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Abstract: The presence of harmonics in the load current considerably increases stray losses in electric
transformers. In this research paper, a new model for computing the electromagnetic field (EMF) and
eddy current (EC) losses in transformer tank covers is derived considering harmonics. Maxwell’s
equations are solved with their corresponding boundary conditions. The differential equation thus
obtained is solved using the method of separation of variables. The obtained expressions do not
require the use of special functions, accommodating them for practical implementation in the industry.
The obtained formulas are evaluated for different spectrum contents of the load current and losses.
The results are in good agreement with simulations carried out using the Altair Flux finite element
(FE) software.

Keywords: eddy currents; electromagnetic fields; finite element analysis; harmonic distortion;
transformer tank wall

1. Introduction

The growing energy demand and environmental problems have led to the integration of renewable
energy technologies to the power grid [1]. These technologies are integrated into the power system via
inverters, requiring the HVDC system for long-distance transmission [2,3]. Their development over
the past few decades, and nonlinear loads such as inverters, arc furnaces, personal computers, AC and
DC drives, etc. have brought about a significant increase in harmonics [4–6]. Nonlinear loads are
notorious for generating harmonics and require transformers to connect them safely to the network.
Transformers are usually designed under the assumptions of sinusoidal conditions [7,8]. It is known [7]
that the harmonic content in the load current increases losses in the transformer and eventually the
temperature, resulting in its premature damage.

Bushings are perhaps the weakest parts of transformers, electrically and physically, and their
failure is one of the major causes of transformer malfunctions [9]. The contribution of bushings
and tank walls to transformer failures are about 20% and 21%, respectively, which is a significant
percentage among all the damages caused by other parts of the transformer [10]. Therefore, with
the increasing trend of nonlinear loads in the distribution network, the transformer is even more
prone to fail. Consequently, to reduce power losses and heating in bushing regions, low permeability
materials [11], and magnetic shunts [12] have been proposed in the literature [7].

At the industry design stage, it is very important to compute transformers stray losses caused
by the alternating electromagnetic field (EMF). This way, the derivation of new formulas is desirable
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and is sought to improve calculation and estimation methods. Several studies have been carried out
recently with these objectives in mind [13–20]. Thus, analytical approaches have proven to be useful
in calculating electromagnetic losses [13]. Generally speaking, there are two analytical methods to
estimate eddy current (EC) losses in transformer tanks: (i) Application of Poynting’s theorem [15]
and (ii) direct calculation of the EMF by solving Maxwell’s equations [13,20]. In the first method (see
Turowski’s analytical method [15]), Poynting’s theorem is used to estimate the power dissipation.
However, the power dissipation formula contains semi-empirical parameters selected by nonrigorous
methods. The precision of the second method is limited only by the difficulty of reproducing real
geometries. In [19], the axial component of the electric field (EF) in the tank wall was ignored while
solving Maxwell’s equations, which negatively impacted the accuracy of the obtained results [20].

In [20], analytical formulas for calculating EMF and EC losses in transformer tank walls were
obtained by solving Maxwell’s equations in the case of the axial geometry of the tank wall. The results
demonstrated a good accuracy compared with the previous methods. However, a load current with
only the fundamental frequency was considered. Moreover, the obtained formulae involve Bessel
functions, which might not be easily implemented in an industrial setting. None of the previously
published works [13–20] consider harmonics in the load current while deriving analytical models for
computing losses in transformer tank walls.

Due to the increasing applications of nonlinear loads, the computation of stray losses in transformer
tanks requires the consideration of the harmonic content in the load current, with proper computation
of the EMF. Therefore, it is of great importance to study the influence of the load current spectrum on
the stray losses and heating of transformers. In our work, we propose simplified analytical formulas
to calculate the EMF and EC losses in the presence of harmonics, which are derived for the bushing
region of transformer tanks. The obtained formulas enable the analysis of the contribution of each
harmonic to the power losses. Thus, it is a powerful and useful tool that can provide quick results in
preliminary transformer designs without the need of expensive and high-end computational resources.

