
applied
sciences

Article

Automated Detection and Classification of Defective
and Abnormal Dies in Wafer Images

Hsiang-Chieh Chen

Department of Electrical Engineering, National United University, Miaoli 36063, Taiwan; chc@nuu.edu.tw

Received: 6 April 2020; Accepted: 13 May 2020; Published: 15 May 2020
����������
�������

Featured Application: This study presents a fully automated scheme for wafer inspection
using scanning acoustic tomography images. Differing from traditional template-matching
based methods, the proposed method involves a template extraction algorithm and a deep
learning-based classification. This benefits the inspection process, making it more convenient
and accurate.

Abstract: This article presents an automated vision-based algorithm for the die-scale inspection of
wafer images captured using scanning acoustic tomography (SAT). This algorithm can find defective
and abnormal die-scale patterns, and produce a wafer map to visualize the distribution of defects and
anomalies on the wafer. The main procedures include standard template extraction, die detection
through template matching, pattern candidate prediction through clustering, and pattern classification
through deep learning. To conduct the template matching, we first introduce a two-step method
to obtain a standard template from the original SAT image. Subsequently, a majority of the die
patterns are detected through template matching. Thereafter, the columns and rows arranged from
the detected dies are predicted using a clustering method; thus, an initial wafer map is produced.
This map is composed of detected die patterns and predicted pattern candidates. In the final phase
of the proposed algorithm, we implement a deep learning-based model to determine defective and
abnormal patterns in the wafer map. The experimental results verified the effectiveness and efficiency
of our proposed algorithm. In conclusion, the proposed method performs well in identifying defective
and abnormal die patterns, and produces a wafer map that presents important information for solving
wafer fabrication issues.

Keywords: automated visual inspection; convolutional neural network; deep learning; pattern
classification; semiconductor inspection; wafer map

1. Introduction

Automated visual inspection (AVI) is a challenging domain in the automation industry and is
widely applied to production lines for quality control. Systems used in the AVI typically involve
fields such as mechanical and electrical engineering, optics, mathematics, and computer science.
Image analytics plays an important role in the success of a visual inspection system. During the past
few decades, numerous vision-based approaches and related techniques have been presented for
solving problems in the semiconductor industry, and have been widely employed for detecting defects
and anomalies in major semiconductor materials and products, such as wafers and chips. A large
number of studies have been conducted, including vision algorithms, performance improvements,
and hardware and software development. In this study, we focus on the defective pattern detection
of wafers.

Various optical inspection approaches were reviewed in [1]; these approaches were categorized
based on the inspection techniques and inspected products. The semiconductor fabrication process

Appl. Sci. 2020, 10, 3423; doi:10.3390/app10103423 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10103423
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/10/3423?type=check_update&version=2

Appl. Sci. 2020, 10, 3423 2 of 19

is typically divided into three main phases requiring different inspection algorithms. During the
first phase, wafers are manufactured from raw materials using crystal growth, slicing, polishing,
lapping, etching, and other steps. An integrated circuit (IC) pattern is then projected onto the wafer
surface. During the second phase, a wafer acceptance test is applied to verify the effectiveness of all
the individual ICs (also known as a die). Finally, the wafer is cut into chips, and the manufacturing
process is completed through the packaging stage. A visual inspection is always applied during the
defect detection for every die pattern prior to the IC packaging.

There has been a significant increase in the complexity of IC structures in recent years; this has
increased the difficulty of die-scale wafer inspection. A template-based vision system for the inspection
of a wafer die surface was presented in [2]. Schulze et al. [3] introduced an inspection technology
based on digital holography, which records the amplitude and phase of the wave front from the target
object directly to a single image acquired via a CCD camera. The technology was also proven to be
effective for identifying defects on wafers. In [4], Kim and Oh proposed a method using component
tree representations of scanning electron microscopy (SEM) images. However, their method has only
been evaluated qualitatively. To conduct a quantitative assessment, a large dataset must be prepared by
domain experts. A method employing a two-dimensional wavelet transform approach was developed
to detect visual defects, such as particles, contamination, and scratches on wafers [5]. Magneto-optic
imaging, which involves inducing eddy current into the target wafer, is used to inspect semiconductor
wafers [6]. Moreover, an algorithm comprising noise reduction, image enhancement, watershed-based
segmentation, and clustering strategy was presented.

Over the past few decades, scanning acoustic microscopes (SAMs) have been extensively utilized in
the inspection of semiconductor products [7]. They are commonly used in non-destructive evaluations
through a process called scanning acoustic tomography (SAT) [8] to capture the internal features of
wafers or microelectronic components. In addition, methods for enhancing the resolution and contrast
of SAT images are introduced in [9,10]. In general, a wafer has large numbers of repeated dies on its
surface. These dies are nearly duplicated in a SAT image because they have the same structure and
circuit pattern. However, the defective (abnormal) dies need to be filtered out if they differ from the
non-defective (normal) dies. In previous studies, visual testing and thresholding approaches have been
frequently adopted for defect detection from SAT images. Traditionally, the most popular method is to
apply template matching die by die. However, such template-matching-based approaches often suffer
from a lack of robustness [11]. Small perturbations of the translation, rotation, scale, and even noise
significantly affect the calculation of the similarity scores. Moreover, traditional methods sometimes
lead to poor results owing to the increased complexity of microelectronic structures. For this reason,
the problem of identifying abnormal dies is no longer a binary thresholding problem. Accordingly, it is
regarded as a classification task in the present work.

In recent years, deep-learning techniques have been extensively adopted in image classification
applications. Deep architectures such as convolutional neural networks (CNNs) have verified their
superiority over other existing methods. These deep architectures are currently the most popular
approach for classification tasks. CNN-based models can be trained through end-to-end learning
without specifying task-related feature extractors. The VGG-16 and VGG-19 models proposed in [12]
are extremely popular and significantly improve AlexNet [13] by enlarging the filters and adding
more convolution layers. However, deeper neural networks often become more difficult to train.
He et al. [14] presented a residual learning framework to simplify the training of a deep network.
Their proposed residual networks (ResNets) are easy to optimize and can obtain a high level of
accuracy from a remarkably increased depth of a network. The series of Inception networks presented
in [15–17] is a significant milestone in the development of CNN-based classifiers. Unlike the majority
of previous networks that stack more layers for better performance, Inception networks use certain
tricks to improve the speed and accuracy, such as the operation of multi-sized filters at the same
level, employing an Inception module with reduced dimensions, factorization of a 5 × 5 filter into
two 3 × 3 filters to decrease the time consumed, regularization through label smoothing to prevent

Appl. Sci. 2020, 10, 3423 3 of 19

overfitting, and utilization of a hybrid Inception module inspired by ResNets. Thus far, the use of
ResNets and Inception models has been a dominant trend when facing image-classification problems.
In [18], the concern regarding increased computation efficiency was addressed, and a class of efficient
models called MobileNets was presented.

The goal of this study is to inspect all die patterns on a wafer and then identify defective dies or
anomalies. The main contributions and innovations of our study are briefly described below.

• We propose an automatic procedure for extracting a standard template which is then utilized for
detecting the die patterns from the original SAT image of a wafer.

• From the detected die patterns and their spatial properties, we present a simple method to predict
the locations of pattern candidates that possibly contain certain predefined patterns.

• We design and implement a deep CNN-based classifier to identify all detected patterns and
predicted pattern candidates. This classifier can categorize them into the background, alignment
mark, normal, and abnormal classes.

• Finally, the proposed method uses the obtained patterns with the spatial properties and
classification results to produce a wafer map. This map provides important information to
engineers in their analysis regarding the root cause of die-scale failures [19].

The remainder of this paper is organized as follows. Section 2 introduces the main algorithm of
the proposed method. The implementation details and experimental results are described in Section 3.
Finally, some concluding remarks are presented in Section 4.

2. The Proposed Method

In this section, we introduce the main phases of our proposed method for detecting defective
and abnormal die patterns from a target wafer. For a simpler description, we consider the SAT image
demonstrated in Figure 1 as an example for presenting the proposed method, assuming that the
original SAT image has a pixel resolution of wOrig × hOrig. It is evident that there are a large number of
similar dies that regularly repeat on the wafer. In this study, every die is a minimum unit that needs to
be analyzed. In general, the wafer is well aligned during the SAT imaging process. Template-matching
methods can be used to find all dies if a reliable template is obtained in advance. Consequently, we first
introduce an algorithm for automatically extracting a standard template. Thereafter, the die patterns
need to be detected and classified successively. Therefore, the proposed method is divided into three
main phases: (1) automatic template extraction, (2) die pattern detection and clustering, and (3) die
pattern classification.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 20

two 3 × 3 filters to decrease the time consumed, regularization through label smoothing to prevent

overfitting, and utilization of a hybrid Inception module inspired by ResNets. Thus far, the use of

ResNets and Inception models has been a dominant trend when facing image-classification

problems. In [18], the concern regarding increased computation efficiency was addressed, and a

class of efficient models called MobileNets was presented.

The goal of this study is to inspect all die patterns on a wafer and then identify defective dies

or anomalies. The main contributions and innovations of our study are briefly described below.

 We propose an automatic procedure for extracting a standard template which is then utilized

for detecting the die patterns from the original SAT image of a wafer.

