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Featured Application: This study presents a fully automated scheme for wafer inspection using 

scanning acoustic tomography images. Differing from traditional template-matching based 

methods, the proposed method involves a template extraction algorithm and a deep 

learning-based classification. This benefits the inspection process, making it more convenient 

and accurate. 

Abstract: This article presents an automated vision-based algorithm for the die-scale inspection of 

wafer images captured using scanning acoustic tomography (SAT). This algorithm can find 

defective and abnormal die-scale patterns, and produce a wafer map to visualize the distribution of 

defects and anomalies on the wafer. The main procedures include standard template extraction, die 

detection through template matching, pattern candidate prediction through clustering, and pattern 

classification through deep learning. To conduct the template matching, we first introduce a 

two-step method to obtain a standard template from the original SAT image. Subsequently, a 

majority of the die patterns are detected through template matching. Thereafter, the columns and 

rows arranged from the detected dies are predicted using a clustering method; thus, an initial 

wafer map is produced. This map is composed of detected die patterns and predicted pattern 

candidates. In the final phase of the proposed algorithm, we implement a deep learning-based 

model to determine defective and abnormal patterns in the wafer map. The experimental results 

verified the effectiveness and efficiency of our proposed algorithm. In conclusion, the proposed 

method performs well in identifying defective and abnormal die patterns, and produces a wafer 

map that presents important information for solving wafer fabrication issues. 

Keywords: automated visual inspection; convolutional neural network; deep learning; pattern 

classification; semiconductor inspection; wafer map 

 

1. Introduction 

Automated visual inspection (AVI) is a challenging domain in the automation industry and is 

widely applied to production lines for quality control. Systems used in the AVI typically involve 

fields such as mechanical and electrical engineering, optics, mathematics, and computer science. 

Image analytics plays an important role in the success of a visual inspection system. During the past 

few decades, numerous vision-based approaches and related techniques have been presented for 

solving problems in the semiconductor industry, and have been widely employed for detecting 

defects and anomalies in major semiconductor materials and products, such as wafers and chips. A 

large number of studies have been conducted, including vision algorithms, performance 

improvements, and hardware and software development. In this study, we focus on the defective 

pattern detection of wafers. 

Various optical inspection approaches were reviewed in [1]; these approaches were 

categorized based on the inspection techniques and inspected products. The semiconductor 
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fabrication process is typically divided into three main phases requiring different inspection 

algorithms. During the first phase, wafers are manufactured from raw materials using crystal 

growth, slicing, polishing, lapping, etching, and other steps. An integrated circuit (IC) pattern is 

then projected onto the wafer surface. During the second phase, a wafer acceptance test is applied 

to verify the effectiveness of all the individual ICs (also known as a die). Finally, the wafer is cut 

into chips, and the manufacturing process is completed through the packaging stage. A visual 

inspection is always applied during the defect detection for every die pattern prior to the IC 

packaging. 

There has been a significant increase in the complexity of IC structures in recent years; this has 

increased the difficulty of die-scale wafer inspection. A template-based vision system for the 

inspection of a wafer die surface was presented in [2]. Schulze et al. [3] introduced an inspection 

technology based on digital holography, which records the amplitude and phase of the wave front 

from the target object directly to a single image acquired via a CCD camera. The technology was 

also proven to be effective for identifying defects on wafers. In [4], Kim and Oh proposed a method 

using component tree representations of scanning electron microscopy (SEM) images. However, 

their method has only been evaluated qualitatively. To conduct a quantitative assessment, a large 

dataset must be prepared by domain experts. A method employing a two-dimensional wavelet 

transform approach was developed to detect visual defects, such as particles, contamination, and 

scratches on wafers [5]. Magneto-optic imaging, which involves inducing eddy current into the 

target wafer, is used to inspect semiconductor wafers [6]. Moreover, an algorithm comprising noise 

reduction, image enhancement, watershed-based segmentation, and clustering strategy was 

presented. 

Over the past few decades, scanning acoustic microscopes (SAMs) have been extensively 

utilized in the inspection of semiconductor products [7]. They are commonly used in 

non-destructive evaluations through a process called scanning acoustic tomography (SAT) [8] to 

capture the internal features of wafers or microelectronic components. In addition, methods for 

enhancing the resolution and contrast of SAT images are introduced in [9,10]. In general, a wafer 

has large numbers of repeated dies on its surface. These dies are nearly duplicated in a SAT image 

because they have the same structure and circuit pattern. However, the defective (abnormal) dies 

need to be filtered out if they differ from the non-defective (normal) dies. In previous studies, visual 

testing and thresholding approaches have been frequently adopted for defect detection from SAT 

images. Traditionally, the most popular method is to apply template matching die by die. However, 

such template-matching-based approaches often suffer from a lack of robustness [11]. Small 

perturbations of the translation, rotation, scale, and even noise significantly affect the calculation of 

the similarity scores. Moreover, traditional methods sometimes lead to poor results owing to the 

increased complexity of microelectronic structures. For this reason, the problem of identifying 

abnormal dies is no longer a binary thresholding problem. Accordingly, it is regarded as a 

classification task in the present work. 