The remaining paper is structured as follows. Section 2 states the geometry of the problem
and mathematical models along with the boundary conditions. In Section 3, the EMF in the tank
wall is obtained solving Maxwell’s equations and employing the separation of variables technique.
In Section 4, both solutions (outside and inside the tank wall) are coupled taking account of the
corresponding boundary conditions. Simplified asymptotic formulas for computing EMF are obtained.
The formula for calculating power losses in transformer tank walls is derived in Section 5. In Section 6,
the analytical results are compared with the finite element method (FEM) simulations. Finally, the
conclusions are presented in Section 7.

2. Model

The conductor passing through the bushings and tank wall of a transformer is shown in Figure 1.
The tank wall is considered as a disk of radius b with a hole of radius a in the center. An infinitely long
conductor passes at a right angle through the hole. The axial geometry of the system requires the use of
the cylindrical coordinates for solving Maxwell’s equations. Figure 2 shows the schematic geometry of
the system, which is divided into two regions. The hole, where the conductor is mounted, the medium
above the tank wall, and the region below the wall are filled with air or any other dielectric. Region
RI =

{
(r, z) : r0 ≤ r

}
\
{
(r, z) : a ≤ r ≤ b, |z| ≤ h/2

}
, where r0 and h are the conductor half diameter and

the transformer tank thickness, respectively. Region RII =
{
(r, z) : a ≤ r ≤ b, |z| ≤ h/2

}
represents the

tank wall, which is made up of a ferromagnetic material. In this paper, the magnitude of the magnetic
flux density is considered not too high so that the permeability of the tank wall can be considered
constant. The values of magnetic flux density found in [21] and [22] for the tank wall studies were
0.001 T and 22 mT, respectively, which are much lower than the maximum value (1.7 T maximum for
steel material [23]).
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Figure 2. Tank wall geometry for calculating the electromagnetic field (EMF).

The conductor, passing through the hole, can be modeled as infinitely thin and long. With
the advent of nonlinear loads in the distribution system, the current carries an infinite number of
harmonics:

I(t) =
∞∑

n=−∞
Ine jnωt, (1)

where n enumerates harmonics, In is the respective complex amplitude, and ω is the fundamental
angular frequency. The EF and MF produced by the current-carrying conductor, in both regions can be
expanded to a Fourier series of the same form:

E =
∞∑

n=−∞
Ene jnωt, (2)

H =
∞∑

n=−∞
Hne jnωt, (3)
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where En and Hn are the EF and MF in the frequency domain (complex amplitudes of harmonics),
respectively. Due to the linear permeability of the tank wall, the complete system of Maxwell’s
equations in the quasi-static approximation can be written for each harmonic as follows:

∇× En = − jnωµHn, ∇ ·Hn = 0,

∇×Hn = Jn + σEn, ∇ · En = 0,
(4)

where µ = µrµ0.
Due to the axial symmetry of the system, the solution to Equation (4) can be sought as follows:

Hn = Hn,ϕ(r, z)eϕ, En = En,r(r, z)er + En,z(r, z)ez, (5)

where the MF is an even function of the axial coordinate z: Hn,ϕ(r,−z) = Hn,ϕ(r, z). The system of
Equation (4) must be taken into account along with the boundary conditions given below in the
interface of regions RI and RII.

H(I)
n,ϕ

∣∣∣∣
r=a

= H(II)
n,ϕ

∣∣∣∣
r=a

,

∂H(I)
n,ϕ
∂z

∣∣∣∣∣∣
r=a

=
∂H(II)

n,ϕ
∂z

∣∣∣∣∣∣
r=a

= 0,
(6)

∂H(I)
n,ϕ
∂r

∣∣∣∣∣∣
r=a

= −
H(II)

n,ϕ
a

∣∣∣∣∣∣
r=a

,

H(I)
n,ϕ

∣∣∣∣
r=b

= H(II)
n,ϕ

∣∣∣∣
r=b

,

∂H(I)
n,ϕ
∂z

∣∣∣∣∣∣
r=b

=
∂H(II)

n,ϕ
∂z

∣∣∣∣∣∣
r=b

= 0,

(7)

∂H(I)
n,ϕ
∂r

∣∣∣∣∣∣
r=b

= −
H(II)

n,ϕ
b

∣∣∣∣∣∣
r=b

,

1
r

∂
(
rH(I)

n,ϕ

)
∂r

∣∣∣∣∣∣∣
z= h

2

= 1
r

∂
(
rH(II)

n,ϕ

)
∂r

∣∣∣∣∣∣∣
z= h

2

= 0,

∂H(I)
n,ϕ
∂z

∣∣∣∣∣∣
z= h

2

= 0,

H(I)
n,ϕ

∣∣∣∣
z= h

2

= H(II)
n,ϕ

∣∣∣∣
z= h

2

,

(8)

where H(I)
n,ϕ and H(II)

n,ϕ are the MF components in regions RI and RII, respectively, and the MF in air
(Region I), according to the Ampere–Maxwell law, is:

H(I)
n,ϕ =

In

2πr
. (9)

3. Electromagnetic Field (EMF) Distribution in Region RII

In region RII, the system of Equation (4) can be reduced to the following equation for the magnetic
flux density:

1
r
∂
∂r

r
∂H(II)

n,ϕ

∂r

+ ∂2H(II)
n,ϕ

∂z2 −

H(II)
n,ϕ

r2 − jnωµσH(II)
n,ϕ = 0. (10)
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Equation (10) can be solved using the separation of variables technique [24]. As a result, the
following expression is obtained:

H(II)
n,ϕ (r, z) =

(An

r
+ Bnr

)
cosh(βnz) +

∞∑
m=0

{
Cn,mI1(λn,mr) + Dn,mK1(λn,mr)

}
cos(kmz), (11)

where I1(λn,mr) and K1(λn,mr) are the modified Bessel functions of the first order, β2
n = jnωµσ,

km =
π(2m+1)

h , and λ2
n,m = k2

m + β2
n, where m = 0, 1, 2, . . .. In order to find the unknown constants Cn,m

and Dn,m, boundary conditions (6) and (7) need to be applied. Therefore, we get:
βn

(
An
a + Bna

)
sinh(βnz) −

∞∑
m=0

km
{
Cn,mI1(λn,ma) + Dn,mK1(λn,ma)

}
sin(kmz) = 0,

βn
(

An
b + Bnb

)
sinh(βnz) −

∞∑
m=0

km
{
Cn,mI1(λn,mb) + Dn,mK1(λn,mb)

}
sin(kmz) = 0,

(12)

where sinh(βnz) can be expanded in a Fourier series within the segment z ∈
[
−

h
2 , h

2

]
as follows (see [9]):

sinh(βnz) =
∞∑

m=0

4βn(−1)m

hλ2
n,m

cosh
(
βnh
2

)
sin(kmz). (13)

The substitution of (13) into the system of Equation (12) yields:
km

{
Cn,mI1(λn,ma) + Dn,mK1(λn,ma)

}
= βn

(
An
a + Bna

) 4βn(−1)m

hλ2
n,m

cosh
(
βnh

2

)
,

km
{
Cn,mI1(λn,mb) + Dn,mK1(λn,mb)

}
= βn

(
An
b + Bnb

) 4βn(−1)m

hλ2
n,m

cosh
(
βnh

2

)
.

The solution to this system of equations (with respect to the constants Cn,m and Dn,m) should be
substituted into Equation (9), resulting in the following solution to Equation (10):

H(II)
n,ϕ (r, z) =

(
An
r + Bnr

)
cosh(βnz)

+
∞∑

m=0

4β2
n(−1)m

hkmλ2
n,m

cosh
(
βnh

2

)
cos(kmz)

I1(λn,ma)K1(λn,mb)−I1(λn,mb)K1(λn,ma)

×

{(
An
a + Bna

)
(I1(λn,mr)K1(λn,mb) − I1(λn,mb)K1(λn,mr))

+
(

An
b + Bnb

)
(I1(λn,ma)K1(λn,mr) − I1(λn,mr)K1(λn,ma))

}
,

(14)

where constants An and Bn are to be found in the next section.

4. Coupling of Solutions in Regions RI and RII

Solutions (9) and (14) should be appropriately coupled by employing boundary conditions (6–8).
First, taking account of the fact that cos(kmh/2) = 0, the following result for the MF on the upper
surface of the tank cover can be obtained from Equation (14):

H(II)
n,ϕ

(
r,

h
2

)
=

(An

r
+ Bnr

)
cos h

(
βnh
2

)
. (15)

The substitution of (15) and (9) into boundary condition (8) yields:(An

r
+ Bnr

)
cos h

(
βnh
2

)
=

In

2πr
. (16)
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Since the functions 1/r and r are linearly independent, the following solution for the constants An and
Bn can be obtained:

An =
In

2πcos h
(
βnh

2

) , Bn = 0.

