iriried applied
L sciences

Article
Automatic Classification of Morphologically Similar
Fish Species Using Their Head Contours

Pere Marti-Puig '*(”, Amalia Manjabacas 2(0 and Antoni Lombarte %*

1 Data and Signal Processing Group, University of Vic—Central University of Catalonia,

08500 Vic, Catalonia, Spain
Institut de Ciencies del Mar, ICM (CSIC), 08003 Barcelona, Catalonia, Spain; manjabacas@icm.csic.es
Correspondence: pere.marti@uvic.cat (P.M.-P.); toni@icm.csic.es (A.L.)

check for
Received: 26 March 2020; Accepted: 12 May 2020; Published: 14 May 2020 updates

Abstract: This work deals with the task of distinguishing between different Mediterranean demersal
species of fish that share a remarkably similar form and that are also used for the evaluation of
marine resources. The experts who are currently able to classify these types of species do so by
considering only a segment of the contour of the fish, specifically its head, instead of using the entire
silhouette of the animal. Based on this knowledge, a set of features to classify contour segments
is presented to address both a binary and a multi-class classification problem. In addition to the
difficulty present in successfully discriminating between very similar forms, we have the limitation
of having small, unreliably labeled image data sets. The results obtained were comparable to those
obtained by trained experts.

Keywords: open contours; similarly shaped fish species; Discrete Cosine Transform (DCT); Discrete
Fourier Transform (DFT); Extreme Learning Machines (ELM); feature engineering; small data-sets

1. Introduction

Being able to determine the differences in shape between closely related fish species not only has
an impact on fisheries and their management but also is essential for a variety of studies on marine
ecology, genetics, phylogeny, biological invasion, and anthropogenic impact on the environment,
among others [1]. All of these studies require the correct identification of a wide range of species,
and the automatic classification of such species from images is still an open problem. The correct
identification of many specimens of these sympatric species requires an experienced observer and is a
highly time-consuming task; otherwise, many misclassification errors occur.

This paper focuses on two cases in which this problem appears. The first case deals with the
separation between Red Mullets, (Mullus barbatus and Mullus surmuletus), and it will be treated
as a binary classification problem. The second case is a multiclassification problem in which
different species of Gurnard Chelidonichthys cuculus, Chelidonichthys lucerna, Chelidonichthys obscurus,
Eutrigla gurnardus, Lepidotrigla cavillone, Lepidotrigla dieuzeidei, Peristedion cataphractum, Trigla lyra, and
Trigloporus lastoviza are involved. Red Mullets and Gurnards are commonly caught and sold in fish
markets as a mixture of species (Figure 1).

The observation is that experts who can correctly classify individuals of these species of fish
by using shape characteristics—instead of considering the entire silhouette, represented as a closed
contour- identify them by focusing on a specific contour fragment. They disregard the remaining
part of the contour as they realise that it is irrelevant for classification purposes. This is because the
discarded contour part provides information on variations within individuals of the same species
with respect to age, size, sex or body condition, but does not provide information on the intrinsic
characteristics involved in the distinction between species. The challenge for automated identification
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is to take these species-specific open contour fragments pointed out by the specialists to develop
features that correctly identify the species automatically. In both cases considered in this work, experts
mark the segment of interest of the profile as being the part that goes from the nose to the beginning of
the dorsal fin of the fish.

The first case addressed deals with the binary classification of the Mullus network. Red Mullets
(M. barbatus and M. surmuletus) are a major target as demersal fish species for the Mediterranean
fish industry [2,3]. There are many comparative studies of these two species focusing on a range
of topics, such as pollution bio-indicators, and fisheries or studies on age composition, growth, life
history, feeding, genetics, ecology, and distribution [4-9]. As mentioned above, the evaluation of living
resources requires the correct identification of species.

Searches for morphological features to help with the task of identifying these sympatric
species have focused on characteristics, such as head and body measurements [10,11], barbells [12],
dentition [13] or otoliths [14]. Amongst all of these biometric features, the angle of the head has
been found to be one of the best diagnostic characteristics to distinguish between the two species,
as the angle that the M. barbatus’head contour forms is more marked than that of M. surmuletus [10,15].
Even in fishery studies, however, the individual variability within Red Mullets causes identification
problems and the only reliable distinction is the color pattern of their bent dorsal fin. However, it is
not easy to obtain images of this feature from boat moorings in fishing harbours as the fish’s dorsal fin
is folded. Furthermore, in most cases, the information on the fish caught that is given upon the arrival
of the boat does not discriminate between both species of Red Mullets.