In recent years, deep-learning techniques have been extensively adopted in image classification 

applications. Deep architectures such as convolutional neural networks (CNNs) have verified their 

superiority over other existing methods. These deep architectures are currently the most popular 

approach for classification tasks. CNN-based models can be trained through end-to-end learning 

without specifying task-related feature extractors. The VGG-16 and VGG-19 models proposed in [12] 

are extremely popular and significantly improve AlexNet [13] by enlarging the filters and adding 

more convolution layers. However, deeper neural networks often become more difficult to train. He 

et al. [14] presented a residual learning framework to simplify the training of a deep network. Their 

proposed residual networks (ResNets) are easy to optimize and can obtain a high level of accuracy 

from a remarkably increased depth of a network. The series of Inception networks presented in [15–

17] is a significant milestone in the development of CNN-based classifiers. Unlike the majority of 

previous networks that stack more layers for better performance, Inception networks use certain 

tricks to improve the speed and accuracy, such as the operation of multi-sized filters at the same 

level, employing an Inception module with reduced dimensions, factorization of a 5 × 5 filter into 
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two 3 × 3 filters to decrease the time consumed, regularization through label smoothing to prevent 

overfitting, and utilization of a hybrid Inception module inspired by ResNets. Thus far, the use of 

ResNets and Inception models has been a dominant trend when facing image-classification 

problems. In [18], the concern regarding increased computation efficiency was addressed, and a 

class of efficient models called MobileNets was presented. 

The goal of this study is to inspect all die patterns on a wafer and then identify defective dies 

or anomalies. The main contributions and innovations of our study are briefly described below. 

 We propose an automatic procedure for extracting a standard template which is then utilized 

for detecting the die patterns from the original SAT image of a wafer. 

 From the detected die patterns and their spatial properties, we present a simple method to 

predict the locations of pattern candidates that possibly contain certain predefined patterns. 

 We design and implement a deep CNN-based classifier to identify all detected patterns and 

predicted pattern candidates. This classifier can categorize them into the background, 

alignment mark, normal, and abnormal classes. 

 Finally, the proposed method uses the obtained patterns with the spatial properties and 

classification results to produce a wafer map. This map provides important information to 

engineers in their analysis regarding the root cause of die-scale failures [19]. 

The remainder of this paper is organized as follows. Section 2 introduces the main algorithm of 

the proposed method. The implementation details and experimental results are described in Section 

3. Finally, some concluding remarks are presented in Section 4. 

2. The Proposed Method 

In this section, we introduce the main phases of our proposed method for detecting defective 

and abnormal die patterns from a target wafer. For a simpler description, we consider the SAT 

image demonstrated in Figure 1 as an example for presenting the proposed method, assuming that 

the original SAT image has a pixel resolution of ����� × ℎ����. It is evident that there are a large 

number of similar dies that regularly repeat on the wafer. In this study, every die is a minimum 

unit that needs to be analyzed. In general, the wafer is well aligned during the SAT imaging process. 

Template-matching methods can be used to find all dies if a reliable template is obtained in advance. 

Consequently, we first introduce an algorithm for automatically extracting a standard template. 

Thereafter, the die patterns need to be detected and classified successively. Therefore, the proposed 

method is divided into three main phases: (1) automatic template extraction, (2) die pattern 

detection and clustering, and (3) die pattern classification. 

 

Figure 1. Original scanning acoustic tomography (SAT) image: example wafer. 
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2.1. Automatic Template Extraction 

The first phase of our method is to seek a reliable template. In this subsection, we describe the 

design of a two-step algorithm, including a template size estimation and standard template 

extraction, to obtain this template. 

2.1.1. Template Size Estimation 

Because the sizes of the die patterns are almost identical, an accurate template size helps find a 

reliable template. The main procedures for estimating the template size are briefly addressed as 

follows. 

1. Initialize parameters: The original SAT image has a pixel resolution of ����� × ℎ����, patch 

image has a pixel resolution of �� × ℎ� , and template has an initial pixel resolution of 

���� × ℎ���, with a similarity threshold of ����. These will be determined and discussed in 

Section 3.1. 