 From the detected die patterns and their spatial properties, we present a simple method to

predict the locations of pattern candidates that possibly contain certain predefined patterns.

 We design and implement a deep CNN-based classifier to identify all detected patterns and

predicted pattern candidates. This classifier can categorize them into the background,

alignment mark, normal, and abnormal classes.

 Finally, the proposed method uses the obtained patterns with the spatial properties and

classification results to produce a wafer map. This map provides important information to

engineers in their analysis regarding the root cause of die-scale failures [19].

The remainder of this paper is organized as follows. Section 2 introduces the main algorithm of

the proposed method. The implementation details and experimental results are described in Section

3. Finally, some concluding remarks are presented in Section 4.

2. The Proposed Method

In this section, we introduce the main phases of our proposed method for detecting defective

and abnormal die patterns from a target wafer. For a simpler description, we consider the SAT

image demonstrated in Figure 1 as an example for presenting the proposed method, assuming that

the original SAT image has a pixel resolution of 𝑤Orig × ℎOrig. It is evident that there are a large

number of similar dies that regularly repeat on the wafer. In this study, every die is a minimum

unit that needs to be analyzed. In general, the wafer is well aligned during the SAT imaging process.

Template-matching methods can be used to find all dies if a reliable template is obtained in advance.

Consequently, we first introduce an algorithm for automatically extracting a standard template.

Thereafter, the die patterns need to be detected and classified successively. Therefore, the proposed

method is divided into three main phases: (1) automatic template extraction, (2) die pattern

detection and clustering, and (3) die pattern classification.

Figure 1. Original scanning acoustic tomography (SAT) image: example wafer.

Appl. Sci. 2020, 10, 3423 4 of 19

2.1. Automatic Template Extraction

The first phase of our method is to seek a reliable template. In this subsection, we describe the
design of a two-step algorithm, including a template size estimation and standard template extraction,
to obtain this template.

2.1.1. Template Size Estimation

Because the sizes of the die patterns are almost identical, an accurate template size helps find a
reliable template. The main procedures for estimating the template size are briefly addressed as follows.

1. Initialize parameters: The original SAT image has a pixel resolution of wOrig × hOrig, patch image
has a pixel resolution of wP × hP, and template has an initial pixel resolution of wTpl × hTpl, with a
similarity threshold of TSIM. These will be determined and discussed in Section 3.1.

2. The original image is converted into a grayscale image.
3. An image patch IP with a pixel resolution of wP × hP is randomly cropped near the central area

from the grayscale SAT image. If the original image is not too large, it can be considered an image
patch; thus, this step can be skipped.

4. Histogram equalization is applied to enhance the contrast on this cropped patch. Hence,
for different imaging settings of the SAT, consistent performance is maintained when conducting
the following steps. Figure 2 shows the results of the cropped patch before and after
histogram equalization.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 20

Figure 1. Original scanning acoustic tomography (SAT) image: example wafer.

2.1. Automatic Template Extraction

The first phase of our method is to seek a reliable template. In this subsection, we describe the

design of a two-step algorithm, including a template size estimation and standard template

extraction, to obtain this template.

2.1.1. Template Size Estimation

Because the sizes of the die patterns are almost identical, an accurate template size helps find a

reliable template. The main procedures for estimating the template size are briefly addressed as

follows.

1. Initialize parameters: The original SAT image has a pixel resolution of 𝑤Orig × ℎOrig, patch

image has a pixel resolution of 𝑤P × ℎP, and template has an initial pixel resolution of 𝑤Tpl ×

ℎTpl, with a similarity threshold of 𝑇SIM. These will be determined and discussed in Subsection

3.1.

2. The original image is converted into a grayscale image.

3. An image patch 𝐼P with a pixel resolution of 𝑤P × ℎP is randomly cropped near the central

area from the grayscale SAT image. If the original image is not too large, it can be considered

an image patch; thus, this step can be skipped.

4. Histogram equalization is applied to enhance the contrast on this cropped patch. Hence, for

different imaging settings of the SAT, consistent performance is maintained when conducting

the following steps. Figure 2 shows the results of the cropped patch before and after histogram

equalization.

(a)

(b)

Figure 2. Cropped patch from Figure 1: (a) before and (b) after histogram equalization.

5. An initial template 𝐼Tpl with a size of 𝑤Tpl × ℎTpl is randomly cropped from the patch 𝐼P, as

shown in Figure 3. If step 3 is skipped, we crop this initial template from the grayscale SAT

image.

Figure 2. Cropped patch from Figure 1: (a) before and (b) after histogram equalization.

5. An initial template ITpl with a size of wTpl × hTpl is randomly cropped from the patch IP, as shown
in Figure 3. If step 3 is skipped, we crop this initial template from the grayscale SAT image.

Appl. Sci. 2020, 10, 3423 5 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 20

Figure 3. Initial template.

6. An ordinary template matching process is conducted to find the parts of image 𝐼P that are

similar to template 𝐼Tpl. This step simply slides the initial template image over the patch as in a

two-dimensional convolution and calculates the following metric for comparing the template

𝐼Tpl against the local region of the patch 𝐼Loc.

𝑅(𝑥, 𝑦) =
∑ (𝐼Tpl(𝑥′, 𝑦′) ∙ 𝐼Loc(𝑥 + 𝑥′, 𝑦 + 𝑦′))𝑥′,𝑦′

√∑ 𝐼Tpl(𝑥′, 𝑦′)2
𝑥′,𝑦′ ∙ ∑ 𝐼Loc(𝑥 + 𝑥′, 𝑦 + 𝑦′)2

𝑥′,𝑦′

 (1)

where (𝑥′, 𝑦′) indicates one of the pixels covered by the template for 0 ≤ 𝑥′ < 𝑤Tpl and 0 ≤ 𝑦′ <

ℎTpl, 𝐼Loc is the local region [𝑥, 𝑥 + 𝑤Tpl) × [𝑦, 𝑦 + ℎTpl) of patch 𝐼P, and 𝑅(𝑥, 𝑦) is the normalized

cross-correlation between two evaluated images 𝐼Tpl and 𝐼Loc. Hence, the pixel 𝑅(𝑥, 𝑦) forms a

correlation map 𝑅 for 0 ≤ 𝑥 ≤ 𝑤P − 𝑤Tpl and 0 ≤ 𝑦 ≤ ℎP − ℎTpl. Figure 4 shows the results of map

𝑅 obtained from the patches shown in Figures 2b and 3. Notably, the bright pixels indicate that a

high similarity occurs at these locations.

Figure 4. Correlation map from the patches in Figures 2b and 3.

7. A binary thresholding process is applied on this map to obtain a binary map 𝑅B as follows:

Figure 3. Initial template.

6. An ordinary template matching process is conducted to find the parts of image IP that are
similar to template ITpl. This step simply slides the initial template image over the patch as in a
two-dimensional convolution and calculates the following metric for comparing the template ITpl

against the local region of the patch ILoc.

R(x, y) =

∑
x′,y′

(
ITpl(x′, y′)·ILoc(x + x′, y + y′)

)
√∑

x′,y′ ITpl(x′, y′)2
·
∑

x′,y′ ILoc(x + x′, y + y′)2
(1)

where (x′, y′) indicates one of the pixels covered by the template for 0 ≤ x′ < wTpl and

0 ≤ y′ < hTpl, ILoc is the local region
[
x, x + wTpl

)
×

[
y, y + hTpl

)
of patch IP, and R(x, y) is the

normalized cross-correlation between two evaluated images ITpl and ILoc. Hence, the pixel R(x, y)
forms a correlation map R for 0 ≤ x ≤ wP −wTpl and 0 ≤ y ≤ hP − hTpl. Figure 4 shows the results
of map R obtained from the patches shown in Figures 2b and 3. Notably, the bright pixels indicate
that a high similarity occurs at these locations.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 20

Figure 3. Initial template.

6. An ordinary template matching process is conducted to find the parts of image 𝐼P that are

similar to template 𝐼Tpl. This step simply slides the initial template image over the patch as in a

two-dimensional convolution and calculates the following metric for comparing the template

𝐼Tpl against the local region of the patch 𝐼Loc.

𝑅(𝑥, 𝑦) =
∑ (𝐼Tpl(𝑥′, 𝑦′) ∙ 𝐼Loc(𝑥 + 𝑥′, 𝑦 + 𝑦′))𝑥′,𝑦′

√∑ 𝐼Tpl(𝑥′, 𝑦′)2
𝑥′,𝑦′ ∙ ∑ 𝐼Loc(𝑥 + 𝑥′, 𝑦 + 𝑦′)2

𝑥′,𝑦′

 (1)

where (𝑥′, 𝑦′) indicates one of the pixels covered by the template for 0 ≤ 𝑥′ < 𝑤Tpl and 0 ≤ 𝑦′ <

ℎTpl, 𝐼Loc is the local region [𝑥, 𝑥 + 𝑤Tpl) × [𝑦, 𝑦 + ℎTpl) of patch 𝐼P, and 𝑅(𝑥, 𝑦) is the normalized

cross-correlation between two evaluated images 𝐼Tpl and 𝐼Loc. Hence, the pixel 𝑅(𝑥, 𝑦) forms a

correlation map 𝑅 for 0 ≤ 𝑥 ≤ 𝑤P − 𝑤Tpl and 0 ≤ 𝑦 ≤ ℎP − ℎTpl. Figure 4 shows the results of map

𝑅 obtained from the patches shown in Figures 2b and 3. Notably, the bright pixels indicate that a

high similarity occurs at these locations.

