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Abstract: The development of solution algorithms for power system problems is based on hypothetical
test systems and test cases. These systems are very scarce, and the degree of variability is relatively
low. The constant development of the economic analysis in electrical power systems denotes the
need to obtain standardized systems and cases. In this study, the creation of standardized test cases
based on a hybrid model using Lévy alpha stable distributions and generalized additive models
is proposed. The objective of the work is to present a methodological proposal for the creation of
test environments for optimization models based on general information about the operation of
particular power systems. The simulation of random values based on Lévy alpha stable distributions
lets capturing the series impulsivity and demand peaks, and the use of generalized additive models
permits capturing non-linearity in the behavior of the demand for electrical energy. The hybrid model
will tolerate simulating as many instances as necessary, with a coherent behavior attached to the
reality of the operation of the analyzed electrical systems.

Keywords: test systems; test cases; power systems; economic dispatch; Lévy alpha stable distributions;
generalized additive models

1. Introduction

The problem of economic dispatch has generated a wide development in the optimization
algorithms for its solution as well as the adequate planning of the generation and expansion of the
electrical networks. Its importance is such that in the literature, multiple approaches have been
developed in this regard. However, there is a need to have available information from test systems
for such algorithms; in most cases, the information available from real electrical networks is not
public, so being able to have a robust method for generating test data efficiently represents a relevant
contribution. This paper proposes a conceptual framework based on a hybrid model using Lévy alpha
stable distributions and generalized additive models for the generation of test cases.

One of the essential inputs to test the optimization algorithms are the test cases for the behavior of
the demand; without such input, it is impossible to test the efficiency of the implemented algorithms.
This work contributes to having standardized test cases that can be used to benchmark the performance
of many proposed optimization techniques. One of the main advantages of the proposed method to
generate test instances is, once obtained, the model parameters can create as many instances as needed
without losing robustness in the estimates. This would be equivalent to evaluating the optimization
model in a variety of electrical systems. This represents a great advantage over other techniques.
Being able to have unlimited test instances will let to analyze in greater detail the robustness of the
optimization algorithms used as well as their stability in obtaining feasible solutions.

The study of the problem of economic dispatch has been an area in continuous development,
integrating aspects such as renewable energy, distributed generation, and smart grids into the electricity
grid. However, there has not been much attention in the generation of test systems for the evaluation
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of optimization algorithms. They are generally considered historical data, or random instances are
generated assuming a Normal probability distribution. Both proposals have some disadvantages,
the use of historical data limits the availability of information, especially in recently created systems
or with innovative elements, as well as limiting the number of available instances. In the case of the
generation of random instances through normal distribution, it implies some limitations, such as the
presence of heavy tails in historical data. Additionally, when generating random numbers through
the normal distribution, the seasonal behavior of the characteristic demand of electrical systems is
lost. Therefore, it is difficult to replicate medium and long-term power generation planning periods.
This avoids reflecting the response of the economic dispatch models to extreme values and seasonality,
thus limiting the conclusions on the solutions found.

The proposed hybrid model of this work seeks to overcome these limitations in test cases by using
the alpha stable distribution and using generalized additive models. The proposal is integrated in the
following way, fitting of historical data to the stable alpha distribution seeks to identify the presence of
impulsivity in the data series. With this, it is possible to simulate random instances that follow the
alpha stable distribution. For the integration of the non-linear component, the simulated alpha stable
data is integrated into a generalized additive model, which consents to segment the data into additive
modules, each fitted to a particular non-linear function (such as the spline or kernel functions). Thus,
the generated instances considering extreme scenarios as well as replicating the non-linear seasonal
behavior of the electrical system analyzed.

The structure of the work is as follows: Section 2 presents a literature review of different aspects
in the solution of the problem of economic dispatch as well as state of the art on the generation of test
cases. Section 3 explains the proposed methodology that integrates a brief generic description of the
economic dispatch problem, the definition of the alpha stable distribution, and the simulation of alpha
stable random numbers. Further to addressing the theoretical foundations of generalized additive
models. Section 4 describes the application of the model in three generic electrical systems for the
simulation of test cases in an operational year of 52 weeks. Finally, Section 5 presents the conclusions.

2. Literature Review

The optimization problems for electrical power systems have been studied for more than five
decades. A definition of economic dispatch is the operation of generation facilities to produce energy
at the lowest cost to reliably serve consumers, recognizing any operational limits of generation and
transmission facilities. In the typical unit commitment [1], the problem consists as determining the mix
of generators and their estimated output level to meet the expected demand of electricity over a given
time horizon (a day or a week) while satisfying the load demand, spinning reserve requirement and
transmission network constraints. An electric network consists of many generation nodes with various
generating capacities and cost functions, lines of transmission, and nodes of power demand [2].