2. The original image is converted into a grayscale image. 

3. An image patch �� with a pixel resolution of �� × ℎ� is randomly cropped near the central 

area from the grayscale SAT image. If the original image is not too large, it can be considered 

an image patch; thus, this step can be skipped. 

4. Histogram equalization is applied to enhance the contrast on this cropped patch. Hence, for 

different imaging settings of the SAT, consistent performance is maintained when conducting 

the following steps. Figure 2 shows the results of the cropped patch before and after histogram 

equalization. 

 

(a) 

 

(b) 

  

Figure 2. Cropped patch from Figure 1: (a) before and (b) after histogram equalization. 

5. An initial template ���� with a size of ���� × ℎ��� is randomly cropped from the patch ��, as 

shown in Figure 3. If step 3 is skipped, we crop this initial template from the grayscale SAT 

image. 
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Figure 3. Initial template. 

6. An ordinary template matching process is conducted to find the parts of image �� that are 

similar to template ����. This step simply slides the initial template image over the patch as in a 

two-dimensional convolution and calculates the following metric for comparing the template 

���� against the local region of the patch ����. 

�(�, �) =
∑ �����(��, ��) ∙ ����(� + ��, � + ��)���,��

�∑ ����(��, ��)�
��,�� ∙ ∑ ����(� + ��, � + ��)�

��,��

 (1) 

where (��, ��) indicates one of the pixels covered by the template for 0 ≤ �� < ���� and 0 ≤ �� <

ℎ���, ���� is the local region ��, � + ����� × ��, � + ℎ���� of patch ��, and �(�, �) is the normalized 

cross-correlation between two evaluated images ���� and ����. Hence, the pixel �(�, �) forms a 

correlation map � for 0 ≤ � ≤ �� − ���� and 0 ≤ � ≤ ℎ� − ℎ���. Figure 4 shows the results of map 

� obtained from the patches shown in Figures 2b and 3. Notably, the bright pixels indicate that a 

high similarity occurs at these locations. 

 

Figure 4. Correlation map from the patches in Figures 2b and 3. 

7. A binary thresholding process is applied on this map to obtain a binary map �� as follows: 
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��(�, �) = �
1, if �(�, �) ≥ ����; 

0, otherwise       
 (2) 

This step sets the pixels that correspond with the relatively high correlation values to one and 

sets others to zero. 

8. A morphological opening operation is conducted to reduce small noise in map ��. Figure 5 

shows the results of this step. As observed from the enlarged region depicted on the right, each 

presented bright dot is an object that is formed with connected bright pixels. 

 

Figure 5. Results of binary-thresholding followed by the opening from the correlation map. 

9. The connected component method is applied to label all bright objects in map ��, and then 

calculate the centroid of every object. Here, �� = (��, ��) denotes the center of the �-th object, 

and 1 ≤ � ≤ ���� for a total of ���� objects obtained from ��. 

10. A set of displacement tuples is found by considering every possible pair of (�, �), for 1 ≤ � ≤

���� and � < � ≤ ����. 

� = � ��,� = ���� − ���, ��� − ���� | ∀ � > � � (3) 

Here, we only count under the condition satisfying � > � because ��,� is equal to ��,�. 

11. Every displacement vector ��,� contributes to a voting space �(�, �) as follows: 

����� − ���, ��� − ���� ← ����� − ���, ��� − ���� + 1 (4) 

Similar to the voting technique used in Hough transform, we accumulate all displacement 

vectors in the voting space � to determine the parameters (width and height) of the template. 

12. Similar to steps 7–9, the centroid of every local peak is found in this voting space, and the 

centroid �∗ = (�∗, �∗) that is nearest to the origin of � is then localized. Therefore, the template 

size is estimated as follows: 

����
∗ = �∗ and ℎ���

∗ = �∗ (5) 

2.1.2. Standard Template Extraction 

We now want to find regularly repeated regions inside the initial template (as shown in Figure 

3). The process of finding such a region is described in detail as follows. 

1. The initial template is first smoothed using a two-dimensional Gaussian filter with a kernel size 

of 5 ×  5 pixels. Because the weights are effectively zero out of a 5 ×  5 filter when 

approximating to Gaussian function with a standard deviation � = 1.0, we select this kernel 

size in this study. 
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2. Thresholding is applied to the filtered template, where the threshold is determined using Otsu’s 

well-known method [20]. Figure 6 shows the results of this step. 

3. After labeling all bright objects, the largest one is found and its centroid (��, ��) is recorded. 

4. A patch centered at (��, ��) is cropped to a size of �����
∗ , ℎ���

∗ � pixels from the initial template. 

This cropped image can be considered the standard template. In Figure 7, the green rectangle in 

subplot (a) shows the extracted template and (b) shows its close-up. 