Figure 4. Correlation map from the patches in Figures 2b and 3.

7. A binary thresholding process is applied on this map to obtain a binary map 𝑅B as follows:

Figure 4. Correlation map from the patches in Figures 2b and 3.

Appl. Sci. 2020, 10, 3423 6 of 19

7. A binary thresholding process is applied on this map to obtain a binary map RB as follows:

RB(x, y) =
{

1, if R(x, y) ≥ TSIM;
0, otherwise

(2)

This step sets the pixels that correspond with the relatively high correlation values to one and
sets others to zero.

8. A morphological opening operation is conducted to reduce small noise in map RB. Figure 5
shows the results of this step. As observed from the enlarged region depicted on the right,
each presented bright dot is an object that is formed with connected bright pixels.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 20

𝑅B(𝑥, 𝑦) = {
1, if 𝑅(𝑥, 𝑦) ≥ 𝑇SIM;

0, otherwise
 (2)

This step sets the pixels that correspond with the relatively high correlation values to one and

sets others to zero.

8. A morphological opening operation is conducted to reduce small noise in map 𝑅B. Figure 5

shows the results of this step. As observed from the enlarged region depicted on the right, each

presented bright dot is an object that is formed with connected bright pixels.

Figure 5. Results of binary-thresholding followed by the opening from the correlation map.

9. The connected component method is applied to label all bright objects in map 𝑅B, and then

calculate the centroid of every object. Here, 𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖) denotes the center of the 𝑖-th object,

and 1 ≤ 𝑖 ≤ 𝑁Obj for a total of 𝑁Obj objects obtained from 𝑅B.

10. A set of displacement tuples is found by considering every possible pair of (𝑖, 𝑗), for 1 ≤ 𝑗 ≤

𝑁Obj and 𝑗 < 𝑖 ≤ 𝑁Obj.

𝒟 = { 𝑑𝑖,𝑗 = (|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) | ∀ 𝑖 > 𝑗 } (3)

Here, we only count under the condition satisfying 𝑖 > 𝑗 because 𝑑𝑖,𝑗 is equal to 𝑑𝑗,𝑖.

11. Every displacement vector 𝑑𝑖,𝑗 contributes to a voting space 𝒱(𝑝, 𝑞) as follows:

𝒱(|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) ← 𝒱(|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) + 1 (4)

Similar to the voting technique used in Hough transform, we accumulate all displacement

vectors in the voting space 𝒱 to determine the parameters (width and height) of the template.

12. Similar to steps 7–9, the centroid of every local peak is found in this voting space, and the

centroid 𝑐∗ = (𝑝∗, 𝑞∗) that is nearest to the origin of 𝒱 is then localized. Therefore, the template

size is estimated as follows:

𝑤Tpl
∗ = 𝑝∗ and ℎTpl

∗ = 𝑞∗ (5)

2.1.2. Standard Template Extraction

We now want to find regularly repeated regions inside the initial template (as shown in Figure

3). The process of finding such a region is described in detail as follows.

1. The initial template is first smoothed using a two-dimensional Gaussian filter with a kernel size

of 5 × 5 pixels. Because the weights are effectively zero out of a 5 × 5 filter when

approximating to Gaussian function with a standard deviation 𝜎 = 1.0, we select this kernel

size in this study.

Figure 5. Results of binary-thresholding followed by the opening from the correlation map.

9. The connected component method is applied to label all bright objects in map RB, and then
calculate the centroid of every object. Here, ci = (xi, yi) denotes the center of the i-th object,
and 1 ≤ i ≤ NObj for a total of NObj objects obtained from RB.

10. A set of displacement tuples is found by considering every possible pair of (i, j), for 1 ≤ j ≤ NObj

and j < i ≤ NObj.

D =
{

di, j =
(∣∣∣xi − x j

∣∣∣, ∣∣∣yi − y j
∣∣∣) | ∀ i > j

}
(3)

Here, we only count under the condition satisfying i > j because di, j is equal to d j,i.
11. Every displacement vector di, j contributes to a voting spaceV(p, q) as follows:

V

(∣∣∣xi − x j
∣∣∣, ∣∣∣yi − y j

∣∣∣)←V(∣∣∣xi − x j
∣∣∣, ∣∣∣yi − y j

∣∣∣)+ 1 (4)

Similar to the voting technique used in Hough transform, we accumulate all displacement vectors
in the voting spaceV to determine the parameters (width and height) of the template.

12. Similar to steps 7–9, the centroid of every local peak is found in this voting space, and the centroid
c∗ = (p∗, q∗) that is nearest to the origin of V is then localized. Therefore, the template size is
estimated as follows:

w∗Tpl = p∗ and h∗Tpl = q∗ (5)

2.1.2. Standard Template Extraction

We now want to find regularly repeated regions inside the initial template (as shown in Figure 3).
The process of finding such a region is described in detail as follows.

Appl. Sci. 2020, 10, 3423 7 of 19

1. The initial template is first smoothed using a two-dimensional Gaussian filter with a kernel size
of 5 × 5 pixels. Because the weights are effectively zero out of a 5 × 5 filter when approximating
to Gaussian function with a standard deviation σ = 1.0, we select this kernel size in this study.

2. Thresholding is applied to the filtered template, where the threshold is determined using Otsu’s
well-known method [20]. Figure 6 shows the results of this step.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 20

2. Thresholding is applied to the filtered template, where the threshold is determined using Otsu’s

well-known method [20]. Figure 6 shows the results of this step.

3. After labeling all bright objects, the largest one is found and its centroid (𝑥L, 𝑦L) is recorded.

4. A patch centered at (𝑥L, 𝑦L) is cropped to a size of (𝑤Tpl
∗ , ℎTpl

∗) pixels from the initial template.

This cropped image can be considered the standard template. In Figure 7, the green rectangle in

subplot (a) shows the extracted template and (b) shows its close-up.

This extracted template is used to detect the die patterns in the initial template to check whether

the number of detected die patterns is sufficient. If the number of patterns is insufficient, the

algorithm of automatic template extraction is re-conducted.

Figure 6. Binarized image of the initial template in Figure 3.

(a)

(b)

Figure 7. Patches: (a) extracted from the initial template; (b) used as a standard template.

2.2. Die Pattern Detection and Clustering

Die patterns that are similar to the standard template are expected to be detected from the

original SAT image. Following steps 6–9 described in the template size estimation of Subsection 2.1,

regions that are highly similar to the template are obtainable. The yellow dot in Figure 8 indicates

that there is a die pattern found at that location, that is, a region similar to the template exists.

Notably, some die patterns are not detected because their similarity is insufficiently high. They

possibly result from imaging anomalies, wafer fabrication defects, and belonging to other pattern

Figure 6. Binarized image of the initial template in Figure 3.

3. After labeling all bright objects, the largest one is found and its centroid (xL, yL) is recorded.

4. A patch centered at (xL, yL) is cropped to a size of
(
w∗Tpl, h∗Tpl

)
pixels from the initial template.

This cropped image can be considered the standard template. In Figure 7, the green rectangle in
subplot (a) shows the extracted template and (b) shows its close-up.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 20

2. Thresholding is applied to the filtered template, where the threshold is determined using Otsu’s

well-known method [20]. Figure 6 shows the results of this step.

3. After labeling all bright objects, the largest one is found and its centroid (𝑥L, 𝑦L) is recorded.

4. A patch centered at (𝑥L, 𝑦L) is cropped to a size of (𝑤Tpl
∗ , ℎTpl

∗) pixels from the initial template.

This cropped image can be considered the standard template. In Figure 7, the green rectangle in

subplot (a) shows the extracted template and (b) shows its close-up.

This extracted template is used to detect the die patterns in the initial template to check whether

the number of detected die patterns is sufficient. If the number of patterns is insufficient, the

algorithm of automatic template extraction is re-conducted.

Figure 6. Binarized image of the initial template in Figure 3.

(a)

(b)

Figure 7. Patches: (a) extracted from the initial template; (b) used as a standard template.

2.2. Die Pattern Detection and Clustering

Die patterns that are similar to the standard template are expected to be detected from the

original SAT image. Following steps 6–9 described in the template size estimation of Subsection 2.1,

regions that are highly similar to the template are obtainable. The yellow dot in Figure 8 indicates

that there is a die pattern found at that location, that is, a region similar to the template exists.

Notably, some die patterns are not detected because their similarity is insufficiently high. They

possibly result from imaging anomalies, wafer fabrication defects, and belonging to other pattern

Figure 7. Patches: (a) extracted from the initial template; (b) used as a standard template.

This extracted template is used to detect the die patterns in the initial template to check whether
the number of detected die patterns is sufficient. If the number of patterns is insufficient, the algorithm
of automatic template extraction is re-conducted.