The application of optimization models for electrical power systems is marked by constant
development for new algorithms like exact methods, metaheuristics, and hybrid strategies [3].
Authors such as Montoya O. [4] show applications of a non-linear economic dispatch problem and
its implementation in commercial software for operational and regulatory analyses in Colombia.
Other works, such as Perez-Lechuca et al. [5], show the application of an optimization model for
hydrothermal coordination and the emission of polluting particles. Recent research integrates various
sources of fuel, such as natural gas, in the determination of the optimal generation at the lowest
cost, considering wind generation, in addition to considering the model as a bi-level model [6].
Jin X. et al. [7] shows a dynamic version of the problem of economic dispatch, considering a hybrid
energy micro-grid, and adding to the problem a virtual energy storage system.

The problem has approached from the perspective of the integration of renewable energies.
As well as different methods of solving the optimization problem, such as the case of Qu B.Y. et al. [8],
where the application of multi-objective evolutionary algorithms models is shown for the solution of
an environmental-economic dispatch problem. In the same way, different versions of the problem of
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economic dispatch have been explored through the temporality of the solution. Depending on the
demand period that is desired to be planned, in Jiang Y. et al. [9], a stochastic version of the problem
of economic dispatch is shown, considering wind energy and demand response for scheduling of
home energy management. Other authors include in the problem constraints related to the emission
of pollutants as well as risk measures in the electrical system. Perez-Lechuga et al. [5] propose
a multi-objective model of economic dispatch with restrictions on risks arising from the integration of
wind energy into the system. Similarly, economic dispatch models with multiple energy carriers have
proposed, in this case, works such as Derafshi-Beigvand S. et al. [10], which address the treatment of
energy hubs in the operation of integrated systems using a particle-swarm optimization algorithm.

The approach to the problem of economic dispatch has multiple aspects, among which the
solution method and the characteristics of the analyzed electrical system can highlight. Recent
research shows the integration of clean energy as well as energy storage and multiple energy carriers.
The problem of economic dispatch is and will continue to be a priority problem in the academic and
industrial fields because electrical systems evolve under the availability of energy in the world and
with technological development.

Along with the development of novel algorithms for solving the problem of economic dispatch in
its multiple variants, it is necessary to have test systems to evaluate solution algorithms. The electricity
network, as well as the characteristics of the operation of an electrical system, are reserved information.
Generally, there are test versions of electrical systems as well as characteristics of the network’s
demand behavior. To benchmark the performance and solution quality for any solution technique,
it is necessary to have a variety of electrical test systems [11]. Nowadays, we still lack the existence
of standardized test systems that can be used to benchmark the performance and solution quality of
proposed techniques. Many papers consider different test systems, which make it very difficult to
perform a proper comparison between methods that have proposed [12]. Zhang X.P. et al. [13] have
referred that the existing IEEE test systems developed are used for reliability, power flows, and stability
analyses but not for economic analysis. Recently, some panels focusing on the development of standard
test systems of transmission and distribution systems for economic analysis have emerged. In 2007,
the IEEE Working Group (WG) on Test Systems for Economic Analysis was created, sponsored by
the IEEE System Economics subcommittee. As a result of this initiative, Peña I. et al. [14] proposed
a version of the IEEE 18-bus test system, a database of an electrical network, with a reconfiguration of
three regions of the US Western Interconnection, including renewable energies. A test system includes
transmission, generation, load, wind, and solar data. Barrows C. et al. [15] proposed an update of the
IEEE reliability test system, which includes the production of electricity, transmission, and consumption
needs, but the last update of this test system was carried out in 1996. The modifications include
the inclusion of geographic information of Southwestern United States to include temporal space
information wind, solar, and load data with forecasts. Mahdavi M. et al. [16] presented a proposal for
a test system based on real data, which has planning information for network expansion, operation,
and reliability. This work integrates information on the expansion of the generation by providing
detailed information on the architecture of the electricity grid. The presented load modeling includes
hourly, daily, weekly, monthly, and seasonal patterns.

