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Abstract: The power electronic converter design is essential for the operation of the switched
reluctance motor (SRM). Thus, a fault-tolerant power converter is fundamental to ensure high
reliability and extend the drive operation. To achieve fault tolerance, fault detection and diagnosis
methods are critical in order to identify, as soon as possible, the failure mode of the drive. To provide
such capability, it is proposed in this paper a new fault-tolerant power converter scheme combined
with a fault detection method regarding the most common power semiconductors failures in SRM
drives. The fast and reliable proposed diagnosis method is based on the entropy theory. Based on
this theory, normalized indexes (diagnostic variables) are created, which are independent from the
load and speed of the motor. Through this method, it is possible to identify the faulty leg, as well as
the type of power semiconductor fault. To test and evaluate the proposed solution several laboratory
experiments were carried out using a 2 kW four-phase 8 / 6 SRM.

Keywords: switched reluctance motor (SRM); motor drives; fault-tolerant; fault detection;
fault diagnosis; entropy-based feature

1. Introduction

There has been a renewed interest in the last decades concerning Switched Reluctance Motor
(SRM) drives for a wide range of applications. One of the applications in which several studies were
made about the type of motor that is more adequate to be used, is related to the electric vehicles (EV).
From these studies, it was possible to see that the SRM is a very interesting option for this kind of
application [1–4]. Another application that was verified that this machine is indicated to be used due
to their simplicity and robust design, is related to their use as generator, namely, to extract energy
from the wind and ocean waves [5–10]. This machine is also very indicated to be used in applications
associated with water pumps [11,12]. There are also other applications in which this machine can
also be used as can be seen in the work [13]. In fact, in most safety-critical applications a continuous
drive operation (in normal or degraded mode) must be assured in the presence of a drive failure until
a possible stop to repair. The interest in this motor is due to some important characteristics, such as
high reliability level, high efficiency, simplicity of operation, and robust structure [13]. In contrast to
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other motors, the SRM has magnetic independence of the motor phases and withstands certain failure
modes in motor windings or in the inverter circuitry without excessive degradation of its operation.

Electrical drives play, in general, a very important role in many industries and applications,
being essential to detect and diagnose failures in a very early stage in order to avoid risk to human life,
damage of the environment or high costs arising from downtime, among other problems. Using suitable
detection and diagnosis methods it becomes possible to replace faulty devices or parts by on-line or
standby redundant devices and/or apply fault-tolerant control strategies.

One of the characteristics of the SRM is that it requires a power electronic converter [9–18].
Although the SRM presents a very high reliability level, the same does not happen with the power
converter [19]. Normally the main problems of power converters are the failures in the power
semiconductor devices. There are two possible failure modes associated with these components: open
and short-circuit failures. In the case of an open-circuit failure, there will be a break in the excitation of
the motor winding that is connected to such device. This can seriously affect the speed and torque of
the motor. On the other hand, under short-circuit failure mode, the current through the motor winding
connected to the power device under fault will increase to values that can irremediably damage that
winding if proper precautions are not taken. To mitigate such problems, a fast-reliable detection and
diagnosis of the power device under failure is normally necessary to minimize abnormal functioning
and to avoid possible damages in the motor.

To overcome these problems a fault-tolerant power converter is required. Thus, several research
papers have been addressed to this topic. In [20,21] it is proposed an asymmetric three-level neutral
point diode clamped converter for the SRM drive. However, this scheme does not handle with all types
of failure modes. In [22] another scheme is presented that also has fault-tolerant capability. In this
scheme it is only required additional connections between the converter legs. However, it does not
provide fault tolerance to short-circuit failures in the power devices. Other fault-tolerant topologies
are presented in [23–25]. However, they require extra transistors and/or an SRM with extra connection
windings per phase.