2.2. Die Pattern Detection and Clustering

Die patterns that are similar to the standard template are expected to be detected from the original
SAT image. Following steps 6–9 described in the template size estimation of Section 2.1, regions that

Appl. Sci. 2020, 10, 3423 8 of 19

are highly similar to the template are obtainable. The yellow dot in Figure 8 indicates that there is a die
pattern found at that location, that is, a region similar to the template exists. Notably, some die patterns
are not detected because their similarity is insufficiently high. They possibly result from imaging
anomalies, wafer fabrication defects, and belonging to other pattern types such as alignment marks.
From Figure 8, it is evident that the detected die patterns are arranged in rows and columns, and the
mis-detected die patterns (dark holes inside the wafer) are possibly retrieved from their neighboring
dies. Therefore, this subsection presents a clustering method for obtaining the columns and rows in
the arrangement by using the detected die patterns and predicting the coordinates of these rows and
columns. Eventually, the positions of these mis-detected patterns can be obtained via interpolation or
extrapolation approaches.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 20

types such as alignment marks. From Figure 8, it is evident that the detected die patterns are

arranged in rows and columns, and the mis-detected die patterns (dark holes inside the wafer) are

possibly retrieved from their neighboring dies. Therefore, this subsection presents a clustering

method for obtaining the columns and rows in the arrangement by using the detected die patterns

and predicting the coordinates of these rows and columns. Eventually, the positions of these

mis-detected patterns can be obtained via interpolation or extrapolation approaches.

Figure 8. Die detection result of original SAT image.

Let 𝑃𝑘 be the 𝑘-th detected die pattern and (𝑥𝑘
TL, 𝑦𝑘

TL) be its top-left corner for 1 ≤ 𝑘 ≤ 𝑁D,

where 𝑁D is the total number of detected patterns. In general, the wafer is well aligned during the

SAT imaging process; consequently, die patterns are neatly arranged in rows and columns. The die

patterns in the same column (or row) possess almost the same horizontal (or vertical) location 𝑥𝑘
TL

(or 𝑦𝑘
TL). Hence, a simple clustering method using a distance metric is used for grouping {𝑥𝑘

TL | 𝑘 =

1,2, … , 𝑁D} along the horizontal direction, and then find the number of columns. The criterion is to

produce clusters with short intra-cluster distances and long inter-cluster distances. Let us first define

a distance threshold as 𝑇d = 𝑤Tpl
∗ /2, the index set of which is 𝒦 = {1,2, … , 𝑁D}, the selected set 𝒮 is

empty, and the cluster set 𝒞 is empty. The proposed algorithm for clustering {𝑥𝑘
TL} is briefly

introduced as follows.

1. Let the first coordinate point 𝑥1
TL be taken as the first cluster center 𝜇1. Let the selected set be

𝒮 = {1}, and the cluster set 𝒞 = {𝑐1}.

2. Select the next point from {𝑥𝑙
TL | 𝑙 ∈ 𝒦\𝒮}, and compute the distance 𝑑𝑐(𝑥𝑙

TL) for every 𝑐 ∈ 𝒞.

Apply index 𝑙 into set 𝒮.

3. Compare this distance 𝑑𝑐(𝑥𝑙
TL) with the threshold 𝑇d. If 𝑑𝑐(𝑥𝑙

TL) < 𝑇d, then set 𝑥𝑙
TL belonging

to cluster 𝑐. Next, update center 𝜇𝑐 by averaging all coordinate points belonging to cluster 𝑐.

In contrast, let 𝑥𝑙
TL become a new prototype point, and add a new cluster 𝑐#(𝒞)+1 with its

center 𝜇#(𝒞)+1 = 𝑥𝑙
TL. Here, #(𝒞) denotes the number of clusters in 𝒞.

4. Repeat steps 2–3 until all coordinate points belong to their corresponding clusters.

The four steps above form an iteration obtaining the clusters with centers. Based on these

clusters, a new iteration is created to assign all coordinate points {𝑥𝑘
TL} to their nearest cluster in the

same manner. This clustering algorithm will terminate when the clustered results of two consecutive

iterations are the same. Consequently, the number and coordinates of the columns from all detected

die patterns can be obtained.

Figure 8. Die detection result of original SAT image.

Let Pk be the k-th detected die pattern and
(
xTL

k , yTL
k

)
be its top-left corner for 1 ≤ k ≤ ND, where ND

is the total number of detected patterns. In general, the wafer is well aligned during the SAT imaging
process; consequently, die patterns are neatly arranged in rows and columns. The die patterns in the
same column (or row) possess almost the same horizontal (or vertical) location xTL

k (or yTL
k). Hence,

a simple clustering method using a distance metric is used for grouping
{
xTL

k | k = 1, 2, . . . , ND

}
along

the horizontal direction, and then find the number of columns. The criterion is to produce clusters with
short intra-cluster distances and long inter-cluster distances. Let us first define a distance threshold as
Td = w∗Tpl/2, the index set of which isK = {1, 2, . . . , ND}, the selected set S is empty, and the cluster

set C is empty. The proposed algorithm for clustering
{
xTL

k

}
is briefly introduced as follows.

1. Let the first coordinate point xTL
1 be taken as the first cluster center µ1. Let the selected set be

S = {1}, and the cluster set C = {c1}.
2. Select the next point from

{
xTL

l

∣∣∣ l ∈ K\S
}
, and compute the distance dc

(
xTL

l

)
for every c ∈ C.

Apply index l into set S.
3. Compare this distance dc

(
xTL

l

)
with the threshold Td. If dc

(
xTL

l

)
< Td, then set xTL

l belonging
to cluster c. Next, update center µc by averaging all coordinate points belonging to cluster c.
In contrast, let xTL

l become a new prototype point, and add a new cluster c#(C)+1 with its center
µ#(C)+1 = xTL

l . Here, #(C) denotes the number of clusters in C.

4. Repeat steps 2–3 until all coordinate points belong to their corresponding clusters.

Appl. Sci. 2020, 10, 3423 9 of 19

The four steps above form an iteration obtaining the clusters with centers. Based on these clusters,
a new iteration is created to assign all coordinate points

{
xTL

k

}
to their nearest cluster in the same manner.

This clustering algorithm will terminate when the clustered results of two consecutive iterations are
the same. Consequently, the number and coordinates of the columns from all detected die patterns can
be obtained.

Similarly, the coordinate points
{
yTL

k | k = 1, 2, . . .ND

}
are clustered in the same manner. Thus,

every row and its representative coordinate are obtained. Thus far, the number of columns and rows
from the detected die patterns can be obtained. Assuming that the detected patterns arrange in N
columns andM rows. Let

(
xTL

n , yTL
m

)
be the top-left corner of an arbitrary die pattern in the original SAT

image, where the subscript n ∈ {1, 2, . . . ,N} denotes the n-th column and subscript m ∈ {1, 2, . . . ,M}
denotes the m-th row. Using these corners and the estimated size of the standard template, all patterns,
including the die patterns and predicted pattern candidates, in the wafer image can be obtained.[

xTL
n , xTL

n + w∗Tpl

)
×

[
yTL

m , yTL
m + h∗Tpl

)
(6)

This indicates the two-dimensional region of the pattern located on the n-th column and m-th row.
Figure 9 shows all patterns, in which the yellow and blue dots denote the locations of the detected
and predicted patterns, respectively. Every pattern will be further categorized into normal, abnormal,
or other predefined classes. At this point, the initial wafer map is produced; however, the patterns
need to be identified later.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 20

Similarly, the coordinate points {𝑦𝑘
TL | 𝑘 = 1,2, … 𝑁D} are clustered in the same manner. Thus,

every row and its representative coordinate are obtained. Thus far, the number of columns and rows

from the detected die patterns can be obtained. Assuming that the detected patterns arrange in 𝒩

columns and ℳ rows. Let (𝑥𝑛
TL, 𝑦𝑚

TL) be the top-left corner of an arbitrary die pattern in the original

SAT image, where the subscript 𝑛 ∈ {1,2, … , 𝒩} denotes the 𝑛-th column and subscript 𝑚 ∈

{1,2, … , ℳ} denotes the 𝑚-th row. Using these corners and the estimated size of the standard

template, all patterns, including the die patterns and predicted pattern candidates, in the wafer

image can be obtained.

[𝑥𝑛
TL, 𝑥𝑛

TL + 𝑤Tpl
∗) × [𝑦𝑚

TL, 𝑦𝑚
TL + ℎTpl

∗) (6)

This indicates the two-dimensional region of the pattern located on the 𝑛-th column and 𝑚-th

row. Figure 9 shows all patterns, in which the yellow and blue dots denote the locations of the

detected and predicted patterns, respectively. Every pattern will be further categorized into normal,

abnormal, or other predefined classes. At this point, the initial wafer map is produced; however, the

patterns need to be identified later.

2.3. Pattern Classification for Inspection

As shown in Figure 9, a wafer map full of the detected (yellow) and predicted (blue) patterns

was produced. In this subsection, we further categorize each of them into one of the following

classes: (1) background (outside the wafer), (2) alignment mark, (3) normal (non-defective die), or (4)

abnormal (with some errors, such as cracks, defects, or imaging noise). Figure 10 shows typical

examples of these four classes. In addition, more cases of different abnormal patterns are shown in

Figure 11, which are caused by fabrication defects (subplots (a) to (d)), such as cracks, and imaging

errors caused by voids (subplots (c) to (d)). The next task is to perform our image classification

method to analyze any patterns. Here, a learning-based method composed of image feature

extraction and image classification was used in our study. Numerous networks possessing a deep

architecture have verified the effectiveness of the image extraction. As mentioned in Section 1, we

selected several popular image feature extraction models, including VGG-16 and VGG-19 [12],

InceptionV3 [16], MobileNet [18], and ResNet-50 [14], for evaluation. ResNet-50 was finally chosen

as the image extractor of our proposed method. The details of the performance comparison are

described in Subsection 3.3. This image extractor is followed by a fully-connected neural network

designed for image classification. Thus, the entire architecture of our proposed method for pattern

identification is as depicted in Figure 12. The details of its implementation are provided in

Subsection 3.1.