The existing test systems consider the architecture of an electrical system, in addition to the recent
updates to have renewable energies, as well as information on generation and consumption planning.
There are few cases where demand information is included; these systems are input for testing the
different economic dispatch models to implement. A fundamental characteristic to test the different
algorithms for solving the problem of economic dispatch lies in the treatment of the demand that
determines the optimal allocation at the lowest cost. Several authors have documented the seasonal
nature of the demand for electrical energy, as well as the availability of fuels and renewable energy in
the planning of expansion [17–21]. For the forecast of the demand for electric energy, there are multiple
methodologies. These methodologies are based generally on time series models, machine learning,
wavelets theory, multi-agent, or hybrid models [22–28]. The objective of these models is to forecast
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as accurately as possible the demand for electric power for a period forward based on the available
historical information. The drawback of using this forecasted data to test algorithms for solving the
economic dispatch problem is that it is a particular data that considers a specific time horizon and is
according to the available information. Therefore, the use of a demand simulation method based on
the use of alpha stable distributions and generalized additive models is another option for testing and
validating algorithms in a development phase.

It has been identified that electrical demand presents a greater degree of impulsivity due to the
presence of peaks in the series during the hours of the day and seasons of high-energy demand in the
year [24–28]. For this, we use the Chambers–Mallows–Stuck algorithm for simulating alpha stable
random variables characterizing demand peaks and generalized additive models (GAMs) to model the
non-linear behavior of real electrical systems. This proposal allows us to model the real behavior of the
electrical demand and build possible extreme scenarios. Each scenario corresponds to a price-elastic
demand curve. The simulations are based on real observations of demand for different reliability test
systems. Electrical network data are taken from P.M. Subcommittee [29] and 118 bus IEEE test systems
from Christie R. et al. [30], and a portion of the electric energy system of mainland Spain from Alguacil
N. and Conejo J.A. [31].

According to the literature review, there are areas of opportunity for the generation of test cases,
especially for the academic field, due to the scarcity of public information available on the architecture
of electrical networks, as well as their operation. Therefore, having a method to simulate instances is
of potential utility for the development of research in power systems. Most of the existing methods
focus on forecasting electricity demand, but it is necessary to take into account the structure of the
electrical system in the generation of test cases. That is the reason why the proposed hybrid model
could provide additional information to the current state of the art.

3. Materials and Methods

This section briefly describes the different methodologies used to build the hybrid model by
describing the problem of economic dispatch, simulation methodology with alpha stable distribution,
and generalized additive models for the fitting of non-linear behaviors in the data series.

3.1. Short Version of Economic Dispatch Problem

The problem of economic dispatch of power plants is a classic problem in power systems. We have
a network of electric power generators that are located in different nodes of an electric network.
The objective of the problem is to determine, for a given period, the power that each generator has
to produce to meet the required demand at the minimum cost, complying with a set of technical
restrictions of the network and the generators. Each line in the network transmits power from the
supply node to the receiving node. The power sent is proportional to the difference in the angles
of these nodes (susceptance). The power transmitted from node i to node j through line (i− j) is
represented by Equation (1) [32]:

Bi j(δi − δ j) (1)

where Bi j is the susceptance of the line (i− j), δi and δ j are the angles of the nodes. The amount
of power transmitted through a network line is limited by thermal or stability conditions. This is
represented in Equation (2).

− Pmax
ij ≤ Bi j(δi − δ j) ≤ Pmax

ij (2)

The power produced by a generator is a magnitude limited lower and higher. The lower level is
due to stability conditions and the upper level to thermal conditions. Equation (3) shows this constraint

Pmin
i ≤ Pi ≤ Pmax

i (3)
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where pi is the power produced by generator i and, Pmin
i and Pmax

i are the maximum and minimum
power output that can be administered to generator i. In each node, the power must match the power
that comes out of it according to the law of conservation of energy. This is represented in Equation (4).∑

j∈Ωi

Bi j(δ j − δi) + pi = Di, ∀i (4)

where Ωi is the set of nodes connected through the lines to node i and Di the demand in node i,
the transmitted power is bounded. Equation (5) show this constraint.

− Pmax
ij ≤ Bi j(δi − δ j) ≤ Pmax

ij , ∀j ∈ Ωi, ∀i (5)

Therefore, a generic version of the problem of economic dispatch can be formulated as follows.
Equation (6) shows the objective function of the economic dispatch problem [32].