As mentioned before, one of the most important aspects related to fault-tolerant converters is the
requirement of reliable fault detection and diagnosis methods [26–29]. The identification of a power
device failure requires the use of advanced algorithms. It should be noted that often, such failures
could be very difficult to detect. In case, for example, of a short-circuit failure, in some conditions,
the current in the winding associated with the faulty device does not increase to accentuated values [30].
The main developed fault detection methods have been based on sensing two variable types: voltage
and current. Methods that are based on voltage sensors are presented in [31,32]. The first proposal
is based on the analysis of the voltage patterns. For this analysis, it was used a method based on
symmetry indexes. In these approaches, it is required the use of a voltage sensor for each of the
windings. Other approaches based on voltage sensors have also been proposed. This is the case of
the method presented in [33] which requires an extra DC-link current sensor. Regarding the methods
based on current sensors, these have been considered more interesting. With the purpose to use the
inherent current sensors associated with the motor windings, a method based on the average values
of those currents was proposed in [34]. In [35] it was proposed a method to diagnose the SRM drive
through the use of Wavelet Packet Decomposition. Another approach based on the current sensor
is proposed in [36]. This allows for a real time diagnosis and is able to determine the location of the
faulty power device. However, it requires a different power topology to include one or two current
sensors, which are not linked to the current sensors associated with the motor windings.

As referred, SRM machines and drives with fault-tolerant capability could be very important in
several applications. One of the applications in which that capability is critical is on aircrafts since
the security of the passengers and crew is at stake. So, a research about the use of an SRM with
fault-tolerant capability for an electromechanical actuator that moves a rudder or an aileron of an
aircraft was presented in [32]. In [33] it is presented an SRM configuration that is applicable for a
fuel pump drive in an aircraft. In the work [34] permanent magnet assist, segmented rotor, switched
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reluctance drive has been constructed, tested and shown to be a strong contender for aerospace
applications. Another application in which high reliability is critical is the nuclear power plant. In this
context, in [35] was presented a fault-tolerant control strategy for the failure of the power converter
of SRM valve electric actuator used in nuclear power plants. The use of SRM machines with fault
tolerance capability can also be very important in electric vehicles [36].

With the purpose to obtain a reliable SRM drive a new fault-tolerant power converter scheme
associated with a fault detection and diagnosis algorithm for power devices is proposed in this paper.
For the detection of a failure in the power semiconductors of the SRM drive, it is proposed a fast
and reliable fault diagnosis algorithm. This algorithm can detect open or short-circuit failures in
power semiconductors of the power converter. It also generates normalized indexes in order to be
immune to load and speed conditions. Besides the fast response, the proposed algorithm also presents
robustness to problems related to noise. Several simulation and experimental results will be presented
to demonstrate the proposed fault-tolerant solution.

2. Impact and Mitigation of a Power Semiconductor Failure in the Switched Reluctance Motor Drive

For the switched reluctance motor, the power electronic converter is considered an essential device
for its correct operation. In fact, a failure in one of the power semiconductors is able to produce high
torque and speed variations and may lead to motor damages. Several topologies can be adopted for
the power electronic converter in the SRM drive, but in all of them, a failure in a power semiconductor
will give rise to the problems already referred. In this work, it will be used a topology based on the
asymmetrical half-bridge converter (AHB) but with fault-tolerant capability. Figure 1 shows the power
circuit of a classic AHB topology applied to the 8 / 6 SRM. In this topology, associated with each phase
bridge leg there are two fully controlled power semiconductors and two freewheeling diodes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 20 

reluctance drive has been constructed, tested and shown to be a strong contender for aerospace 
applications. Another application in which high reliability is critical is the nuclear power plant. In 
this context, in [35] was presented a fault-tolerant control strategy for the failure of the power 
converter of SRM valve electric actuator used in nuclear power plants. The use of SRM machines 
with fault tolerance capability can also be very important in electric vehicles [36]. 

With the purpose to obtain a reliable SRM drive a new fault-tolerant power converter scheme 
associated with a fault detection and diagnosis algorithm for power devices is proposed in this 
paper. For the detection of a failure in the power semiconductors of the SRM drive, it is proposed a 
fast and reliable fault diagnosis algorithm. This algorithm can detect open or short-circuit failures in 
power semiconductors of the power converter. It also generates normalized indexes in order to be 
immune to load and speed conditions. Besides the fast response, the proposed algorithm also 
presents robustness to problems related to noise. Several simulation and experimental results will be 
presented to demonstrate the proposed fault-tolerant solution. 