Thus, it is not possible to determine the statistics of individualized species of fish caught from
the fishing industry, which adds error in the mathematical models of each species. In consequence,
the correct identification of many specimens of these sympatric species requires an experienced
observer and, as mentioned before, is a highly time-consuming task. A more complex case occurs
in Mediterranean Gurnard fish (in the family of triglids and peristids), consisting of nine sympatric
species (C. cuculus, C. lucerna, C. obscurus, E. gurnardus, L. cavillone, L. dieuzeidei, P. cataphractum, T. lyra,
and T. lastoviza), which are fished through trawl fishing on continental shelves and upper slopes, and
are usually considered as only one species or an unidentified mix of species in commercial capture
statistics (Fisheries Database of the Catalan Government). Morphological differences between species
are based on trends of the lateral line, scale distribution, head shape and preorbital bones [15], and a
high degree of expertise is required to classify triglid species.

To solve both classification problems, we used a traditional machine learning (ML) workflow to
create the models, which are the trained programs that predict the outputs based on a set of given
inputs, also called features. That implies the design of such features as a first step, followed by the
task of training the model. Conventional ML techniques include support vector machines (SVM),
ensembled methods, decision trees, and also the extreme learning machines (ELM) used in this work,
among others. In this context, ELM performs very similarly to SVM, with the added advantage of
having a much quicker training process in comparison. In contrast to ML, an approach based on deep
learning (DL) techniques exists in which the algorithms automatically learn which of the features are
useful. The term deep refers to the multiple layers the networks have between inputs and outputs.
In order to train models with DL techniques, a large amount of tagged data is required, which is
complicated in our case as we work with a small dataset.

Several parameterization strategies have been previously explored for closed contours, and
therefore an abundance of literature is available. An important part of the transformed methods
dealing with closed contours is based on the Fourier transform. Among those methods, elliptic Fourier
descriptors (EDF) is one of the most popular ones. This method was introduced by Reference [16],
and some variations have been introduced since. As applications that require shape quantification are
present in a wide range of different fields, an extensive amount of these can be found [17-20].

Fourier methods applied to periodic sequences (which can be associated with closed contours)
exhibit good information-packing properties in the sense that they concentrate most of the signal



Appl. Sci. 2020, 10, 3408 30f23

energy in a few coefficients. Those few coefficients are employed as features for classifying purposes.
The problem under discussion cannot be solved if the specimens are treated by considering their entire
silhouette independently of the contour description technique employed, as is the case of multiple
spatial scales methods curvature scale space (CSS) [21-23], or from the discrete wavelet transform
(DWT) [24].

Therefore, knowing how the specialists solve the problem, the approach that will be used will
imitate the one used by these experts and thus only consider the contour fragments of interest.
Unfortunately, in the context of shape analysis, there is less work done on open contours and discrete
transforms. Something that is well known, however, is that Fourier-based methods do not work well
when the sequences are not periodic [25].

Different approaches can be used to deal with segment contours (open contours).
In Reference [26], a wavelet analysis with cubic B-spline bases was used in order to reduce disturbances
and confine them around the discontinuities, and in Reference [27], the windowed short time Fourier
transform (STFT) was employed. The main problem with most transformed methods, especially those
using Fourier, is the characterisation of the ends of the segments, which, in the case of open contours,
are seen as discontinuities. In Reference [28], a large number of open contour segment descriptors were
compiled and compared with each other, but none were found to be related to discrete transforms.
Certain discrete cosine transform (DCT) formulations work better when it comes to the ends of the
segments, and therefore seem to be the most appropriate discrete transformation to use when dealing
with open contours.

As far as we know, the DCT used in the morphometric analysis was first employed in
Reference [29] for the analysis of ammonite ribs (shell features of an extinct order of cephalopods).
In Reference [30], the DCT was also used for symmetric closed contours that were simultaneously
represented with closed and open contours (by taking half of the closed contour) and analyzed by
EFD and DCT, respectively. Recently, in Reference [31], DCT was employed to quantify open contours
of organic shapes and thus evaluate the morphological disparity of male genital evolution in sibling
species of Drosophila. The point (which will be developed later) is that some formulations of the
discrete cosine transform (DCT) can deal with segment extremes better and can also simultaneously
compact the energy of the signal in very few coefficients.

In this paper, an ML method is proposed to automatically classify very similar species with an
accuracy comparable to that achieved by experts when they use images to identify the correct species.
The method is used both in a binary and in a multi-class classification problem. The images contain
two landmarks, one in the snout and one at the beginning of the dorsal fin, to limit the segment used
by the experts. An added issue to the classification, which is very difficult if we do not have the
information that the specialist uses to discriminate, is that we have very few correctly tagged images.
We find this problem even more pronounced in the multi-class classification problem.

The addressed task is established under the framework of supervised classification with databases,
as mentioned, of reduced dimensions, which implies that there are few available cases to train the
classifiers. The proposed method takes advantage of the knowledge of specialists in the field. As the
main contributions, we highlight the development of features to represent open contours in a compact
way, and by taking advantage of the appropriate contour normalization, we show that it is possible
to eliminate the Gibbs effect that appears with the discrete Fourier transform (DFT). The proposed
segment standardization makes it possible—both for the DCT and the FFT—to describe open contours
with a single sequence instead of two (one for each coordinate) while, in addition, allowing us to
compare the segments independently of rotations and scale variations. It is also robust to the small
imprecisions or the noise that can be introduced when finding the contour.