Figure 9. Initial wafer mapping result from detected and predicted die patterns.

2.3. Pattern Classification for Inspection

As shown in Figure 9, a wafer map full of the detected (yellow) and predicted (blue) patterns
was produced. In this subsection, we further categorize each of them into one of the following classes:
(1) background (outside the wafer), (2) alignment mark, (3) normal (non-defective die), or (4) abnormal
(with some errors, such as cracks, defects, or imaging noise). Figure 10 shows typical examples of
these four classes. In addition, more cases of different abnormal patterns are shown in Figure 11,
which are caused by fabrication defects (subplots (a) to (d)), such as cracks, and imaging errors
caused by voids (subplots (c) to (d)). The next task is to perform our image classification method to
analyze any patterns. Here, a learning-based method composed of image feature extraction and image
classification was used in our study. Numerous networks possessing a deep architecture have verified
the effectiveness of the image extraction. As mentioned in Section 1, we selected several popular

Appl. Sci. 2020, 10, 3423 10 of 19

image feature extraction models, including VGG-16 and VGG-19 [12], InceptionV3 [16], MobileNet [18],
and ResNet-50 [14], for evaluation. ResNet-50 was finally chosen as the image extractor of our proposed
method. The details of the performance comparison are described in Section 3.3. This image extractor
is followed by a fully-connected neural network designed for image classification. Thus, the entire
architecture of our proposed method for pattern identification is as depicted in Figure 12. The details
of its implementation are provided in Section 3.1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20

Figure 9. Initial wafer mapping result from detected and predicted die patterns.

(a)

(b)

(c)

(d)

Figure 10. Four different patterns: (a) background; (b) alignment mark; (c) normal; (d) abnormal

pattern.

(a)

(b)

Figure 10. Four different patterns: (a) background; (b) alignment mark; (c) normal; (d) abnormal pattern.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20

Figure 9. Initial wafer mapping result from detected and predicted die patterns.

(a)

(b)

(c)

(d)

Figure 10. Four different patterns: (a) background; (b) alignment mark; (c) normal; (d) abnormal

pattern.

(a)

(b)

Figure 11. Cont.

Appl. Sci. 2020, 10, 3423 11 of 19Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 20

(c)

(d)

Figure 11. More examples of abnormal patterns: (a) crack; (b) defect; (c) and (d) errors caused by

voids.

3. Implementation and Experimental Results

First, three SAT images captured from different wafers (in the same batch) on the

semiconductor production line were prepared for the following experiments. For convenience, we

named them img01, img02, and img03. In this section, we focus on the explanation and

implementation of (1) automatic template extraction, (2) the training and testing stages of our

pattern classification method, and (3) a discussion on using different networks as the backbone of

the image feature extractor. To meet the computational requirements when executing a deep

CNN-based model, a graphics processing unit (GPU)-accelerated computer was used to implement

our proposed method. We run all the experiments on the computer with an Intel Core I7-8750H CPU

@ 2.2 GHz, 16G DDR4 RAM 2400 MHz, NVIDIA GeForce GTX-1060. The operating system was

Windows 10. The entire algorithm was programmed in Python and used OpenCV and TensorFlow.

Figure 12. Deep convolutional neural network (CNN) for die pattern classification.

3.1. Experiments on Automatic Template Extraction and Die Detection

The proposed method for template extraction was verified using images img01, img02, and

img03. The parameters used in this experiment are as follows:

 The size of the original SAT image is: 𝑤Orig = 30,000 and ℎOrig = 30,000.

 The size of the image patch is: 𝑤P = 𝑤Orig/5 = 6000 and ℎP = ℎOrig/5 = 6000. This size is

determined to ensure that there are sufficient die patterns in this image patch. If template

Figure 11. More examples of abnormal patterns: (a) crack; (b) defect; (c) and (d) errors caused by voids.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 20

(c)

(d)

Figure 11. More examples of abnormal patterns: (a) crack; (b) defect; (c) and (d) errors caused by

voids.

3. Implementation and Experimental Results

First, three SAT images captured from different wafers (in the same batch) on the

semiconductor production line were prepared for the following experiments. For convenience, we

named them img01, img02, and img03. In this section, we focus on the explanation and

implementation of (1) automatic template extraction, (2) the training and testing stages of our

pattern classification method, and (3) a discussion on using different networks as the backbone of

the image feature extractor. To meet the computational requirements when executing a deep

CNN-based model, a graphics processing unit (GPU)-accelerated computer was used to implement

our proposed method. We run all the experiments on the computer with an Intel Core I7-8750H CPU

@ 2.2 GHz, 16G DDR4 RAM 2400 MHz, NVIDIA GeForce GTX-1060. The operating system was

Windows 10. The entire algorithm was programmed in Python and used OpenCV and TensorFlow.

Figure 12. Deep convolutional neural network (CNN) for die pattern classification.

3.1. Experiments on Automatic Template Extraction and Die Detection

The proposed method for template extraction was verified using images img01, img02, and

img03. The parameters used in this experiment are as follows:

 The size of the original SAT image is: 𝑤Orig = 30,000 and ℎOrig = 30,000.

 The size of the image patch is: 𝑤P = 𝑤Orig/5 = 6000 and ℎP = ℎOrig/5 = 6000. This size is

determined to ensure that there are sufficient die patterns in this image patch. If template

Figure 12. Deep convolutional neural network (CNN) for die pattern classification.

3. Implementation and Experimental Results

First, three SAT images captured from different wafers (in the same batch) on the semiconductor
production line were prepared for the following experiments. For convenience, we named them img01,
img02, and img03. In this section, we focus on the explanation and implementation of (1) automatic
template extraction, (2) the training and testing stages of our pattern classification method, and (3) a
discussion on using different networks as the backbone of the image feature extractor. To meet the
computational requirements when executing a deep CNN-based model, a graphics processing unit
(GPU)-accelerated computer was used to implement our proposed method. We run all the experiments
on the computer with an Intel Core I7-8750H CPU @ 2.2 GHz, 16G DDR4 RAM 2400 MHz, NVIDIA
GeForce GTX-1060. The operating system was Windows 10. The entire algorithm was programmed in
Python and used OpenCV and TensorFlow.

3.1. Experiments on Automatic Template Extraction and Die Detection

The proposed method for template extraction was verified using images img01, img02, and img03.
The parameters used in this experiment are as follows:

• The size of the original SAT image is: wOrig = 30,000 and hOrig = 30,000 .
• The size of the image patch is: wP = wOrig/5 = 6000 and hP = hOrig/5 = 6000. This size is

determined to ensure that there are sufficient die patterns in this image patch. If template extraction
fails, this size can be increased by wP = wOrig/4 = 7500, hP = hOrig/4 = 7500, and so on.

• The size of the initial template is: wTpl = wP/3 = 2000 and hTpl = hP/3 = 2000. The criterion for
determining this size is to ensure that there exists one (or more) whole die pattern in this initial
template. Generally, this size is big enough to detect and extract a standard template.

Appl. Sci. 2020, 10, 3423 12 of 19

• The similarity threshold is the 90th percentile value of the map R(x, y), that is, TSIM = 0.9 ×
max

x,y

{
R(x, y)

}
.

• The binarization thresholds are adaptively determined using Otsu’s method [20].

Figure 13 shows the extracted templates, in which subplots (a), (b), and (c) correspond to img01,
img02, and img03, respectively, and the estimated template size can be found in Table 1. These are very
similar because their original SAT images are from the same batch of wafer products. Next, we apply
template matching followed by clustering to obtain an initial wafer map that contains the detected
die patterns (marked by the yellow dots) and predicted pattern candidates (marked by the blue dots).
Figure 14 shows the results of the initial wafer maps for images img01, img02, and img03. These wafer
maps need to be further analyzed by conducting our proposed classification model for every pattern.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20

extraction fails, this size can be increased by 𝑤P = 𝑤Orig/4 = 7500, ℎP = ℎOrig/4 = 7500, and so

on.

 The size of the initial template is: 𝑤Tpl = 𝑤P/3 = 2000 and ℎTpl = ℎP/3 = 2000. The criterion

for determining this size is to ensure that there exists one (or more) whole die pattern in this

initial template. Generally, this size is big enough to detect and extract a standard template.

 The similarity threshold is the 90th percentile value of the map 𝑅(𝑥, 𝑦), that is, 𝑇SIM = 0.9 ×

max
𝑥,𝑦

{𝑅(𝑥, 𝑦)}.

 The binarization thresholds are adaptively determined using Otsu’s method [20].

Figure 13 shows the extracted templates, in which subplots (a), (b), and (c) correspond to img01,

img02, and img03, respectively, and the estimated template size can be found in Table 1. These are

very similar because their original SAT images are from the same batch of wafer products. Next, we

apply template matching followed by clustering to obtain an initial wafer map that contains the

detected die patterns (marked by the yellow dots) and predicted pattern candidates (marked by the

blue dots). Figure 14 shows the results of the initial wafer maps for images img01, img02, and img03.