Min Z =
n∑

i=1

Cipi (6)

where Ci is the production price of generator i and n number of generators. Subject to generic constraints
represented by Equations (7)–(10)∑

j∈Ωi

Bi j(δ j − δi) + pi = Di; i = 1, 2, . . . , n (7)

− Pmax
ij ≤ Bi j(δi − δ j) ≤ Pmax

ij ; ∀j ∈ Ωi, i = 1, 2, . . . , n (8)

Pmin
i ≤ Pi ≤ Pmax

i ; i = 1, 2, . . . , n (9)

δk = 0; where k is an arbitrary node (10)

where
n : the number of generators
Pmin

i : the minimum power of generator i
Pmax

i : the maximum power of generator i
Bi j : the susceptance of line i− j
Pmax

ij : the maximum transport capacity of line i− j
Ci : the cost of producing power from generator i
Ωi : the set of nodes connected to node i
Di : the demand at node i
pi : the power to be produced by generator i
δi : the angle of node
As documented in the first section, the problem of economic dispatch has multiple aspects

according to the elements that are to be integrated into the power grid to be modeled. The demand
of each node in the network is a fundamental element for this optimization problem; this variable is
generally determined based on historical data observed. However, when proposing new methods of
solving the problem and assessing its efficiency and stability, it is necessary to have a large number of
test cases that replicate in the best way the real behavior of the electrical network.

3.2. Stable Distributions

There are multiple applications of this family of distributions in many sectors. Lévy P. [33] was
the first to develop a stable distribution theory. Later, Mandelbrot B. [34] proposed a theory based
on this distribution to solve the problem of price fluctuations. There are some issues in operating
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these distributions as they lack an analytical form. A random variable W has stable distribution
X ∼ S(α, β, γ, δ; 1) with the characteristic function represented by Equation (11) [35].

E exp(itW) =


exp

{
−γα|t|α

[
1− i(sgn(t))β(tan πα

2 )
]
+ iδt

}
, ( α , 1)

exp
{
−γ|t|

[
1 + i(sgn(t))β 2

π ln (|t|)
]
+ iδt

}
, (α = 1)

 (11)

where sgn(x) =


1 i f x > 0
0 i f x = 0
−1 i f x < 0

 and αε (0, 2] represents the impulsiveness of the random variable.

The parameter β ∈ [−1, 1] is the symmetry of the distribution. γ > 0 is a scale parameter, and δ ∈ R is
the position parameter. Alpha-stable distribution with different parameters defines known distribution
functions, Gaussian distribution in Equation (12), Cauchy distribution in Equation (13), and Lévy
distribution in Equation (14).

f2,0( .
∣∣∣γ,µ ) is a Gaussian distribution with mean δ and variance 2γ2,

N(x,µ2γ2) =
1

2γ
√
π

exp

 (x− µ)2

4γ2

 (12)

f1,0( .
∣∣∣γ,µ ) is a Cauchy distribution with density,

pCauchy(x
∣∣∣µ,γ ) = p

γ

π((x− µ)2 + γ2)
(13)

f1/2,1( .
∣∣∣γ,µ ) is a Lévy distribution with density,

pLevy(x
∣∣∣µ,γ ) = (

γ

2π
)

1
2 1

(x− µ)
3
2

exp
{
−

γ

2(x− µ)

}
(14)

In this research, we use Nolan’s algorithm to estimate the alpha-stable distribution parameters.
Nolan’s algorithm [36] is based on Zotolarev’s representation of the characteristic function [37].
The algorithm performs the numerical integration of a set of splits of the random variable domain.
These splits are based on the sign change of the trigonometric functions (sine and cosine) that result
from the transformation of Zoratev V.’s [37] representation into the complex plane. There are other
methodologies for estimating the parameters of the stable distribution, like those presented by Belov
I. [38], proposing a combination of Gaussian and Laguerre’s quadrature; or Mittnik S. et al. [39]
presenting an algorithm that applies the fast Fourier transform. Finally, DuMouchel W.H. [40] used
a Bergström series expansion on Zotolarev’s characteristic function representation for approximating
a stable cumulative distribution. Nevertheless, Nolan’s algorithm [35,41] has proven to be an easy
method to implement, with good performance with high-frequency data, as is the case with the demand
for electrical energy.

3.3. Stable Random Variable Simulation

The Chambers–Mallows–Stuck method [42] generates a random variable X with distribution
fα,β(X

∣∣∣1, 0) from a non-linear transformation of two random variables independently, one uniform
(V) and another exponential (W), using the following theorem. Let (V) be a uniform random variable
in the interval (−π2 , π

2 ), and (W), an exponential random variable with mean equal one, if V and W are
independent. Equation (15) displays a random variable that follows an alpha stable distribution.