Finally, the substitution of these results into Equation (14) yields the following solution to Equation
(10) in region RII:

H(II)
n,ϕ (r, z) = In

2πr
cosh(βnz)

cosh
(
βnh

2

)
+ In

2π

∞∑
m=0

4β2
n(−1)m

hkmλ2
n,m

cos(kmz)
I1(λn,ma)K1(λn,mb)−I1(λn,mb)K1(λn,ma)

×

{
1
a [I1(λn,mr)K1(λn,mb) − I1(λn,mb)K1(λn,mr)]

+ 1
b [I1(λn,ma)K1(λn,mr) − I1(λn,mr)K1(λn,ma)]}.

(17)

Both Equations (7) and (17) represent the solution to Maxwell’s equations for the nth harmonic
of the MF in the entire domain. The solution depends on the tank geometry (through the hole and
disc radii a and b, the wall thickness h), amplitude of the nth harmonic of the electric current, and
angular frequency (through the parameters λn,m and βn). It can be noticed that the dependence of
the solution on the disc radius b is weak enough to be neglected. Indeed, according to Equation
(11), βn = (1 + j)/δn, where δn =

√
2/nωµσ is the skin-effect depth for the nth harmonic of the MF.

Therefore, the following estimation can be obtained:

∣∣∣λn,m
∣∣∣2 =

∣∣∣∣∣∣∣
(
π(2m + 1)

h

)2

+
2 j

δ2
n

∣∣∣∣∣∣∣ ≥ 2
δ2

n
. (18)

Therefore,
∣∣∣λn,m

∣∣∣ ≥ √2/δn, which, due to the smallness of parameter δn, results in the estimation:∣∣∣λn,mb
∣∣∣ ≥ √2b/δn � 1. This estimation leads to the following asymptotic behavior of the modified

Bessel functions [25]:

K1(λn,mb) ∝
√

π
2λn,mb

e−λn,mb = O


√
δn

b
e−

b
δn

→ 0 as
b
δn
→∞, (19)

where O(x) is the Landau big O notation [26]. Thus, the terms with K1(λn,mb) and 1/b in solution (17)
can be neglected. As a result, the following equation is obtained:

H(II)
n,ϕ (r, z) =

In

2πr
cosh(βnz)

cos h
(
βnh

2

) + 2β2
nIn

πah

∞∑
m=0

(−1)m

kmλ2
n,m

K1(λn,mr)
K1(λn,ma)

cos(kmz). (20)

At the same time, if the hole radius a is much greater than the skin-effect depth δ0 for the
fundamental harmonic, i.e., a � δ0, then the following asymptotic formulas can be used for the
functions K1(λn,ma) and K1(λn,mr), namely,

K1(λn,ma) ∝
√

π
2λn,ma

e−λn,ma and K1(λn,mr) ∝
√

π
2λn,mr

e−λn,mr. (21)

The substitution of (21) into Equation (20) results in the following approximate formula for the nth
harmonic of the MF in the tank wall:

H(II)
n,ϕ (r, z) =

In

2πr
cosh(βnz)

cos h
(
βnh

2

) + 2Inβ2
n

πh
√

ar

∞∑
m=0

(−1)m

kmλ2
n,m

e−λn,m(r−a) cos(kmz). (22)
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Equation (22) is a simplified formula for computing MFs in tank walls of transformers. It does not
require the use of special functions such as the modified Bessel functions, etc., which makes formula
(22) advantageous for practical implementation.

5. Electric Field (EF) and Eddy Current (EC) Losses in the Tank Wall

Due to the Ohmic nature of EC losses, the average power density of losses can be expressed in
the form:

P(r) =
1
T

T∫
0

σE2(r, t)dt, (23)

where E(r, t) is the EF in region RII, which can be obtained from Maxwell’s Equation (4) in the form:

E =
∇×H
σ

=
+∞∑

n=−∞
Ene jnωt =

+∞∑
n=−∞

(erEn,r(r, z) + ezEn,z(r, z))e jnωt. (24)

The substitution of (24) into (23) and accurate calculation of the respective integrals yields:

P(r, z) =
+∞∑

n=−∞
Pn(r, z),

where
Pn(r, z) =

1
2
σ
(∣∣∣En,r(r, z)