This extracted template is used to detect the die patterns in the initial template to check whether 

the number of detected die patterns is sufficient. If the number of patterns is insufficient, the 

algorithm of automatic template extraction is re-conducted. 

 

Figure 6. Binarized image of the initial template in Figure 3. 

 

(a) 

 

(b) 

  

Figure 7. Patches: (a) extracted from the initial template; (b) used as a standard template. 

2.2. Die Pattern Detection and Clustering 

Die patterns that are similar to the standard template are expected to be detected from the 

original SAT image. Following steps 6–9 described in the template size estimation of Section 2.1, 

regions that are highly similar to the template are obtainable. The yellow dot in Figure 8 indicates 

that there is a die pattern found at that location, that is, a region similar to the template exists. 

Notably, some die patterns are not detected because their similarity is insufficiently high. They 

possibly result from imaging anomalies, wafer fabrication defects, and belonging to other pattern 
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types such as alignment marks. From Figure 8, it is evident that the detected die patterns are 

arranged in rows and columns, and the mis-detected die patterns (dark holes inside the wafer) are 

possibly retrieved from their neighboring dies. Therefore, this subsection presents a clustering 

method for obtaining the columns and rows in the arrangement by using the detected die patterns 

and predicting the coordinates of these rows and columns. Eventually, the positions of these 

mis-detected patterns can be obtained via interpolation or extrapolation approaches. 

 

Figure 8. Die detection result of original SAT image. 

Let �� be the �-th detected die pattern and ���
��, ��

��� be its top-left corner for 1 ≤ � ≤ ��, 

where �� is the total number of detected patterns. In general, the wafer is well aligned during the 

SAT imaging process; consequently, die patterns are neatly arranged in rows and columns. The die 

patterns in the same column (or row) possess almost the same horizontal (or vertical) location ��
�� 

(or ��
��). Hence, a simple clustering method using a distance metric is used for grouping ���

�� � � =

1,2, … , ��} along the horizontal direction, and then find the number of columns. The criterion is to 

produce clusters with short intra-cluster distances and long inter-cluster distances. Let us first define 

a distance threshold as �� = ����
∗ /2, the index set of which is � = {1,2, … , ��}, the selected set � is 

empty, and the cluster set �  is empty. The proposed algorithm for clustering ���
��� is briefly 

introduced as follows. 

1. Let the first coordinate point ��
�� be taken as the first cluster center ��. Let the selected set be 

� = {1}, and the cluster set � = {��}. 

2. Select the next point from ���
�� | � ∈ �\��, and compute the distance �����

��� for every � ∈ �. 

Apply index � into set �. 

3. Compare this distance �����
��� with the threshold ��. If �����

��� < ��, then set ��
�� belonging 

to cluster �. Next, update center �� by averaging all coordinate points belonging to cluster �. 

In contrast, let ��
�� become a new prototype point, and add a new cluster �#(�)�� with its 

center �#(�)�� = ��
��. Here, #(�) denotes the number of clusters in �. 

4. Repeat steps 2–3 until all coordinate points belong to their corresponding clusters. 

The four steps above form an iteration obtaining the clusters with centers. Based on these 

clusters, a new iteration is created to assign all coordinate points ���
��� to their nearest cluster in the 

same manner. This clustering algorithm will terminate when the clustered results of two consecutive 

iterations are the same. Consequently, the number and coordinates of the columns from all detected 

die patterns can be obtained. 
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Similarly, the coordinate points ���
�� � � = 1,2, … ��} are clustered in the same manner. Thus, 

every row and its representative coordinate are obtained. Thus far, the number of columns and rows 

from the detected die patterns can be obtained. Assuming that the detected patterns arrange in � 

columns and ℳ rows. Let (��
��, ��

��) be the top-left corner of an arbitrary die pattern in the original 

SAT image, where the subscript � ∈ {1,2, … , �}  denotes the �-th  column and subscript � ∈

{1,2, … , ℳ} denotes the �-th row. Using these corners and the estimated size of the standard 

template, all patterns, including the die patterns and predicted pattern candidates, in the wafer 

image can be obtained. 

���
��, ��

�� + ����
∗ � × ���

��, ��
�� + ℎ���

∗ � (6) 

This indicates the two-dimensional region of the pattern located on the �-th column and �-th 

row. Figure 9 shows all patterns, in which the yellow and blue dots denote the locations of the 

detected and predicted patterns, respectively. Every pattern will be further categorized into normal, 

abnormal, or other predefined classes. At this point, the initial wafer map is produced; however, the 

patterns need to be identified later. 