2. Impact and Mitigation of a Power Semiconductor Failure in the Switched Reluctance Motor 
Drive 

For the switched reluctance motor, the power electronic converter is considered an essential 
device for its correct operation. In fact, a failure in one of the power semiconductors is able to 
produce high torque and speed variations and may lead to motor damages. Several topologies can 
be adopted for the power electronic converter in the SRM drive, but in all of them, a failure in a 
power semiconductor will give rise to the problems already referred. In this work, it will be used a 
topology based on the asymmetrical half-bridge converter (AHB) but with fault-tolerant capability. 
Figure 1 shows the power circuit of a classic AHB topology applied to the 8 / 6 SRM. In this topology, 
associated with each phase bridge leg there are two fully controlled power semiconductors and two 
freewheeling diodes. 

 
Figure 1. Electronic power converter used to supply the 8 / 6 switched reluctance motor  

As mentioned before, a failure in one power device will affect the SRM drive operation. 
Usually, in each phase there are different possible failure modes associated with transistors. They 
are associated with open transistor failure, and to short-circuit transistor failure. These kinds of 
faults (open or short-circuit) could happen in the upper or lower transistor. 

After an open-circuit failure in a power device, it will no longer be possible to excite the phase 
connected to the faulty leg. Figure 2 shows an example of the possible current paths in case of an 
open-circuit failure in the power devices S2A or S1A. In Figure 3 it is possible to see the winding 
currents of the 8 / 6 SRM when the converter operates with an open-circuit failure. These waveforms 
were obtained through the use of a current chopping control. In this figure is possible to see the 
absence of current in one of the phases caused by open-circuit failure. This failure has impacted on 
the average electromagnetic torque causing a significant reduction [36]. 

The occurrence of a short-circuit failure in a power device will also affect the phase connected to 
the faulty leg. Considering this failure mode, it will no longer be possible to reverse the voltage at 
the winding terminals of the faulty phase, as shown in Figure 4. This figure shows an example of the 
possible current paths in case of a short-circuit failure in the power devices S2A or S1A. Considering 
this failure mode, a large current may appear in the motor winding connected to the faulty bridge 
leg. Figure 5 presents the motor winding currents of the 8 / 6 SRM after a short-circuit failure using 
the current chopping control. Through this figure is possible to see how large can be the current in 
the winding associated with the faulty bridge leg. This large amount of current depends on several 

Figure 1. Electronic power converter used to supply the 8 / 6 switched reluctance motor.

As mentioned before, a failure in one power device will affect the SRM drive operation.
Usually, in each phase there are different possible failure modes associated with transistors. They are
associated with open transistor failure, and to short-circuit transistor failure. These kinds of faults
(open or short-circuit) could happen in the upper or lower transistor.

After an open-circuit failure in a power device, it will no longer be possible to excite the phase
connected to the faulty leg. Figure 2 shows an example of the possible current paths in case of an
open-circuit failure in the power devices S2A or S1A. In Figure 3 it is possible to see the winding currents
of the 8 / 6 SRM when the converter operates with an open-circuit failure. These waveforms were
obtained through the use of a current chopping control. In this figure is possible to see the absence of
current in one of the phases caused by open-circuit failure. This failure has impacted on the average
electromagnetic torque causing a significant reduction [36].
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The occurrence of a short-circuit failure in a power device will also affect the phase connected to
the faulty leg. Considering this failure mode, it will no longer be possible to reverse the voltage at
the winding terminals of the faulty phase, as shown in Figure 4. This figure shows an example of the
possible current paths in case of a short-circuit failure in the power devices S2A or S1A. Considering
this failure mode, a large current may appear in the motor winding connected to the faulty bridge
leg. Figure 5 presents the motor winding currents of the 8/6 SRM after a short-circuit failure using the
current chopping control. Through this figure is possible to see how large can be the current in the
winding associated with the faulty bridge leg. This large amount of current depends on several factors,
such as the turn-on and turn-off angles of the healthy devices and the machine speed. So, due to this
fault, it will not be possible to apply a negative voltage to the winding connected to the switch under
fault, not being possible a quick demagnetization of the winding, as required. Depending on the
current amount and the faulty time duration, this can be a dangerous situation for the machine and
power converter, putting under stresses its materials and components.

