backstepping + FPLOS 0.05564 1.501 0.2142 0.03753 0.6259 0.08243

PID + FPLOS 0.0549 1.354 0.191 0.0376 0.797 0.0864
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6. Conclusions

In this paper, a novel path following control strategy was proposed for a USV subject to unmodeled
dynamics, external disturbance, and rudder saturation. First, an FPLOS guidance strategy was
developed to provide the guidance heading, which could also handle unknown sideslip angle. More
importantly, the greatest advantage was that TLC was used as a new effective technique to design a
concise path following controller, and the proposed controller could not only estimate and compensate
for unknown dynamics and rudder saturation, but also provide high tracking precision. Meanwhile,
NTD was applied in the proposed strategy to avoid unnecessary set-point jump. The superiority
and the effectiveness of the proposed strategy were also confirmed by comparisons and extensive
simulations. In the future, we will further optimize the lookahead distance using other methods [40–44],
and the proposed design methods could also be used to solve the trajectory tracking problem of the
USV and underwater vehicle.
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The following abbreviations are used in this manuscript:

USV unmanned surface vehicle
TLC trajectory linearization control
LESO linear extended state observer
DSC dynamic surface control
LOS line-of-sight
PLOS predictor line-of-sight
RBFNN radial basis function neural network
NTD nonlinear tracking differentiator
LTV linear time-varying
UUB uniformly ultimately bounded
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