2.3. Pattern Classification for Inspection 

As shown in Figure 9, a wafer map full of the detected (yellow) and predicted (blue) patterns 

was produced. In this subsection, we further categorize each of them into one of the following 

classes: (1) background (outside the wafer), (2) alignment mark, (3) normal (non-defective die), or (4) 

abnormal (with some errors, such as cracks, defects, or imaging noise). Figure 10 shows typical 

examples of these four classes. In addition, more cases of different abnormal patterns are shown in 

Figure 11, which are caused by fabrication defects (subplots (a) to (d)), such as cracks, and imaging 

errors caused by voids (subplots (c) to (d)). The next task is to perform our image classification 

method to analyze any patterns. Here, a learning-based method composed of image feature 

extraction and image classification was used in our study. Numerous networks possessing a deep 

architecture have verified the effectiveness of the image extraction. As mentioned in Section 1, we 

selected several popular image feature extraction models, including VGG-16 and VGG-19 [12], 

InceptionV3 [16], MobileNet [18], and ResNet-50 [14], for evaluation. ResNet-50 was finally chosen 

as the image extractor of our proposed method. The details of the performance comparison are 

described in Section 3.3. This image extractor is followed by a fully-connected neural network 

designed for image classification. Thus, the entire architecture of our proposed method for pattern 

identification is as depicted in Figure 12. The details of its implementation are provided in Section 

3.1. 
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Figure 9. Initial wafer mapping result from detected and predicted die patterns. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

  

Figure 10. Four different patterns: (a) background; (b) alignment mark; (c) normal; (d) abnormal 

pattern. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 11. More examples of abnormal patterns: (a) crack; (b) defect; (c) and (d) errors caused by 

voids. 

3. Implementation and Experimental Results 

First, three SAT images captured from different wafers (in the same batch) on the 

semiconductor production line were prepared for the following experiments. For convenience, we 

named them img01, img02, and img03. In this section, we focus on the explanation and 

implementation of (1) automatic template extraction, (2) the training and testing stages of our 

pattern classification method, and (3) a discussion on using different networks as the backbone of 

the image feature extractor. To meet the computational requirements when executing a deep 

CNN-based model, a graphics processing unit (GPU)-accelerated computer was used to implement 

our proposed method. We run all the experiments on the computer with an Intel Core I7-8750H CPU 

@ 2.2 GHz, 16G DDR4 RAM 2400 MHz, NVIDIA GeForce GTX-1060. The operating system was 

Windows 10. The entire algorithm was programmed in Python and used OpenCV and TensorFlow. 

 

Figure 12. Deep convolutional neural network (CNN) for die pattern classification. 

3.1. Experiments on Automatic Template Extraction and Die Detection 

The proposed method for template extraction was verified using images img01, img02, and 

img03. The parameters used in this experiment are as follows: 

 The size of the original SAT image is: ����� = 30,000 and ℎ���� = 30,000. 

 The size of the image patch is: �� = �����/5 = 6000 and ℎ� = ℎ����/5 = 6000. This size is 

determined to ensure that there are sufficient die patterns in this image patch. If template 

extraction fails, this size can be increased by �� = �����/4 = 7500, ℎ� = ℎ����/4 = 7500, and so 

on. 



Appl. Sci. 2020, 10, 3423 12 of 19 

 The size of the initial template is: ���� = ��/3 = 2000 and ℎ��� = ℎ�/3 = 2000. The criterion 

for determining this size is to ensure that there exists one (or more) whole die pattern in this 

initial template. Generally, this size is big enough to detect and extract a standard template. 

 The similarity threshold is the 90th percentile value of the map �(�, �) , that is, ���� =

0.9 × max
�,�

{�(�, �)}. 

 The binarization thresholds are adaptively determined using Otsu’s method [20]. 

Figure 13 shows the extracted templates, in which subplots (a), (b), and (c) correspond to img01, 

img02, and img03, respectively, and the estimated template size can be found in Table 1. These are 

very similar because their original SAT images are from the same batch of wafer products. Next, we 

apply template matching followed by clustering to obtain an initial wafer map that contains the 

detected die patterns (marked by the yellow dots) and predicted pattern candidates (marked by the 

blue dots). Figure 14 shows the results of the initial wafer maps for images img01, img02, and img03. 

These wafer maps need to be further analyzed by conducting our proposed classification model for 

every pattern. 

 

(a) 

 

(b) 

 

(c) 

Figure 13. Results of template extraction for three SAT images: (a) img01; (b) img02; (c) img03. 

Table 1. Numerical results of die pattern detection. 