To mitigate the impact of power devices failure modes in the drive and SRM, a fault-tolerant
power converter is required. Thus, it is proposed in this paper a fault-tolerant circuit that can handle
with open or short-circuit failures in power devices. This fault-tolerant topology can be seen in Figure 4.
This topology does not require extra power semiconductors and only uses solid state relays (SSRs)
to connect the faulty legs to other healthy phase in order to replace and isolate the faulty devices.
It should be noted that the use of mechanical relays is possible, but they are usually not compatible
with the operation of the SRM drives, especially for high-speed operation. These devices take about
10 ms to perform any operation, which represent several periods without proper control in the phase
winding. Instead of mechanical relays, the proposed solution uses SSRs since they can withstand
PWM frequencies around 5 kHz, which represent switching times around 0.2 ms (50 times faster than
mechanical relays). In the proposed fault-tolerant topology the SSRs were designed to operate once
after the fault diagnosis, remaining in that position.
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Analyzing the topology presented in Figure 4 it is possible to observe that an open or short-circuit
failure in one of the power devices can be solved through the reconfiguration of the circuit. An example
of this operation can be seen in Figure 5, considering an open or short-circuit failure in the power
device S1A. In this situation the leg connected to the faulty power device is isolated and the similar
legs connected to motor winding C will also be used to control the current in winding A. In this case,
the power device S1C will be used to control the current in two windings (A and C). In this way, it will
be obtained fault-tolerant capability for these kinds of faults.

3. Proposed Fault Diagnosis Method

This section presents a fast and reliable method for the detection and diagnosis of a faulty power
device. The proposed fault diagnosis method is based on the definition of indexes related to the
pattern of the winding currents. For the definition of these indexes, it will be used a monitoring
method based on a statistical process. The statistical method it based on the entropy feature
introduced initially by Shannon [37]. Although the concept of entropy was originally introduced in
thermodynamics [38], its concepts and relevant principles have been used in many other areas such
as information theory [39–41], biological diversity [42], statistical mechanism, financial markets [43],
signal processing [44] and pattern recognition [45]. This statistic tool allows using a large number of
data and measures the randomness or uncertainty of the system variables.

To implement the entropy feature approach for the identification of the faulty patterns, it is
necessary to acquire first the motor winding currents through current sensors. For the identification
of the patterns it will be used a set of samples related to each winding current. On the other hand,



Appl. Sci. 2020, 10, 3516 6 of 20

to obtain the time behavior of the patterns, it is used a sliding window. Thus, a data sample matrix
X ∈ <n×m of the currents will be created (1), with n samples and N variables.

X =


iA(to) iB(to) . . . iN(to)

iA(to + ∆t) iB(to + ∆t) . . . iN(to + ∆t)
...

...
...

...
iA(to + (n− 1)∆t) iB(to + (n− 1)∆t) . . . iN(to + (n− 1)∆t)

 (1)

The identification of the patterns will be made through the entropy feature of each column of
the matrix X. Many different types of entropy methods have been developed for different application
areas [46,47]. Thus, from the data sample of each current signal of the matrix it will be computed the
corresponding entropy at instant p determined by (2).

Hk(i) = −
n∑

j=1

1
n

∣∣∣ik( j)
∣∣∣ log2

(1
n

∣∣∣ik( j)
∣∣∣), k = A, B, C, D (2)

where i = {iA, iB, iC, iD} is a set of current phase variables with a data sample matrix with n samples for
each current phase and k = A, B, C, D is the index of each current phase.

After the computation of the entropy feature value for each current at instant p it will be used
normalized indexes (diagnostic variables) that are independent of the load and speed of the motor,
in order to allow the diagnosis and identification of a faulty power device. These normalized indexes
are defined as:

IAVk = 4 Hk(i) , k = A, B, C, D (3)

IAVT =
D∑

k=A

Hk(i) (4)

Through Equations (3) and (4) it is possible to obtain the symmetry/asymmetry index (SI). However,
several SI will be defined in order to associate the current patterns with each power device, connected
to each motor winding. For the machine under study (8/6 SRM) four SI (A, B, C, and D) will be
considered and four SI indexes are defined in accordance with (5) (where k = A, B, C, D):

SIk =
IAVk
IAVT

(5)

Since in (2) there is a logarithm of absolute of current value, if the currents are 0 then a computation
problem could appear. Thus, in order to avoid this problem, it is considered a condition that if the
current is 0 then it is computed the logarithm of absolute of eps value. This parameter is a constant
value and equal to 2–52.