X = Sα,β
sin (α(V + Bα,β))

(cosV)
1
α

(
cos((1− α)V + Bα,βα

W
)

(1−α)
α

, (15)
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follows a stable distribution with fα, β(X
∣∣∣1, 0) , where Bα,β and Sα,β are defined by Equations (16)–(17).

Bα,β =
arctan(β tan (πα2 ))

α
(16)

Sα,β = (1 + β2tan2πα
2
)

1
2α (17)

Once the variable (X), is estimated, a variable that follows stable distribution for any set of values
of the parameters S(α, β, γ, δ and u) is generated by Equations (18)–(19).

fα,β(γ,µ) ∼ γX + µ si α , 1, and (18)

fα,β(γ,µ) ∼ γX +
2
π
βγlnγ+ µ, i f α = 1 (19)

Some examples of the application of Chambers–Mallows–Stuck are presented in [41,43,44],
among other works.

3.4. Generalized Additive Models (GAMs)

The different methodologies for making predictions or forecasts using linear models have
limitations when working with data that presents non-linear behavior. Recently the generalized
additive models (GAMs) approach has been developed. These models are an extension of the
regression models, with non-linear functions for the variables and maintaining the additivity of the
model. GAMS models work with quantitative and qualitative response variables [45].

For the avobe, the regression model can be extended to capture non-linear relationships between
independent variables and the dependent variable. For this, it is necessary to replace each linear
component (β jxi j) with a non-linear (smoothed) function f j(xi j). The model specification is presented
by the Equations (20)–(21) [45].

yi = β0 +

p∑
j=1

f j(xi j) + εi (20)

yi = β0 + f1(xi1) + f2(xi2) + . . .+ fp(xip) + εi . (21)

where f j are smooth non-linear functions.
The type of functions that can be used includes natural splines, step functions, polynomial,

smoothing splines, and basis functions. The use of different functions for non-linear treatment is so
that each explanatory variable improves the efficiency of the estimates. Given the additive nature, it is
feasible to analyze the effect of each independent variable separately, keeping the rest of the variables
constants. This property is the one that will fit in a better measure of the seasonal behavior of the
demand for electrical energy. The methods for estimating the parameters of the additive model are
based on iterative algorithms, such as the back-fitting algorithm [45].

3.5. Proposed Hybrid Model

The proposed model considers the structure of a power grid, as well as historical demand data.
Based on this information, the parameters of the alpha stable distribution are estimated. Subsequently,
using the Chambers–Mallows–Stuck method [42], stable random values simulate as much data as
necessary. Using the simulated information as a training base, a GAM model is fitted to estimate the
demand for electricity in the desired time horizon. The conceptual proposal is presented in Figure 1.
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Figure 1. Proposed hybrid model.

The structure of the proposed model is based on the sequential estimation of a set of parameters
for simulating the power system test cases. The first step is to fit the historical data from the reference
power system to the stable alpha distribution using the regression method.

Let (Xt) be a random variable that represents the demand for electrical energy for a period of
time (t). With these historical data, the parameters of the stable alpha distribution are estimated by the
regression method using the following equations [35,36,46,47].

Estimation of parameters α and γ, is presented in Equation (22).

yk = m + αk + εk, k = 1, 2, . . . , K (22)

where, yk = log(− log (ϕ(tk))
2, m = log (2γα), wk = log (tk), εk is the random error, and K of the

historical data seats tk =
πk
25 (k = 1, 2, . . . , K). Whit estimations of α and γ is a possible estimate of the

symmetric parameter (β) and location parameter based on Equation (23).

Zl = µµl − βγ
α tan (

πα
2
)sgn(µl)

∣∣∣µl
∣∣∣α + ηl, l = 1, 2, . . . , L (23)

where, Zl = gn(µl) +πkn(µl), gn(µ) = arctan (Im(ϕ(µ))
Re(ϕ(µ)) , ηk is the random error, and L of the real data sets

µl =
πl
50 (l = 1, 2, . . . , L). The results of this stage are the parameters of the stable alpha distribution

for the historical data series Xt ∼ S(α̂, β̂, γ̂, δ̂). Using Equations (18) and (19) and the estimated stable
alpha distribution parameters, stable alpha random numbers can be generated X̂n ∼ S(α̂, β̂, γ̂, δ̂).
In order to estimate the GAM model, information on the operation of the power system is considered
as the price of energy and the price of fuels for the time horizon to be modeled. In this case, fuel prices
and the local marginal price will be used so have ˆPLMi and ˆPCOMBi. The specification of the GAM
model is presented in Equation (24) [45].