Image Template Template Size (Unit: Pixels) # of Detected Die Patterns # of Predicted Regions 

img01 13(a) 300 × 320 6745 1718 

img02 13(b) 306 × 318 6756 1889 

img03 13(c) 302 × 320 6763 1882 

 

(a) 

 

(b) 

 

(c) 

Figure 14. Results of die pattern detection for three SAT images: (a) img01; (b) img02; (c) img03. 
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3.2. Implementation of Die Pattern Classification 

In this subsection, the proposed pattern classification model trained using our own dataset is 

described. The standard network, as depicted in Figure 12, contains over 25 million trainable 

parameters. The first half of the network is a ResNet-50 feature extractor, the input of which is a 

normalized pattern image with a size of 224 × 224 pixels and a feature vector output of 2048 × 1. 

The complete compositions of ResNet-50 are shown in Table 2. The second half is a fully-connected 

neural network applied to conduct four-class classification, the thorough architecture of which is 

tabulated in Table 3. 

Table 2. Architecture of feature extractor in our pattern classification model. 

Feature Extractor: ResNet-50 Encoder 

Layer Name Kernel Size Stride Channels Repeat Times 

Conv 1 7 × 7 2 3→64 1 

Pool 1 3 × 3 2  1 

Resblock 1 �
1 × 1
3 × 3
1 × 1

� 1 64→256 3 

Resblock 2 �
1 × 1
3 × 3
1 × 1

� 1 256→512 4 

Resblock 3 �
1 × 1
3 × 3
1 × 1

� 1 512→1024 6 

Resblock 4 �
1 × 1
3 × 3
1 × 1

� 1 1024→2048 3 

Table 3. Architecture of fully connected network in our pattern classification model. 

Classifier: Fully-Connected Neural Network 

Layer Name Input Dimension Output Dimension 

FC-1 1 2048 1000 

FC-2 1 1000 100 

FC-3 1 100 4 

Softmax 2 4 4 

1 FC = fully connected layer. 2 Softmax is used to map the output of a neural network to a probability 

distribution over the predicted output classes. This ensures that the sum of all output elements 

equals 1. 

During this experiment, we collected a total of 2150 samples to form our own Dataset-I, and 

manually identified them into four categories: (1) background, (2) alignment mark, (3) normal, and 

(4) abnormal. Repeated random subsampling validation [21], also known as Monte Carlo 

cross-validation, was adopted for evaluating accuracy during training. The Dataset-I was randomly 

split into training and validation sets multiple times, whereas the ratio of training data to validation 

data was 5:1. For each such split, the model was learned with the training set, and the accuracy was 

assessed using the validation set. The accuracies obtained from the splits were then averaged. Table 

4 lists the data distribution of which were 1769 samples used for learning the model and 381 samples 

applied for validation. Some commonly used data augmentation techniques are applied in the 

present work, including shifting and flipping, rotation, and brightness shifts. We set the 

hyper-parameters as follows: rotation range of [−5°, 5°] , spatial shifts of �0.2����
∗ , 0.2ℎ���

∗ � , 

brightness shifts of [1,10], a random zoom range of [0.8,1.2], dropout probability of 0.5, batch size 

of 8, maximum epochs of 15, optimized using Adam with commonly-used settings of �� = 0.9, �� =

0.999, and � = 10�� , and the learning rate � of 10��. Figure 15 shows the per-epoch trend of 

training and validation accuracy. Note that we terminated the training process after eight epochs 

because the training and validation accuracy converged to 89.13% and 99.46%, respectively. As 

shown in the figure, the training accuracy is less than the validation accuracy; this situation can be 
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attributed to several reasons: (1) the regularization mechanisms, such as the dropout and L1/L2 

weight regularization, were turned on during training. (2) When using the Keras library in the 

TensorFlow, the training accuracy for an epoch is the averaged accuracy over each batch of the 

training data. Because the model was changing over time, the accuracy over the first batch was lower 

than that over the last batch. By contrast, the validation accuracy for an epoch is computed using the 

model as it is at the end of the epoch, resulting in a higher accuracy. (3) The techniques of data 

augmentation used during training probably produced certain samples that were difficult to identify. 

Finally, we used 370 additional test data for evaluating the learned model, the results of which are 

summarized in Table 5 as a confusion matrix. Notably, the test data were collected from different 

batches of wafers. Only two normal samples were incorrectly identified as an abnormal class. The 

overall accuracy was greater than 99%, and the accuracy for the normal samples was 98.57%. 

 

Figure 15. Training and validation accuracy. 

Table 4. Data distribution in Dataset-I. 

Class Label  of Training Samples  of Validation Samples 

Background 417 83 

Alignment mark 375 75 

Normal 560 140 

Abnormal 417 83 

 

Table 5. Confusion matrix for additional 370 test data. 