The different values of the diagnostic variables (SI index) will diagnose and identify the power
device under failure. So, if there is a symmetry in the current patterns, then the four diagnostic variables
will be, approximately, equal to one. If there is an asymmetry due to a short or open-circuit failure,
then the diagnostic variables will be no longer near one. So, for an open-circuit failure, the diagnostic
variable associated with the faulty power device will change from one to zero. The other diagnostic
variables will also change, but for a positive value higher than one. In case of a short-circuit failure,
the diagnostic variable associated with the faulty power device will change from one to a positive
value higher than one. The other three diagnostic variables will change from one to a positive value
lower than one.

Taking into account the defined diagnostic variables, it is possible to establish a decision table
where the different failure conditions are characterized. In Table 1 those characteristics are presented
for the several conditions associated with the switches of phase A.
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Table 1. Values of the Diagnostic Variables for the Several Operation Modes Associated with Phase A.

Operation Mode SIA SIB SIC SID

Normal operation 1 1 1 1
Open-circuit failure 0 >1 >1 >1

Short-circuit >1 <1 <1 <1

Since the quantities provided by the diagnostic variables are very well defined and independent
of the load and speed, it is quite easy to define threshold values associated with each failure mode.
It should be noted that the proposed fault diagnosis method was only developed for the power
semiconductors of the machine drive. However, asymmetries in the winding resistances could affect
the choice of the threshold values. So, if the machine has a current control, then the current waveforms
of the windings will be the same even when there are windings with different resistances. However,
if there is not current control of the windings, then asymmetries in the current waveforms of the
windings will appear. In this case, the current waveform associated with the winding with higher
resistance will have lower amplitude. Since the method is based on the definition of indexes related
to the pattern of the winding currents, then a difference between the diagnostic variables (SI index)
will appear. However, since in the case of a fault in the power semiconductors will severely affect the
current waveform of the winding associated with the leg under fault, then changes in the resistors
by for example 20 % will not require to set up thresholds. In fact, those thresholds should be chosen
considering winding resistances superior to 50%.

One of the limitations of the method is when their faults associated with all the phases. In this
case, since the proposed method is based on the definition of indexes related to the pattern of the
winding currents, and taking into consideration that in this situation all the current waveforms will be
the same, all the diagnostic variables (SI index) will present the same value indicating that there is not
a fault.

4. Simulation Analysis

This section is dedicated to simulating the proposed diagnostic method in order to confirm the
theoretical assumptions presented in the previous section. The simulation studies and respective
results were achieved using the software Matlab/Simulink. It was adopted the four-phase 8/6 SRM
model that is available at the Simscape Simulink Library. The characteristics of the machine are presented
in Table 2. The proposed method was tested for different operating conditions of the SRM considering
different transistor failure modes and different devices.

Table 2. Characteristics of the motor.

Parameters Value

Number of stator poles 8
Number of rotor poles 6

Rated power (kW) 1
Peak current (A) 10

Rated speed (r/min) 2850
Phase resistor (Ω) 1.3
Inertia (kg.m.m) 0.01
Friction (N.m.s) 0.005

The first simulation test was made for the proposed detection method considering an open-circuit
failure mode under a 600 rpm motor speed. To verify the dynamic behavior of the fault detection
method, the motor was operating initially with the drive in normal condition (without failures) and
at t = 1 s, where t denotes time, an open-circuit failure in the upper transistor of phase A (S1A) was
introduced. Figure 6 shows the motor winding currents before and after the failure. The corresponding
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result of the diagnostic variables generated by the proposed algorithm is presented in Figure 7.
As shown in this figure, after the fault the diagnostic variable associated with the motor phase
connected to the leg of the open transistor will change immediately their value from one to zero.
The other diagnostic variables will also change from one to a higher value (1.3). This confirms what
was expected for the diagnostic variable behavior for this failure mode.
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A test for the same fault but for an increased motor speed (600 rpm) was also realized. In this
test, the fault happened in a different power device, more specifically the one associated with phase A
(S1A). The obtained result of the motor winding currents can be seen in Figure 8. As in the previous
case, the fault appeared at t = 1 s. Analyzing the obtained result it is possible to verify that the result is
similar with the previous case, although now the current frequencies are higher and the phase under
fault is another one. In Figure 9 is shown the obtained diagnostic variables regarding this specific test.
From this result is possible to confirm that only the diagnostic variable associated with the leg under
fault will present a higher change after the fault (from 1 to 0). The other diagnostic variables also show
a change after the fault, but in an opposite direction and with a lower variation (from 1 to 1.3).
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Another simulation test, considering again an open-circuit failure, was performed but in this
case for 1200 rpm. In this case it was considered a failure in a different power device (S1B). Figure 10
shows the motor winding currents which resulted from this simulation test, where the motor was
initially operated with the drive in normal condition and an open-circuit failure was introduced at
t = 1 s in power device S1B. Due to the motor speed, the motor winding currents present a different
shape. However, as can be seen in Figure 11, the diagnostic variables present a similar behavior to the
previous simulation test. The diagnostic variable associated with the leg under fault (B in this case)
will still maintain the value of one in normal condition, changing to zero after the failure. The other
diagnostic variables will change from 1 to a higher value, more specifically to 1.3.