∣∣∣2 + ∣∣∣En,z(r, z)
∣∣∣2). (25)

Here, the radial component of the EF in the tank wall is:

En,r(r, z)= − 1
σ
∂Hn,ϕ
∂z

= −
βnIn
2πrσ

sinh(βnz)

cosh
(
βnh

2

) + In
2πσ

∞∑
m=0

4β2
n(−1)m

hλ2
n,m

sin(kmz)
I1(λn,ma)K1(λn,mb)−I1(λn,mb)K1(λn,ma)

×

{
1
a [I1(λn,mr)K1(λn,mb) − I1(λn,mb)K1(λn,mr)]

+ 1
b [I1(λn,ma)K1(λn,mr) − I1(λn,mr)K1(λn,ma)]},

whereas the axial component takes the form:

En,z(r, z) = 1
σ

1
r
∂(rHn,ϕ)

∂r = In
2πσ

∞∑
m=0

4β2
n(−1)m

hkmλn,m

cos(kmz)
I1(λn,ma)K1(λn,mb)−I1(λn,mb)K1(λn,ma)

×

{
1
a [I0(λn,mr)K1(λn,mb) + I1(λn,mb)K0(λn,mr)]

−
1
b [I1(λn,ma)K0(λn,mr) + I0(λn,mr)K1(λn,ma)]}.

Using the same approximation as in (22), these components of the EF can be represented as follows:

En,r(r, z) = −
βnIn
2πrσ

sinh(βnz)

cos h
(
βnh

2

) + 2β2
nIn

πahσ

∞∑
m=0

(−1)m

λ2
n,m

K1(λn,mr)
K1(λn,ma) sin(kmz)

=
2β2

nIn
πahσ

∞∑
m=0

(−1)m

λ2
n,m

(√
a
r e−λn,m(r−a)

−
a
r

)
sin(kmz),

(26)

En,z(r, z) = −
2β2

nIn

πahσ

∞∑
m=0

(−1)m

kmλn,m

√
a
r

e−λn,m(r−a) cos(kmz), (27)

where expansion (13) of the function sinh(βnz) in a Fourier series has been used.
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By taking the integral of power density losses (23) over the whole conducting disk, the total losses
in the tank wall can be computed. Thus, it can be written as:

Ptot =
2π∫
a

dϕ
b∫

a
rdr

h/2∫
−h/2

dzP(r, z) = 2π
+∞∑

n=−∞

b∫
a

rdr
h/2∫
−h/2

dzPn(r, z)

= πσ
+∞∑

n=−∞

b∫
a

rdr
h/2∫
−h/2

dz(
∣∣∣En,r(r, z)

∣∣∣2 + ∣∣∣En,z(r, z)
∣∣∣2). (28)

Results (26) and (27) for En,r(r, z) and En,z(r, z) should be substituted into Equation (28), where
the integration over the variable z can be performed using the orthogonality of the system of functions{
sin(kmz), cos(knz)

}
. As a result, the following asymptotic expression for the total EC losses can be

obtained:

Ptot ≈

+∞∑
n=−∞

2|βn|
4
|In |

2
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)
},

where erf(x) is the error function [16]. Finally, taking advantage of the fact that the value of
∣∣∣ √λn,mb

∣∣∣ is

high we can approximately write: erf
(√
λn,mb

)
≈ 1. As a result, the following approximation can be

suitably used for calculating the total losses:

Ptot =
+∞∑

n=−∞

2|βn|
4
|In |

2
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∣∣∣∣∣cosh
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2
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1
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2

k2
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)
−2Re
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πa
λn,m

eλn,maerfc
(√
λn,ma

))
}

(29)

where erfc(x) = 1− erf(x) is the complementary error function [16].

6. Simulation Results and Discussion

Several simulations were carried out in order to compare the analytical results with FEM solutions.
FEM computations were carried out using the Altair Flux finite element (FE) software.

A disk with the characteristics: h = 0.010 m, a = 0.0125 m, b = 0.150 m, and εr = 1 is considered.
A copper conductor with a radius r0 = 2 mm and length 1400 mm crosses the disk at the center of
the hole. One quarter of the entire disc and a half of its height were considered in the simulations,
taking advantage of the symmetry of the problem. The total system was enclosed in a cylinder with an
inner radius of 255 mm, outer radius of 305 mm, inner half height of 700 mm, and outer half height of
800 mm.