 
Predicted 

True  
Background Alignment Mark Normal Abnormal Accuracy (%) 

Background 83 0 0 0 100 

Alignment mark 0 64 0 0 100 

Normal 0 0 138 2 98.57 

Abnormal 0 0 0 83 100 

3.3. Comparison among Feature Extractors 

When designing the architecture of our deep model, several CNN-based models that are 

frequently used in image featuring were evaluated. In this subsection, five popular backbones, 

namely, VGG-16 and VGG-19 [12], InceptionV3 [16], MobileNet [18], and ResNet-50 [14], were 

chosen for comparison. For fairness, their inputs were normalized to an identical size and followed 

by the same classifier. Their training and validation accuracy are presented separately in Figures 16 
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and 17. Notably, the training and validation accuracy were relatively high in the early epoch because 

these compared backbones were pre-trained on the ImageNet dataset [22]. It can be seen that 

ResNet-50 outperformed other approaches after six epochs, whereas VGG-16 and VGG-19 showed 

comparable accuracy. Moreover, a computational comparison between these backbones is listed in 

Table 6. Here, the minimum, maximum, and average computational time for identifying a pattern 

image and the total number of parameters of different models are also summarized. The VGG-16 

and VGG-19, whose accuracies were comparable to ResNet-50, have a much larger number of model 

parameters. To consider the balance between accuracy and computational time, ResNet-50 was 

chosen as the standard subnetwork for the image feature extractor applied in our proposed method. 

More discussion on different CNN-based networks is provided in Section 4.1. 

Table 6. Comparison of different models for pattern classification. 

Extractor 
Time (Unit: ms) 

Number of Extractor Parameters Total Number of Model Parameters 
Min. Max. Avg. 

VGG-16 30.25 35.63 31.02 14,714,688 39,904,192 

VGG-19 36.75 39.63 37.19 20,024,384 45,213,888 

InceptionV3 33.38 45.88 35.02 21,802,784 73,104,288 

MobileNet 24 30.63 25.03 3,228,864 53,506,368 

ResNet-50 31 42 32.58 23,587,712 25,737,216 

 

Figure 16. Training accuracy for different CNN-based networks. 

 

Figure 17. Validation accuracy for different CNN-based networks. 

3.4. Wafer Map Generation for Inspection Visualization 

The final result of our proposed method is a multi-class wafer map, the classes of which can be 

manually defined by users. In this paper, four classes are applied: background, alignment mark, and 
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normal and abnormal patterns. Let the original SAT image be the input; thereafter, automatic 

template extraction, pattern detection, and prediction steps, followed by pattern classification, are 

conducted. All patterns are found, and the information of each pattern, including the location, width, 

height, and its class is also obtained. Figure 18 shows the final results corresponding to images img01, 

img02, and img03. The patterns belonging to the background, alignment mark, and normal and 

abnormal pattern classes are plotted in gray, white, green, and red, respectively. The analyzed wafer 

maps are useful for visualizing defects and finding potential fabrication issues. 

 

(a) 

 

(b) 

 

(c) 

Figure 18. Results of our proposed inspection method for three SAT images: (a) img01; (b) img02; (c) 

img03. 

4. Discussion 

4.1. More Discussion on Pattern Classification Models 

The implementation and experimental evaluation of our proposed method have been 

described in Section 3. The deep learning-based pattern classification model was designed to consist 

of a ResNet-50-based extractor and a multi-layer fully-connected classifier. The rationale for 

determining the extractor and the hyper-parameters of the classifier was attaining high accuracy 

and less computational time. To analyze the accuracies of different model structures, we collected a 

total of 10,180 samples that were captured from four batches of wafers to form Dataset-II of which 

contained: (1) 2008 background patterns, (2) 408 alignment mark patterns, (3) 6184 normal patterns, 

and (4) 1580 abnormal patterns. Similarly, the random subsampling validation was repeated 

multiple times to assess each of the classification models. Table 7 lists the size of the feature vector 

obtained by a specified extractor and the total number of parameters of a model with a specified 

composition of hidden layers. In this table, the tuple (1000) denotes that the classifier contains one 

hidden layer with 1000 neurons, and the tuples (1000, 100) and (1000, 100, 10) respectively indicate 

two and three hidden layers with their neurons. It is evident that the ResNet-50 generated the most 

compact feature vector (having the minimum size) and thus structured the smallest classification 

model. Table 8 lists the validation accuracy of Dataset-II for the aforementioned compositions. The 

results showed that VGG-16, VGG-19, and ResNet-50 achieved comparatively high accuracy. For 

every extractor, the best accuracy was obtained when the classifier comprised two hidden layers. To 

sum up, the architecture consisting of a ResNet-50 extractor and a two-hidden-layer classifier was 