Finally, a test at nominal speed (2850 rpm) for an open switch fault was also realized. The power
device under fault is now the one associated with phase C (S1C). The result of the motor winding
currents for this test can be seen in Figure 12. The waveform is similar than the previous cases, although
in this case, the currents frequency is much higher. Regarding the diagnostic variables, the obtained
result can be seen in Figure 13. Analyzing this last figure, it is possible to verify that the behavior
is similar than the previous ones, although in this case the variable that shows higher variation is
the one associated with phase C. It should be noticed that the change of the speed did not influence
the diagnostic variables, since they presented always a similar behavior. In this way, the method is
not affected by the speed of the machine. Another aspect that was possible to confirm is that a clear
change of the diagnostic variable associated with the leg under fault was verified, allowing in this way
to easily define a threshold value. Another easy way that allows one to identify the fault is that the
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variable under fault reduces their value (from one to zero) and the other ones will increase their value
(becomes higher than one), clearly showing in this way which is the variable associated with the fault.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20 
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Simulation tests for a different fault, more specifically for short-circuit failure, were also performed.
The first tests, considering this failure mode, were performed for low speed, more specifically at
60 rpm and 600 rpm. Thus, for both tests, initially, the motor was operated at normal condition and a
short-circuit failure was introduced at t = 1 s in the power semiconductors S1A and S1C (for the 60 rpm
and 600 rpm respectively).

The obtained winding currents for both tests can be seen in Figure 14. As expected, in normal
operation the winding currents are controlled and balanced. However, after the fault, the current in
the winding connected to the faulty bridge leg will increase to very high values. The behavior of the
correspondent diagnostic variables, considering this failure mode, can be seen in Figure 15. Through
these results, it is possible to verify that in normal condition all the variables are stable at the value of
one. However, after this failure mode the variable associated with the faulty leg changes, increasing
for higher values (2 and 2.9 for 60 rpm and 600 rpm). The other variables will also change their values,
but in an opposed way (less than 1). Analysing these values and the values presented in Table 1 (for a
failure in a different power device), it is possible to confirm similar results.

Tests at higher speed for short-circuit failure, namely at 1200 rpm and 2850 rpm were also realized.
As in the previous cases, initially the motor was operated at normal condition and a short-circuit failure
was introduced at t = 1 s in the power semiconductors S1B and S1C (for the 1200 rpm and 2850 rpm
respectively). The result of the motor winding currents for those tests can be seen in Figure 16. Through
this figure is possible to verify that the waveforms are similar than the previous cases, although in
this case the currents frequency is much higher. The corresponding diagnostic variables are presented
in Figure 17. From the analysis of the obtained diagnostic variables it is possible to verify that the
behavior is similar than the previous ones. It should be noticed that the change of the speed did
not influenced the diagnostic variables, since they presented always a similar behavior. In this way,
even for this type of fault, the method is not affected by the speed of the machine. Another aspect
that was possible to confirm is that a clear change of the diagnostic variable associated with the leg
under fault was verified, allowing in this way to easily define a threshold value. It is also possible
to verify that there is a typical pattern associated with this type of fault, namely, the variable under
fault increases their value (becomes higher that one) and the other ones will decrease their values
(become lower than one), clearly showing in this way which is the variable associated with the fault.
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(simulation result).