To mesh the geometry, 66,212 volume finite elements, 14,992 surface elements, and 1292 line
elements were used, which gave as a result a total number of 82,496 elements. Of good quality were
96.36% of the elements. Moreover, to properly simulate the skin-effect in a thin boundary layer of the
disk and to ensure a better accuracy of computations, nine layers of FE mesh of 0.255 mm of height in
each one, were generated near the upper surface of the disk as shown in Figure 3a. Additionally, a
high-density mesh was created near the conductor (see Figure 3b).



Appl. Sci. 2020, 10, 3527 9 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 

To mesh the geometry, 66,212 volume finite elements, 14,992 surface elements, and 1292 line 
elements were used, which gave as a result a total number of 82,496 elements. Of good quality were 
96.36% of the elements. Moreover, to properly simulate the skin-effect in a thin boundary layer of the 
disk and to ensure a better accuracy of computations, nine layers of FE mesh of 0.255 mm of height 
in each one, were generated near the upper surface of the disk as shown in Figure 3a. Additionally, 
a high-density mesh was created near the conductor (see Figure 3b). 

 
Figure 3. Finite element mesh: (a) Three-dimensional (3D) view (b) top view. 

Figures 4 and 5 show the MF penetration in the transformer tank, computed for the first (60 Hz) 
and third harmonics (180 Hz) using formula (20) (Figures 4a and 5a for the first and Figures 4b and 
5b for the third harmonics, respectively), for two different resistivities: ρ = 0.25 × 10ି଺	Ω · m  in 
Figure 4 and ρ = 0.75 × 10ି଺	Ω · m  in Figure 5. In order to compare the MF distribution in the 
magnetic disk for different harmonic numbers, both harmonics were studied with the same value of 
the RMS current ܫ୰୫ୱ,ଵ = ୰୫ୱ,ଷܫ = 141.42A. In both cases, the relative permeability was considered as ߤ௥ = 200. It can be observed in Figures 4 and 5 that the higher the harmonic number, the smaller is 
the penetration depth of the MF in the transformer tank. 

Figure 3. Finite element mesh: (a) Three-dimensional (3D) view (b) top view.

Figures 4 and 5 show the MF penetration in the transformer tank, computed for the first (60 Hz)
and third harmonics (180 Hz) using formula (20) (Figures 4a and 5a for the first and Figures 4b and 5b
for the third harmonics, respectively), for two different resistivities: ρ = 0.25× 10−6 Ω·m in Figure 4
and ρ = 0.75× 10−6 Ω·m in Figure 5. In order to compare the MF distribution in the magnetic disk for
different harmonic numbers, both harmonics were studied with the same value of the RMS current
Irms,1 = Irms,3 = 141.42 A. In both cases, the relative permeability was considered as µr = 200. It can
be observed in Figures 4 and 5 that the higher the harmonic number, the smaller is the penetration
depth of the MF in the transformer tank.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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Figure 5. MF penetration in the transformer tank for ρ = 0.75× 10−6 Ω·m: (a) n = 1, (b) n = 3.

The EF distribution in the tank wall, computed using our analytical method (formulas (26) and
(27)), is shown in Figures 6 and 7 for the first and third harmonics, under the same conditions (Figure 6
for ρ = 0.25 × 10−6 Ω·m and Figure 7 for ρ = 0.75 × 10−6 Ω·m, also Irms,1 = Irms,3 = 141.42 A and
µr = 200 in both cases). Since the EC density is proportional to the EF (jn = σEn), Figures 6 and 7
also qualitatively depict EC density lines in the tank wall. It can be observed that the ECs are mainly
concentrated near the wall surface (skin-effect), and the concentration of the current density is higher
for the third harmonic than for the first.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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Figure 6. Electric field (EF) distribution in the transformer tank for ρ = 0.25 × 10−6 Ω·m: (a) n = 1,
(b) n = 3.

Figure 8a,b show the FEM-calculated magnetic flux density distribution in the transformer tank
for ρ = 0.25× 10−6 Ω·m and RMS current Irms = 141.42 A for the first and third harmonics, respectively.
The maximum value of the magnetic flux density B = 637.94× 10−3 T was obtained on the hole surface
for the first harmonic (see Figure 8a), whereas for the third harmonic it was B = 638.19 × 10−3 T
(Figure 8b).
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Figure 8. Magnetic flux density distribution in the transformer tank wall for ρ = 0.25× 10−6 Ω·m: (a)
n = 1 (b) n = 3.