X̂i = β0 + f1( ˆPLMi2) + f2( ˆPCOMBi3) + εi (24)

where f1 and f2 are smooth non-linear functions (could be natural splines, step functions, polynomial,
smoothing splines, or basis functions).

The objective of the proposed model is to be able to have as many instances as possible, as close
as possible to reality, in order to validate optimization algorithms for the solution of the economic
dispatch problem. One of the advantages of the hybrid model is that long-term horizons can be
simulated, such as a full year of operation of the power system.

4. Application

For the estimation of the proposed hybrid model, information from three systems will be used
(IEEE-104, IEEE-24, and IEEE-118), in addition to information on fuel and electricity prices for a one-year
operation period (52 weeks). The development of the application includes the estimation of parameters
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for stable alpha distribution based on historical data, simulating 1000 random instances with stable
alpha distribution based on previously estimated parameters, and fitting a model GAM based on the
information generated. The result of the hybrid model is the generation of test cases corresponding to
an entire year of operation (weekly). It is possible to generate as many periods as desired, depending
on the periodicity of the historical information.

4.1. Simulation of Alpha-Stable Random Variables

To generate new cases by the methodology proposed, it worked with three standardized
test systems.

• System I: Based on the IEEE-104 bus electric energy system of Mainland Spain with 104 nodes,
62 thermal units, and 160 transmission lines [31].

• System II: Based on the IEEE-24 bus test system with 24 nodes, 24 thermal units, and 38 transmission
lines [29].

• System III: Based on the IEEE-118 bus test system with 118 nodes, 54 thermal units, and 186
transmission lines [30].

All instances consider a 24-h planning horizon with one period per hour. We use alpha stable
distribution to model the demand from the original systems analyzed. The parameterization one of
alpha stable distribution is used, which is usually applied for modeling heavy tail and high-frequency
data. This parameterization is represented in Equation (25) [46,47].

φ(k) = lnfc(k) =


iδk− γα|k|α

{
1− iβsgn(k) tan Πα

2

}
, ( α , 1)

iδk− γ|k|
{
1 + iβsgn(k) 2

Π

}
, (α = 1)

, (25)

The parameters that characterize the stable distribution were obtained through the three methods
generally accepted: (1) maximum likelihood, (2) quantile, and (3) regression. For the simulation of the
alpha stable random variables in this work, the parameters generated by the regression method will be
used. Better fit has been documented by the regression method for heavy-tailed data [47,48]. Table 1
shows the estimated parameters for the fitted alpha stable distribution for each system, with the three
estimation methods (maximum likelihood, quantile, and regression).

Table 1. Alpha stable parameters.

IEE-104 bus system α β γ δ

Maximum likelihood 1.2000 1.0000 84.3954 423.414
Quantile 1.6132 1.0000 121.3540 291.3820

Regression 1.6938 1.0000 113.085 227.7650

IEEE-24 bus system α β γ δ

Maximum likelihood 1.4000 1.0000 35.4172 160.6370
Quantile 1.6045 1.0000 41.7026 151.6880

Regression 1.8430 1.0000 42.8166 121.925

IEE-118 bus system α β γ δ

Maximum likelihood 1.2000 1.0000 10.7543 54.0993
Quantile 1.7539 1.0000 15.1875 32.7828

Regression 1.5092 1.0000 13.3914 35.9108

The parameter alpha in three systems shows the presence of impulsivity in the series; all series are
positive asymmetric and have high dispersion denoting the presence of heavy tails. That shows that
demand in the 24 h of the day and the electricity consumption habits. The Chambers–Mallows–Stuck
method [42] was used to simulate random variables that follow an alpha stable distribution. With the
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estimated parameters, 1000 alpha stable random numbers were simulated for each original test system
according to the original energy demand ranges. To obtain the values in demand units of energy,
the inverse transform method was applied.

Figure 2 shows the simulation of random instances based on the IEEE-104 bus system with the
alpha stable parameters S(α = 1.6, β = 1.0,γ = 113.3, δ = 227.7) and the histogram of these instances.
The presence of extreme values is observed as well as heavy tails in the distribution of the generated
data. This system is the one with the greatest impulsiveness and dispersion in the data.
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Figure 3 shows the simulation of instances based on the IEEE-24 bus system, with the alpha stable
parameters S(α = 1.8, β = 1.0,γ = 42.8, δ = 121.9) and the histogram of these instances. Given the
characteristics of the system, the demand peaks are observed. The estimated distribution parameters
show the dispersion in each system through the delta parameter and the impulsivity through the alpha
parameter. This system, given the value of alpha, is the closest to a behavior of a Gaussian distribution
(α = 2).
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Figure 4 shows the simulation of instances based on the IEEE-118 bus system, with the alpha stable
parameters S(α = 1.5, β = 1.0,γ = 13.9, δ = 35.9) and the histogram of these instances. This system
shows impulsiveness and significant dispersion.