selected for our proposed classification model. Subsequently, a grid search approach was used to 

find the number of neurons in each of the hidden layers. During this experiment, we evaluated 

several combinations for two-hidden-layer composition (��, ��) , where ��  and ��  were 

respectively selected from �� ∈ {1000, 500, 200}  and �� ∈ {200, 100, 50} . The results were 

tabulated in Table 9, in which the accuracies were close to each other. However, the two-layer 

composition has unlimited possible combinations, and cannot be completely assessed; thus, the 

composition (1000, 100) that reached a high accuracy is an acceptable hyper-parameter setting in the 
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model. In this subsection, the experimental results in terms of accuracy and computation time are 

consistent with [23]. The ResNet-50 indeed has a more efficient accuracy density (accuracy per 

parameter) than VGG-16 and VGG-19 networks. 

Table 7. The total number of parameters of different model structures. 

Extractor Size of Feature Vector 
Composition of Hidden Layers 

(1000) (1000, 100) (1000, 100, 10) 

VGG-16 25,088 39,807,692 39,904,192 39,904,842 

VGG-19 25,088 45,117,388 45,213,888 45,214,538 

InceptionV3 51,200 73,007,788 73,104,288 73,104,938 

MobileNet 50,176 53,409,868 53,506,368 53,507,018 

ResNet-50 2048 25,640,716 25,737,216 25,737,866 

Table 8. Validation accuracy of different model structures. 

Extractor 
Composition of Hidden Layers 

(1000) (1000, 100) (1000, 100, 10) 

VGG-16 0.8701 0.8809 0.8167 

VGG-19 0.8766 0.8802 0.8673 

InceptionV3 0.8016 0.8206 0.7976 

MobileNet 0.7972 0.8109 0.6548 

ResNet-50 0.8794 0.8817 0.8663 

Table 9. Validation accuracy of different two-layer compositions, using a ResNet-50 extractor. 

Layer 1

Layer 2 

Number of Neurons 

1000 500 200 

Number of neurons 

200 0.8715 0.8728 0.8756 

100 0.8817 0.8789 0.8635 

50 0.8722 0.8810 0.8744 

4.2. Generalizing to Inspect More Abnormal Patterns 

As mentioned, our proposed wafer inspection method can identify four categories of patterns, 

including the background, alignment mark, normal, and abnormal classes. This method is practical 

for identifying more than four classes by modifying the output layer of the classifier. In this 

subsection, a classification model that can determine the background, alignment mark, normal 

pattern, imaging error, crack, and pinhole verified the feasibility of inspecting such defective 

patterns. Similar to the experimental procedure conducted in Section 3, we used Dataset-I for 

training and the same 370 test data for evaluating the accuracy. Table 10 summarizes the results as a 

confusion matrix, in which there were a total of 17 data incorrectly identified. Such increased errors 

are often caused by imbalanced data distribution in the Dataset-I of which the crack and pinhole 

samples were far fewer than others, even though data augmentation techniques were applied 

during training. In general wafer inspection applications, all the defective (abnormal) die patterns 

need to be filtered out. Therefore, these anomaly patterns are merged into an abnormal class in the 

present work. 

Table 10. Confusion matrix for additional 370 test data: six-class classification model. 

 
Predicted 

True  
Background Alignment Mark Normal Imaging Error Crack Pinhole Accuracy (%) 

Background 83 0 0 0 0 0 100 
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Alignment mark 0 64 0 0 0 0 100 

Normal 0 0 125 6 4 0 92.59 

Imaging error 0 0 5 57 0 0 91.94 

Crack 0 0 1 0 8 0 88.89 

Pinhole 0 0 0 1 0 16 94.12 

5. Conclusions 

In this study, we proposed a vision-based method for detecting and recognizing dies on a wafer. 

The main contributions of our method include an automatic scheme of standard template extraction, 

clustering based on the distance to produce a wafer map, and a deep learning-based pattern 

classification model. Ordinary template matching was employed to detect regularly repeated die 

patterns. Thus, we proposed a template extraction algorithm that provides a reliable template for 

finding such patterns. Furthermore, a clustering technique applying the distance criterion was 

introduced to predict the locations of the pattern candidates. For the pattern classification phase, we 

designed a deep CNN-based model composed of an image feature extractor and a classifier to 

identify patterns as different classes. The effectiveness and efficiency of our proposed method were 

evaluated experimentally. Furthermore, qualitative and quantitative evaluations were also 

conducted. By applying the proposed visual inspection method, SAT images from wafers can be 

analyzed completely and used to form wafer maps. These wafer maps can provide important 

information for finding and analyzing wafer manufacturing problems in the semiconductor 

industry. 
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