The absolute value wave-form for the MF on the central plane of the tank wall (at z = 0) is shown
in Figures 9 and 10, where the blue line represents the analytical solution and the red points correspond
to FEM simulations. Figure 9 is plotted for a resistivity of ρ = 0.25 × 10−6 Ω·m, whereas Figure 10
shows the MF profile for ρ = 0.75× 10−6 Ω·m. Figures 9 and 10 show an excellent match between the
analytical and FEM computations, which validates Equations (22)–(26). On the other hand, the time
taken while executing the analytical model was 0.66 s, which is notably less than the several minutes
the FE software takes in execution.
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To validate formula (29), total EC losses were analytically and numerically computed for eight
different cases, where the radii, resistivity, and frequency were varied (see Table 1). The data are for
a 17 kVA transformer with primary and secondary voltages of 120 and 240 volts, respectively that
can be manufactured in the industry. Results of simulations are presented in Table 2. From Table 2,
it can be observed that both the analytical and FEM-calculated results are very close. The relative
error between analytical and FEM solutions is in the range 0.13% to 1.610%, which proves the high
accuracy of Formulas (26), (27), and (29). Moreover, although the skin-effect depth decreases for higher
frequencies, the MF density in the surface layer increases, which leads to higher losses.

Table 1. Transformer tank wall parameters and frequencies (µr = 200)

Case A [m] B [m] h [m] Irms [A] ρ [Ω·m] Harmonic

1 0.0125 0.150 0.010 141.42 0.25× 10−6 n = 1
2 0.0125 0.150 0.010 141.42 0.25× 10−6 n = 3
3 0.04 0.145 0.00952 141.42 0.25× 10−6 n = 1
4 0.04 0.145 0.00952 141.42 0.25× 10−6 n = 3
5 0.04 0.145 0.00952 141.42 0.25× 10−6 n = 5
6 0.035 0.140 0.00952 141.42 0.75× 10−6 n = 1
7 0.035 0.140 0.00952 141.42 0.75× 10−6 n = 3
8 0.035 0.140 0.00952 141.42 0.75× 10−6 n = 5

Table 2. Total stray losses in the disk (µr = 200)

Case Ptotal [W],
Analytical

Ptotal [W],
Numerical

Relative Error
(%)

Skin-Effect
Depth, [mm] Harmonic

1 1.874 1.870 0.22 2.297 n = 1
2 3.276 3.267 0.27 1.326 n = 3
3 0.959 0.953 0.63 2.297 n = 1
4 1.632 1.630 0.13 1.326 n = 3
5 2.127 2.117 0.470 1.027 n = 5
6 1.614 1.588 1.610 3.979 n = 1
7 3.108 3.100 0.26 2.297 n = 3
8 3.917 3.901 0.41 1.779 n = 5

7. Conclusions

In this paper, new analytical formulas for the EMF and EC loss computation in transformer
tank covers have been strictly derived, with proper consideration of harmonics in the load current.
Noteworthy, asymptotic formulas, that do not require the use of special functions, were formally
obtained using asymptotic expressions of the modified Bessel functions. These formulas allow
the distribution of MF and computation of power losses due to each harmonic in the tank wall.
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The geometry considered accurately represents the arrangement of the conductor carrying load current
with harmonics passing through the transformer tank wall.

The new formulas were successfully verified by comparing their performance with computationally
expensive FEM simulations, proving their efficiency and efficacy. Hence, our results are useful for
industrial applications, where transformer analysis and design demand accurate results and low-cost
computational resources. It has been additionally shown that the presence of harmonics in the load
current lowers the skin effect depth, they considerably increase stray losses and, therefore, must be
taken into account for proper analysis and design of transformers. These formulas can be employed in
the design algorithms for evaluating the impacts of harmonics on the transformer tank wall. The results
can be used to improve the design of the transformer and thereby considerably reduce the possibility
of hot spots in the bushing regions. Therefore, our formulas are an important advancement to the
existing methods and formulas available in the literature.

Our approach provides a basis for further developments such as analysis of stray losses in the
case of three-phase currents (three conductors passing through the tank wall).
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