The fitting of the data to the stable distribution and the generation of instances, according to
the parameters, show the presence of heavy tails and impulsivity in the generated data. The alpha
parameter measures the impulsivity of the series and defines how heavy are the tails of the distribution
of probability. Figure 5 shows different scenarios of impulsivity parameter generating differences in
the tails of the distribution of the IEE-104 simulated system. The example of this system was used
since it was the one with the most impulsiveness.
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It is relevant to know the effect of the alpha parameter on the impulsivity of the series.
The impulsivity of the series differs depending on the architecture of the system. Therefore, having
parameters from different systems will allow us to generate extreme scenarios to evaluate in the
optimization model used. Once the stable alpha random values for the energy demand per test
system have been generated, it is necessary to consider the seasonal effect of the demand. For this,
the estimation of a GAM will be carried out using spline functions. This will be made using the
previously generated random demand data as inputs so that there will be enough data to make the
right fit.

4.2. Generalized Additive Model (GAM)

Using the information of simulated data through the alpha stable distribution, the estimation of
a generalized additive model was carried out, which will take as a dependent variable the demand
for electric energy, and as explanatory variables, the price of energy (local marginal price) and fuel
prices (fuel oil) for a sample of data is used with weekly data for 52 weeks [49]. The model estimated is
presented in Equation (26):

Xi = θ0 + S1(LMPi) + S2(PCOMBi) + εi, i = 1, . . . , (26)

where

• Xi is the demand for the period i.
• LMPi is the Local Marginal Price for the period i.
• PCOMBi is Fuel Oil Price for the period i.
• S j are smoothing splines functions for each parameter, j = 1, 2.

The results of the GAM model show that smoothing splines are statistically significant for
non-parametric estimates, so there are non-linear relationships between the variables associated with
these functions and the dependent variable. Table 2 shows the estimated parameters for the generalized
additive model, which uses demand as a dependent variable, a variable that is constructed through the
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simulation of instances based on the three base systems used (IEEE-104, IEEE-24, and IEEE-18) and the
sample of data on LMP and fuel prices (PCOMB) for 52 weeks.

Table 2. Generalized additive model (GAM) parameter estimations.

ANOVA for Parametric Effects Df F-Value Pr (>F) Parameter

S(LMP) 1 57.4724 0.00000
S(PCOMB) 1 2.4594 0.12330
Residuals 49

ANOVA for Nonparametric Effects NPar Df Npar F Pr (F)

Intercept 4320.1975
S(LMP) 3 3.6108 0.01958 0.3957

S(PCOMB) 3 9.3544 0.00005 2.9405

Null deviance: 13,492,752 on 57 degrees of freedom. Residual deviance: 3,607,220 on 49.0003 degrees of freedom.
AIC: 824.8005.

The benefit of using GAM models is that the non-linear effect of each independent variable can
be modeled separately, keeping the rest constant and assessing the additive effect of all explanatory
variables and can include as many explanatory variables as want to evaluate. Figure 6 shows the
non-linear relationship fitted by the smoothing spline function in the estimated additive model for
LMP and PCOMB variables.
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The estimates with the proposed generalized additive model show an adequate fit to the observed
behavior of the demand for electrical energy. To compare the results of the non-linear fit of the behavior
of the demand for electrical energy, the coefficient of determination was estimated (R2 = 1− SSE

SST ).
In addition, three non-linear models were compared: (a) GAM, (b) local regression, and (c) polynomial
regression. Figure 7 shows the coefficient of determination (R2) for the three compared non-linear
fitting methods.
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Figure 7. R2 for the three non-linear models.

The results of the coefficient of determination show that while the local regression model and the
polynomial model share a similar R2, the GAM model shows the best result (R2 = 0.8344). With GAM
fitted, it is possible to simulate complete periods of demand for the test cases. Figure 8 shows
10 simulations (only 10 for graphic reasons) of the cases. It can be seen that when simulating the data
with the final GAM fitted, seasonal behavior is maintained as well as peaks in demand.
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The methodological proposal shows that by combining the simulation of alpha stable variables
and fitting a generalized additive model, it is possible to generate as many cases data as is required for
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an electrical system. This generation of unlimited test cases is an input of great importance for stress
analysis for algorithms for solving the economic dispatch problem, further maintaining the presence of
extreme values, as well as the seasonality of demand.