The processing time of the proposed method depends on the number of variables and the number
of samples for each variable used in the sliding window. Another important factor that influence the
processing time is the hardware used to compute the algorithm. The proposed method was simulated
in a PC with the processor Intel Core i7-7700, CPU 2.80 GHz with installed 16 GB of RAM. Considering
four currents and 155 samples for each current in the sliding window, it was obtained 72 µs to process
those current data.

5. Experimental Results

The proposed fault diagnosis method was also verified through field tests using an experimental
setup in which the characteristics of the motor can be seen in Table 3. The drive was feed by a DC power
supply of 100 V. A current chopping control was used to control the motor. Hall-effect sensors were
used for the acquisition of the motor winding currents. The performance of the fault diagnosis method
was tested considering several condition modes, namely: healthy operation, open and short-circuit
failure modes. All these conditions were also performed at different SRM speeds.
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Table 3. Characteristics of the motor.

Parameters Value

Number of stator poles 8
Number of rotor poles 6

Rated power (kW) 2
Rated speed (r/min) 2850
Phase resistor (Ω) 1.3

Angular stator pole 22.3
Angular rotor pole 22.5

The first experimental test was made considering the drive in normal operation (without failure)
and an open-circuit failure was introduced through the inhibition of the gate signal. This first
experimental test was made at 600 rpm. The SRM motor winding currents before and after the failure
in the power device S1A can be seen in Figure 18. As expected, after the failure, the current in the phase
connected to the faulty leg remains at zero value. It is also possible to see the increase of the excitation
in the healthy phases in order to maintain the speed reference. The corresponding diagnostic variables
are shown in Figure 19. Through the analysis of this figure, it is possible to see that in normal operation
all the diagnostic variables are nearly constant and with a value of one. However, after the open-circuit
failure, they change immediately their values. In fact, the diagnostic variable related to the faulty leg
changes to a final value near zero. The other diagnostic variables also change, but in this case to a final
value of 1.3. This faulty pattern is in accordance with the conditions presented in Table 1.
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A similar experimental test, considering 1200 rpm was also performed. This experimental test is
similar to the previous one, where the motor is operating in normal condition when an open-circuit
failure suddenly occurs in the power device S1B. Figure 20 shows the SRM winding currents before and
after the failure. As expected, in this experimental test the amplitude of the currents is slightly larger
when compared with the previous test due to higher speed operation. It is also possible to confirm
that, after the fault, the current in the faulty phase remains always at zero value. The corresponding
diagnostic variables are shown in Figure 21. From this figure, it is possible to verify that the behavior
of the diagnostic variables is identical to the one obtained in the previous test.
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Experimental tests considering a short-circuit failure in power devices were also made.
Thus, regarding this failure mode, a first test was made at 600 rpm. The results of an experimental test
were the motor is operating in normal condition followed by a short-circuit failure in power device S1C
is presented in Figure 22. From this figure is possible to see that initially, the currents are balanced,
but after the short-circuit failure the current in the motor winding connected to the faulty leg increases
uncontrollably. The behavior of the associated diagnostic variables can be seen in Figure 23. As shown
by this figure, during the normal operation the diagnostic variables are constant and with the value
of one. However, after this failure these variables gradually change. In this situation the diagnostic
variable associated with the faulty leg become higher and reach the value of 2.6. The other variables
will become smaller, stabilizing at the value of 0.5. From this experimental test is possible to confirm
that the obtained pattern of the diagnostic variables is different from the open-circuit failure mode,
but in accordance with the conditions presented in Table 1.
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6. Conclusions

A fault-tolerant power converter and a novel fast and accurate fault diagnosis method for an
SRM drive were proposed in this paper. The proposed converter does not require extra power
semiconductors and only uses solid state relays (SSRs) to connect the faulty legs to other healthy phases
in order to replace and isolate the faulty devices. The proposed diagnosis method was developed
taking into consideration the entropy theory. This method allows the identification of the faulty
leg, as well as the failure mode of the power device. In order to provide a time-domain capability
to the method, it sliding windows were used for the motor current samples. It was also proposed
normalized indexes that are independent from the load and motor speed for the failure diagnostic of
the SRM drive. The method also provides immunity to noise under different operation conditions.
To verify the behavior of the proposed converter and fault diagnosis method, several simulations and
experimental tests were made in different conditions, revealing that the proposed solution presents
good performance.
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