These wafer maps need to be further analyzed by conducting our proposed classification model for

every pattern.

(a)

(b)

(c)

Figure 13. Results of template extraction for three SAT images: (a) img01; (b) img02; (c) img03.

Table 1. Numerical results of die pattern detection.

Image Template Template Size (Unit: Pixels) # of Detected Die Patterns # of Predicted Regions

img01 13(a) 300 × 320 6745 1718

img02 13(b) 306 × 318 6756 1889

img03 13(c) 302 × 320 6763 1882

(a)

(b)

(c)

Figure 14. Results of die pattern detection for three SAT images: (a) img01; (b) img02; (c) img03.

Figure 13. Results of template extraction for three SAT images: (a) img01; (b) img02; (c) img03.

Table 1. Numerical results of die pattern detection.

Image Template Template Size
(Unit: Pixels)

of Detected
Die Patterns

of Predicted
Regions

img01 13(a) 300× 320 6745 1718
img02 13(b) 306× 318 6756 1889
img03 13(c) 302× 320 6763 1882

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20

extraction fails, this size can be increased by = /4 = 7500, ℎ = ℎ /4 = 7500, and so
on.

• The size of the initial template is: = /3 = 2000 and ℎ = ℎ /3 = 2000. The criterion
for determining this size is to ensure that there exists one (or more) whole die pattern in this
initial template. Generally, this size is big enough to detect and extract a standard template.

• The similarity threshold is the 90th percentile value of the map , , that is, = 0.9 ×max, , .

• The binarization thresholds are adaptively determined using Otsu’s method [20].

Figure 13 shows the extracted templates, in which subplots (a), (b), and (c) correspond to img01,
img02, and img03, respectively, and the estimated template size can be found in Table 1. These are
very similar because their original SAT images are from the same batch of wafer products. Next, we
apply template matching followed by clustering to obtain an initial wafer map that contains the
detected die patterns (marked by the yellow dots) and predicted pattern candidates (marked by the
blue dots). Figure 14 shows the results of the initial wafer maps for images img01, img02, and img03.
These wafer maps need to be further analyzed by conducting our proposed classification model for
every pattern.

(a)

(b)

(c)

Figure 13. Results of template extraction for three SAT images: (a) img01; (b) img02; (c) img03.

Table 1. Numerical results of die pattern detection.

Image Template Template Size (Unit: Pixels) # of Detected Die Patterns # of Predicted Regions
img01 13(a) 300 × 320 6745 1718
img02 13(b) 306 × 318 6756 1889
img03 13(c) 302 × 320 6763 1882

(a) (b)

(c)

Figure 14. Results of die pattern detection for three SAT images: (a) img01; (b) img02; (c) img03.

3.2. Implementation of Die Pattern Classification

In this subsection, the proposed pattern classification model trained using our own dataset
is described. The standard network, as depicted in Figure 12, contains over 25 million trainable

Appl. Sci. 2020, 10, 3423 13 of 19

parameters. The first half of the network is a ResNet-50 feature extractor, the input of which is a
normalized pattern image with a size of 224 × 224 pixels and a feature vector output of 2048 × 1.
The complete compositions of ResNet-50 are shown in Table 2. The second half is a fully-connected
neural network applied to conduct four-class classification, the thorough architecture of which is
tabulated in Table 3.

Table 2. Architecture of feature extractor in our pattern classification model.

Feature Extractor: ResNet-50 Encoder

Layer Name Kernel Size Stride Channels Repeat Times

Conv 1 7 × 7 2 3→64 1

Pool 1 3 × 3 2 1

Resblock 1

 1 × 1
3 × 3
1 × 1

 1 64→256 3

Resblock 2

 1 × 1
3 × 3
1 × 1

 1 256→512 4

Resblock 3

 1 × 1
3 × 3
1 × 1

 1 512→1024 6

Resblock 4

 1 × 1
3 × 3
1 × 1

 1 1024→2048 3

Table 3. Architecture of fully connected network in our pattern classification model.

Classifier: Fully-Connected Neural Network

Layer Name Input Dimension Output Dimension

FC-1 1 2048 1000
FC-2 1 1000 100
FC-3 1 100 4

Softmax 2 4 4
1 FC = fully connected layer. 2 Softmax is used to map the output of a neural network to a probability distribution
over the predicted output classes. This ensures that the sum of all output elements equals 1.

During this experiment, we collected a total of 2150 samples to form our own Dataset-I,
and manually identified them into four categories: (1) background, (2) alignment mark, (3) normal,
and (4) abnormal. Repeated random subsampling validation [21], also known as Monte Carlo
cross-validation, was adopted for evaluating accuracy during training. The Dataset-I was randomly
split into training and validation sets multiple times, whereas the ratio of training data to validation
data was 5:1. For each such split, the model was learned with the training set, and the accuracy was
assessed using the validation set. The accuracies obtained from the splits were then averaged. Table 4
lists the data distribution of which were 1769 samples used for learning the model and 381 samples
applied for validation. Some commonly used data augmentation techniques are applied in the present
work, including shifting and flipping, rotation, and brightness shifts. We set the hyper-parameters as

follows: rotation range of [−5, 5], spatial shifts of
[
0.2w∗Tpl, 0.2h∗Tpl

]
, brightness shifts of [1, 10], a random

zoom range of [0.8, 1.2], dropout probability of 0.5, batch size of 8, maximum epochs of 15, optimized
using Adam with commonly-used settings of β1 = 0.9, β2 = 0.999, and ε = 10−8, and the learning
rate η of 10−5. Figure 15 shows the per-epoch trend of training and validation accuracy. Note that
we terminated the training process after eight epochs because the training and validation accuracy
converged to 89.13% and 99.46%, respectively. As shown in the figure, the training accuracy is less

Appl. Sci. 2020, 10, 3423 14 of 19

than the validation accuracy; this situation can be attributed to several reasons: (1) the regularization
mechanisms, such as the dropout and L1/L2 weight regularization, were turned on during training.
(2) When using the Keras library in the TensorFlow, the training accuracy for an epoch is the averaged
accuracy over each batch of the training data. Because the model was changing over time, the accuracy
over the first batch was lower than that over the last batch. By contrast, the validation accuracy for
an epoch is computed using the model as it is at the end of the epoch, resulting in a higher accuracy.
(3) The techniques of data augmentation used during training probably produced certain samples that
were difficult to identify. Finally, we used 370 additional test data for evaluating the learned model,
the results of which are summarized in Table 5 as a confusion matrix. Notably, the test data were
collected from different batches of wafers. Only two normal samples were incorrectly identified as an
abnormal class. The overall accuracy was greater than 99%, and the accuracy for the normal samples
was 98.57%.

Table 4. Data distribution in Dataset-I.

Class Label of Training Samples of Validation Samples

Background 417 83
Alignment mark 375 75

Normal 560 140
Abnormal 417 83

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 0.999, and = 10 , and the learning rate of 10 . Figure 15 shows the per-epoch trend of
training and validation accuracy. Note that we terminated the training process after eight epochs
because the training and validation accuracy converged to 89.13% and 99.46%, respectively. As
shown in the figure, the training accuracy is less than the validation accuracy; this situation can be
attributed to several reasons: (1) the regularization mechanisms, such as the dropout and L1/L2
weight regularization, were turned on during training. (2) When using the Keras library in the
TensorFlow, the training accuracy for an epoch is the averaged accuracy over each batch of the
training data. Because the model was changing over time, the accuracy over the first batch was lower
than that over the last batch. By contrast, the validation accuracy for an epoch is computed using the
model as it is at the end of the epoch, resulting in a higher accuracy. (3) The techniques of data
augmentation used during training probably produced certain samples that were difficult to identify.
Finally, we used 370 additional test data for evaluating the learned model, the results of which are
summarized in Table 5 as a confusion matrix. Notably, the test data were collected from different
batches of wafers. Only two normal samples were incorrectly identified as an abnormal class. The
overall accuracy was greater than 99%, and the accuracy for the normal samples was 98.57%.

Figure 15. Training and validation accuracy.

Table 4. Data distribution in Dataset-I.

Class Label of Training Samples of Validation Samples
Background 417 83

Alignment mark 375 75
Normal 560 140

Abnormal 417 83

Figure 15. Training and validation accuracy.

Table 5. Confusion matrix for additional 370 test data.

True
Predicted Background Alignment Mark Normal Abnormal Accuracy (%)

Background 83 0 0 0 100
Alignment mark 0 64 0 0 100
Normal 0 0 138 2 98.57
Abnormal 0 0 0 83 100

3.3. Comparison among Feature Extractors

When designing the architecture of our deep model, several CNN-based models that are frequently
used in image featuring were evaluated. In this subsection, five popular backbones, namely, VGG-16
and VGG-19 [12], InceptionV3 [16], MobileNet [18], and ResNet-50 [14], were chosen for comparison.
For fairness, their inputs were normalized to an identical size and followed by the same classifier. Their
training and validation accuracy are presented separately in Figures 16 and 17. Notably, the training
and validation accuracy were relatively high in the early epoch because these compared backbones
were pre-trained on the ImageNet dataset [22]. It can be seen that ResNet-50 outperformed other

Appl. Sci. 2020, 10, 3423 15 of 19

approaches after six epochs, whereas VGG-16 and VGG-19 showed comparable accuracy. Moreover,
a computational comparison between these backbones is listed in Table 6. Here, the minimum,
maximum, and average computational time for identifying a pattern image and the total number of
parameters of different models are also summarized. The VGG-16 and VGG-19, whose accuracies were
comparable to ResNet-50, have a much larger number of model parameters. To consider the balance
between accuracy and computational time, ResNet-50 was chosen as the standard subnetwork for the
image feature extractor applied in our proposed method. More discussion on different CNN-based
networks is provided in Section 4.1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 20

Table 5. Confusion matrix for additional 370 test data.