4.3. Comparison between the Hybrid Model and the Simulation of Normal Random Variables

The application of optimization algorithms to solve the economic dispatch problem requires
test cases to evaluate the stability and quality of the solution found. An electrical reference system
is used to test the algorithms, and the economic dispatch problem is solved based on historical
information [12–16].

Given the requirement of enough test cases, information for the validation of optimization
algorithms, a widely used option is the simulation of demand data generating random values assuming
a normal probability distribution. One of the main limitations of this method is that generated values
are limited to the parameters of a normal distribution, their mean, and standard deviation N ∼ (µ, σ2).
Since it is documented that the demand for electrical energy presents heavy tails in its distribution,
further seasonality related to the time of day, day of the week, and month of the year analyzed [22–28].

The proposed methodology addresses these aspects through the hybrid model that fitting of
the electricity demand through the use of alpha stable distributions coupled with the modeling of
seasonality and non-linear behavior through the use of GAM by integrating additive non-linear
functions, such as spline functions or kernel functions, to variables such as the price of electrical energy,
as well as the cost of the fuels, among others. Figure 9 shows the comparison between the simulation
of normal random demands to simulated demands using the proposed hybrid model for a period of
52 weeks.
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It is observed that the generation of instances only using normal random numbers generates
demands without any seasonal pattern besides presenting abrupt variations in demand, which are just
random. Also, it is necessary to limit the generated values to only positive values, so that when the
negative values of the distribution are generated, they take the value of zero. On the other hand, in the
case of the hybrid model, the presence of peaks in demand, as well as seasonality, is observed. This lets
generating instances more attached to reality and therefore subjecting the optimization models to more
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realistic demands. Thus, contributing to generate more stable and higher quality models, tested in
real-life scenarios.

5. Discussion and Conclusions

The problem of economic dispatch is a classic problem in the planning of the generation and
expansion of electricity networks. There are multiple representations of the problem according to its
objectives, including the inclusion of renewable energy, the emissions generated as well as restrictions
on fuel availability, among many other nuances. Similarly, the method of solving the problem has had
various approaches to achieve more efficient solutions. To be able to test the algorithms for solving
the problem of economic dispatch, it is necessary to have a large amount of test data information,
which reflects the real behavior of the electricity grid and permits the consideration of stress scenarios.
There are some approaches in this regard in the literature; however, the proposals are limited to the
representation of reference architectures and the availability of historical data for specific networks.

It has been documented that the demand for electricity has a particular behavior, with peak
demand and seasonal effects during the day and during the year. The objective of the hybrid model
using alpha stable distribution is to admit the simulation of demand peaks and seasonality. This lets
us simulate demand data in specific time intervals according to the objective of planning or solution
required for the problem of economic dispatch.

This work covers a conceptual framework that includes the use of predefined architectures and
historical data, consolidating the unlimited generation of test data and stress scenarios through the
application of alpha stable distributions and generalized additive models. The proposal contemplates
the generation of as many test cases as necessary for the validation of the optimization algorithms,
as well as consenting exposure to stress scenarios. The results of the application of the model show
the generation of test cases for long periods that maintain the seasonality and impulsivity of demand.
The combination of heavy tail distributions and generalized additive models presents a better fit,
as well as unlimited test case generation.

The proposed model integrates three stages of analysis: (1) collection of historical information
of specific network architecture, (2) fitting of the alpha stable distribution to be able to simulate as
much data as necessary, and (3) estimation of a generalized additive model to fit test data required,
according to a specific time interval capturing the seasonality and non-linearity. These generated data
will be the input used to test the optimization algorithms for the economic dispatch problem posed.

According to the data used in the case study, it is shown that the demand data for electrical energy
show impulsivity and heavy tails that are consistent with the presence of demand peaks. Similarly,
the fitting of the GAM model shows that the energy demand has a non-linear behavior, so the use of
an additive model is a good alternative to have a better fit to the data. The use of smoothing splines
functions showed a good fit to the data.

One of the main advantages of the proposal is that it is possible to use information from different
available electrical networks and thereby check the efficiency of the optimization algorithms for
different scenarios and not only for a particular case. This will strengthen the proposed solutions and
contemplate real-life cases.
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