Predicted

True Background Alignment Mark Normal Abnormal Accuracy (%)

Background 83 0 0 0 100

Alignment mark 0 64 0 0 100

Normal 0 0 138 2 98.57

Abnormal 0 0 0 83 100

3.3. Comparison among Feature Extractors

When designing the architecture of our deep model, several CNN-based models that are
frequently used in image featuring were evaluated. In this subsection, five popular backbones,
namely, VGG-16 and VGG-19 [12], InceptionV3 [16], MobileNet [18], and ResNet-50 [14], were
chosen for comparison. For fairness, their inputs were normalized to an identical size and followed
by the same classifier. Their training and validation accuracy are presented separately in Figures 16
and 17. Notably, the training and validation accuracy were relatively high in the early epoch because
these compared backbones were pre-trained on the ImageNet dataset [22]. It can be seen that
ResNet-50 outperformed other approaches after six epochs, whereas VGG-16 and VGG-19 showed
comparable accuracy. Moreover, a computational comparison between these backbones is listed in
Table 6. Here, the minimum, maximum, and average computational time for identifying a pattern
image and the total number of parameters of different models are also summarized. The VGG-16
and VGG-19, whose accuracies were comparable to ResNet-50, have a much larger number of model
parameters. To consider the balance between accuracy and computational time, ResNet-50 was
chosen as the standard subnetwork for the image feature extractor applied in our proposed method.
More discussion on different CNN-based networks is provided in Section 4.1.

Table 6. Comparison of different models for pattern classification.

Extractor Time (Unit: ms) Number of Extractor Parameters Total Number of Model Parameters
Min. Max. Avg.

VGG-16 30.25 35.63 31.02 14,714,688 39,904,192
VGG-19 36.75 39.63 37.19 20,024,384 45,213,888

InceptionV3 33.38 45.88 35.02 21,802,784 73,104,288
MobileNet 24 30.63 25.03 3,228,864 53,506,368
ResNet-50 31 42 32.58 23,587,712 25,737,216

Figure 16. Training accuracy for different CNN-based networks. Figure 16. Training accuracy for different CNN-based networks.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 20

Figure 17. Validation accuracy for different CNN-based networks.

3.4. Wafer Map Generation for Inspection Visualization

The final result of our proposed method is a multi-class wafer map, the classes of which can be
manually defined by users. In this paper, four classes are applied: background, alignment mark, and
normal and abnormal patterns. Let the original SAT image be the input; thereafter, automatic
template extraction, pattern detection, and prediction steps, followed by pattern classification, are
conducted. All patterns are found, and the information of each pattern, including the location, width,
height, and its class is also obtained. Figure 18 shows the final results corresponding to images img01,
img02, and img03. The patterns belonging to the background, alignment mark, and normal and
abnormal pattern classes are plotted in gray, white, green, and red, respectively. The analyzed wafer
maps are useful for visualizing defects and finding potential fabrication issues.

(a)

(b)

(c)

Figure 18. Results of our proposed inspection method for three SAT images: (a) img01; (b) img02; (c)
img03.

4. Discussion

4.1. More Discussion on Pattern Classification Models

The implementation and experimental evaluation of our proposed method have been
described in Section 3. The deep learning-based pattern classification model was designed to consist
of a ResNet-50-based extractor and a multi-layer fully-connected classifier. The rationale for
determining the extractor and the hyper-parameters of the classifier was attaining high accuracy
and less computational time. To analyze the accuracies of different model structures, we collected a
total of 10,180 samples that were captured from four batches of wafers to form Dataset-II of which
contained: (1) 2008 background patterns, (2) 408 alignment mark patterns, (3) 6184 normal patterns,

Figure 17. Validation accuracy for different CNN-based networks.

Table 6. Comparison of different models for pattern classification.

Extractor
Time (Unit: ms) Number of Extractor

Parameters
Total Number of

Model ParametersMin. Max. Avg.

VGG-16 30.25 35.63 31.02 14,714,688 39,904,192
VGG-19 36.75 39.63 37.19 20,024,384 45,213,888

InceptionV3 33.38 45.88 35.02 21,802,784 73,104,288
MobileNet 24 30.63 25.03 3,228,864 53,506,368
ResNet-50 31 42 32.58 23,587,712 25,737,216

3.4. Wafer Map Generation for Inspection Visualization

The final result of our proposed method is a multi-class wafer map, the classes of which can
be manually defined by users. In this paper, four classes are applied: background, alignment
mark, and normal and abnormal patterns. Let the original SAT image be the input; thereafter,

Appl. Sci. 2020, 10, 3423 16 of 19

automatic template extraction, pattern detection, and prediction steps, followed by pattern classification,
are conducted. All patterns are found, and the information of each pattern, including the location,
width, height, and its class is also obtained. Figure 18 shows the final results corresponding to images
img01, img02, and img03. The patterns belonging to the background, alignment mark, and normal and
abnormal pattern classes are plotted in gray, white, green, and red, respectively. The analyzed wafer
maps are useful for visualizing defects and finding potential fabrication issues.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 20

Figure 17. Validation accuracy for different CNN-based networks.

3.4. Wafer Map Generation for Inspection Visualization

The final result of our proposed method is a multi-class wafer map, the classes of which can be
manually defined by users. In this paper, four classes are applied: background, alignment mark, and
normal and abnormal patterns. Let the original SAT image be the input; thereafter, automatic
template extraction, pattern detection, and prediction steps, followed by pattern classification, are
conducted. All patterns are found, and the information of each pattern, including the location, width,
height, and its class is also obtained. Figure 18 shows the final results corresponding to images img01,
img02, and img03. The patterns belonging to the background, alignment mark, and normal and
abnormal pattern classes are plotted in gray, white, green, and red, respectively. The analyzed wafer
maps are useful for visualizing defects and finding potential fabrication issues.

(a)

(b)

(c)

Figure 18. Results of our proposed inspection method for three SAT images: (a) img01; (b) img02; (c)
img03.

4. Discussion

4.1. More Discussion on Pattern Classification Models

The implementation and experimental evaluation of our proposed method have been
described in Section 3. The deep learning-based pattern classification model was designed to consist
of a ResNet-50-based extractor and a multi-layer fully-connected classifier. The rationale for
determining the extractor and the hyper-parameters of the classifier was attaining high accuracy
and less computational time. To analyze the accuracies of different model structures, we collected a
total of 10,180 samples that were captured from four batches of wafers to form Dataset-II of which
contained: (1) 2008 background patterns, (2) 408 alignment mark patterns, (3) 6184 normal patterns,

Figure 18. Results of our proposed inspection method for three SAT images: (a) img01; (b) img02;
(c) img03.

4. Discussion

4.1. More Discussion on Pattern Classification Models

The implementation and experimental evaluation of our proposed method have been described
in Section 3. The deep learning-based pattern classification model was designed to consist of a
ResNet-50-based extractor and a multi-layer fully-connected classifier. The rationale for determining the
extractor and the hyper-parameters of the classifier was attaining high accuracy and less computational
time. To analyze the accuracies of different model structures, we collected a total of 10,180 samples that
were captured from four batches of wafers to form Dataset-II of which contained: (1) 2008 background
patterns, (2) 408 alignment mark patterns, (3) 6184 normal patterns, and (4) 1580 abnormal patterns.
Similarly, the random subsampling validation was repeated multiple times to assess each of the
classification models. Table 7 lists the size of the feature vector obtained by a specified extractor and
the total number of parameters of a model with a specified composition of hidden layers. In this
table, the tuple (1000) denotes that the classifier contains one hidden layer with 1000 neurons, and the
tuples (1000, 100) and (1000, 100, 10) respectively indicate two and three hidden layers with their
neurons. It is evident that the ResNet-50 generated the most compact feature vector (having the
minimum size) and thus structured the smallest classification model. Table 8 lists the validation
accuracy of Dataset-II for the aforementioned compositions. The results showed that VGG-16, VGG-19,
and ResNet-50 achieved comparatively high accuracy. For every extractor, the best accuracy was
obtained when the classifier comprised two hidden layers. To sum up, the architecture consisting of
a ResNet-50 extractor and a two-hidden-layer classifier was selected for our proposed classification
model. Subsequently, a grid search approach was used to find the number of neurons in each of
the hidden layers. During this experiment, we evaluated several combinations for two-hidden-layer
composition (n1, n2), where n1 and n2 were respectively selected from n1 ∈ {1000, 500, 200} and
n2 ∈ {200, 100, 50}. The results were tabulated in Table 9, in which the accuracies were close to each
other. However, the two-layer composition has unlimited possible combinations, and cannot be
completely assessed; thus, the composition (1000, 100) that reached a high accuracy is an acceptable
hyper-parameter setting in the model. In this subsection, the experimental results in terms of accuracy

Appl. Sci. 2020, 10, 3423 17 of 19

and computation time are consistent with [23]. The ResNet-50 indeed has a more efficient accuracy
density (accuracy per parameter) than VGG-16 and VGG-19 networks.

Table 7. The total number of parameters of different model structures.

Extractor Size of Feature Vector
Composition of Hidden Layers

(1000) (1000, 100) (1000, 100, 10)

VGG-16 25,088 39,807,692 39,904,192 39,904,842
VGG-19 25,088 45,117,388 45,213,888 45,214,538

InceptionV3 51,200 73,007,788 73,104,288 73,104,938
MobileNet 50,176 53,409,868 53,506,368 53,507,018
ResNet-50 2048 25,640,716 25,737,216 25,737,866

Table 8. Validation accuracy of different model structures.

Extractor
Composition of Hidden Layers

(1000) (1000, 100) (1000, 100, 10)

VGG-16 0.8701 0.8809 0.8167
VGG-19 0.8766 0.8802 0.8673

InceptionV3 0.8016 0.8206 0.7976
MobileNet 0.7972 0.8109 0.6548
ResNet-50 0.8794 0.8817 0.8663

Table 9. Validation accuracy of different two-layer compositions, using a ResNet-50 extractor.

Layer 2

Layer 1 Number of Neurons

1000 500 200

Number of neurons
200 0.8715 0.8728 0.8756
100 0.8817 0.8789 0.8635
50 0.8722 0.8810 0.8744

4.2. Generalizing to Inspect More Abnormal Patterns

As mentioned, our proposed wafer inspection method can identify four categories of patterns,
including the background, alignment mark, normal, and abnormal classes. This method is practical for
identifying more than four classes by modifying the output layer of the classifier. In this subsection,
a classification model that can determine the background, alignment mark, normal pattern, imaging
error, crack, and pinhole verified the feasibility of inspecting such defective patterns. Similar to the
experimental procedure conducted in Section 3, we used Dataset-I for training and the same 370 test
data for evaluating the accuracy. Table 10 summarizes the results as a confusion matrix, in which there
were a total of 17 data incorrectly identified. Such increased errors are often caused by imbalanced
data distribution in the Dataset-I of which the crack and pinhole samples were far fewer than others,
even though data augmentation techniques were applied during training. In general wafer inspection
applications, all the defective (abnormal) die patterns need to be filtered out. Therefore, these anomaly
patterns are merged into an abnormal class in the present work.

Table 10. Confusion matrix for additional 370 test data: six-class classification model.

True
Predicted Background Alignment Mark Normal Imaging Error Crack Pinhole Accuracy (%)

Background 83 0 0 0 0 0 100
Alignment mark 0 64 0 0 0 0 100
Normal 0 0 125 6 4 0 92.59
Imaging error 0 0 5 57 0 0 91.94
Crack 0 0 1 0 8 0 88.89
Pinhole 0 0 0 1 0 16 94.12

Appl. Sci. 2020, 10, 3423 18 of 19

5. Conclusions

In this study, we proposed a vision-based method for detecting and recognizing dies on a
wafer. The main contributions of our method include an automatic scheme of standard template
extraction, clustering based on the distance to produce a wafer map, and a deep learning-based
pattern classification model. Ordinary template matching was employed to detect regularly repeated
die patterns. Thus, we proposed a template extraction algorithm that provides a reliable template
for finding such patterns. Furthermore, a clustering technique applying the distance criterion was
introduced to predict the locations of the pattern candidates. For the pattern classification phase,
we designed a deep CNN-based model composed of an image feature extractor and a classifier to
identify patterns as different classes. The effectiveness and efficiency of our proposed method were
evaluated experimentally. Furthermore, qualitative and quantitative evaluations were also conducted.
By applying the proposed visual inspection method, SAT images from wafers can be analyzed
completely and used to form wafer maps. These wafer maps can provide important information for
finding and analyzing wafer manufacturing problems in the semiconductor industry.

Funding: This research was supported in part by National United University under the Grant 1081020.

Conflicts of Interest: The author declares there are no conflicts of interest regarding the publication of this paper.

References

1. Huang, S.H.; Pan, Y.C. Automated visual inspection in the semiconductor industry: A survey. Comput. Ind.
2015, 66, 1–10. [CrossRef]

2. Shankar, N.G.; Zhong, Z.W. Defect detection on semiconductor wafer surfaces. Microelectron. Eng. 2005, 77,
337–346. [CrossRef]

3. Schulze, M.A.; Hunt, M.A.; Voelkl, E.; Hickson, J.D.; Usry, W.; Smith, R.G.; Bryant, R.; Thomas, C.E., Jr.
Semiconductor wafer defect detection using digital holography. In Proceedings of the SPIE 5041, Process
and Materials Characterization and Diagnostics in IC Manufacturing, Santa Clara, CA, USA, 27–28 Febuary
2003; pp. 183–193.

4. Kim, S.; Oh, I.S. Automatic defect detection from SEM images of wafers using component tree. J. Semicond.
Tech. Sci. 2017, 17, 86–93. [CrossRef]

5. Yeh, C.H.; Wu, F.C.; Ji, W.L.; Huang, C.Y. A wavelet-based approach in detecting visual defects on
semiconductor wafer dies. IEEE Trans. Semicond. Manuf. 2010, 23, 284–292. [CrossRef]

6. Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P. A novel defect inspection method for semiconductor wafer based
on magneto-optic imaging. J. Low Temp. Phys. 2013, 170, 436–441. [CrossRef]

7. Hartfield, C.D.; Moore, T.M. Acoustic Microscopy of Semiconductor Packages. In Microelectronics Failure
Analysis: Desk Reference, 6th ed.; Ross, R.J., Ed.; ASM International: Materials Park, OH, USA, 2011;
pp. 362–382.

8. Sakai, K.; Kikuchi, O.; Kitami, K.; Umeda, M.; Ohno, S. Defect detection method using statistical image
processing of scanning acoustic tomography. In Proceedings of the IEEE 23rd International Symposium on
the Physical and Failure Analysis of Integrated Circuits, Singapore, 18–21 July 2016; pp. 293–296.

9. Kitami, K.; Takada, M.; Kikuchi, O.; Ohno, S. Development of high resolution scanning aeoustie tomograph
for advanced LSI packages. In Proceedings of the IEEE 20th International Symposium on the Physical and
Failure Analysis of Integrated Circuits, Suzhou, China, 15–19 July 2013; pp. 522–525.

10. Sakai, K.; Kikuchi, O.; Takada, M.; Sugaya, N.; Ohno, S. Image improvement using image processing for
scanning acoustic tomograph images. In Proceedings of the IEEE 22nd International Symposium on the
Physical and Failure Analysis of Integrated Circuits, Hsinchu, Taiwan, 29 June–2 July 2015; pp. 163–166.

11. Brunelli, R. Template Matching as Testing. In Template Matching Techniques in Computer Vision: Theory and
Practice, 1st ed.; John Wiley & Sons Ltd.: West Sussex, UK; New York, NY, USA, 2009; pp. 43–71.

12. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

http://dx.doi.org/10.1016/j.compind.2014.10.006
http://dx.doi.org/10.1016/j.mee.2004.12.003
http://dx.doi.org/10.5573/JSTS.2017.17.1.086
http://dx.doi.org/10.1109/TSM.2010.2046108
http://dx.doi.org/10.1007/s10909-012-0671-y

Appl. Sci. 2020, 10, 3423 19 of 19

13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems 2012, Lake Tahoe, CA, USA,
3–8 December 2012; pp. 1097–1105.

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

15. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition 2015, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

16. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, Las Vegas,
NV, USA, 26 June–1 July 2016; pp. 2818–2826.

17. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San
Francisco, CA, USA, 4–10 Febuary 2017; pp. 4278–4284.

18. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.0486.

19. Nakazawa, T.; Kulkarni, D.V. Wafer map defect pattern classification and image retrieval using convolutional
neural network. IEEE Trans. Semicond. Manuf. 2018, 31, 309–314. [CrossRef]

20. Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation.
J. Electron. Imaging 2004, 1, 146–166. [CrossRef]

21. Picard, R.R.; Cook, R.D. Cross-validation of regression model. J. Am. Stat. Assoc. 1984, 79, 575–583.
[CrossRef]

22. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

23. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark analysis of representative deep neural network
architectures. IEEE Access 2018, 6, 64270–64277. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSM.2018.2795466
http://dx.doi.org/10.1117/1.1631315
http://dx.doi.org/10.1080/01621459.1984.10478083
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/ACCESS.2018.2877890
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Proposed Method
	Automatic Template Extraction
	Template Size Estimation
	Standard Template Extraction

	Die Pattern Detection and Clustering
	Pattern Classification for Inspection

	Implementation and Experimental Results
	Experiments on Automatic Template Extraction and Die Detection
	Implementation of Die Pattern Classification
	Comparison among Feature Extractors
	Wafer Map Generation for Inspection Visualization

	Discussion
	More Discussion on Pattern Classification Models
	Generalizing to Inspect More Abnormal Patterns

	Conclusions
	References