The work continues as follows. In Section 2, Materials and Methods, the following points
are presented: the databases and the discrete transforms as well as the corresponding implicit
sequence extension and its relation in the representation of open contours, the contour extraction
procedure and normalization and the development of the features used. Additionally in that section,
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the training, classification, and cross-validation methods are explained. Section 3 is devoted to the
Results. In Section 3.2, we show how with a convolutional neural network (CNN) trained to detect the
region of interest determined by the points of the expert, the region of interest can also be determined
automatically, thus demonstrating that the points are not required. Finally, Section 4 is devoted to
our Conclusions.

Figure 1. A presentation of the traditional mixture that is made by fishermen in the Catalan coast:
(a) red mullets, and (b) gurnards.

2. Materials and Methods

2.1. Discrete Transforms and Signal Reconstructions from a Reduced Set of Coefficients

In the following two subsections, we show the direct and reverse expressions of the DCT and
DEFT transforms, and their particularities when reconstructing in an approximated way the original
sequence using a limited number L of coefficients. The small set of those coefficients, used properly,
will be employed to develop the features for the classifier. Intuitively, the set of L X coefficients will
be a good set of contour descriptors as long as L < N and the samples of X, are very close to the
original x;,.

2.1.1. Discrete Cosine Transform (Type-II)

The DCT-II forward and backward expressions that relate the points x;,, € R with the transformed
coefficients X} € R take the form:

N—1 - 1
X, = 2 — ~lk}); k=0,--- -1 1
K n:QCkxnCOS(N <n+2) >, 0, ,N 1)
N-1 - 1
=Y X = ~)k); n=0,--- ,N—1 2
Xy k:()Ck kCOS(N <n+2> ), n=0, ,N , )

where ¢ = 4/ % ifk=0and ¢ = 4/ % if k # 0. The approximate reconstruction of x, with the first L
coefficients Xy, L < N is:

L-1 T 1
X, = 2 X — —Vk): =0 -.-- -1
Xn P Ci &) COS < (?I + 2) ) , n 0, ,N ’ (3)

where ¥, are N reconstructed samples.
2.1.2. Discrete Fourier Transform

The discrete Fourier transform (DFT) forward and backward expressions that relate the points
Xn € R with the transformed coefficients X; € C take the form:
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N-1 o

Xe= Y xue /¥, k=0,1,--- ,N-1, (4)
k=0
]. N-1 27

Xn=— Y X8, n=0,1,--- ,N—1. (5)
N k=0

In the DFT case, X; € C. Considering the well-known DFT property Xy_; = X/ (symbol *
stands for complex conjugated) which holds for x, € R, the module and phase notation of Xj as
Xi = | Xk| €/, and the Euler formula, the approximation of x,,, %,, obtained from the first L (L < N)
coefficients X}, can be written as:

Xo 1 = 27 g _i2np Xo p 27
e U j55kn *,—jFkn) _ 20 | £ </t .
o=+~ k; (Xke + Xie ) o+ k:Zl Xl cos ( Sk + ¢ ) ©

n=0---,N—-1,
showing that ¥, € R.

2.1.3. A Note on the Implicit Extension of the Sequences Depending on the Discrete Transform Used
and the Case of Open Contours

For a discrete transform, the way in which the sequence remains implicitly defined outside the
main range n € [0, - - - , N — 1] is known as implicit extension. Any discrete transform has a particular
way of extending the sequence. This can be seen from the backward transform expressions in (2)
and in (5), for the DCT-II and the DFT, respectively. As the bases in these expressions are defined
beyond n € [0, N — 1], it follows that x, also remains implicitly defined beyond this range. When the
approximation of x, by ¥, is done with few bases (L < N) as in Equations (3) and (6), the samples of
%, near the main sequence extremes (n = 0 and n = N — 1) tend to manifest the implicit periodicity of
the transform. Depending on how a particular transformation extends the sequences at both extremes,
more or less transformed coefficients will be required to have a quality approximation.

Let us first consider the DCT-II, which belongs to the family of discrete trigonometric transforms
(DTT), and their implicit extension properties [32—40]. To summarize the DTT sequence extensions,
two relevant parameters must be considered—the symmetry type (ST) and the point of symmetry (PoS).
When it comes to the ST, the replication can be performed symmetrically (S) or anti-symmetrically (A).
Considering that the samples of the sequence are equispaced, the PoS can be positioned either in the
middle of the space between the elements, named half (H) sample or midpoint, or just at the position of
the element, named whole (W) sample or meshpoint.

Thus, when considering a single point from an edge of a sequence, there are four options to extend
the sequence, commonly denoted by two letters—(HS), (HA), (WS), and (WA). Figure 2 represents
those four possibilities for the left edge of a main sequence, which is depicted in bold. Then, it follows
that since all finite sequence have two edges, there are eight total possible combinations, each one
of which is associated with one different formulation corresponding to either the DCT or the DST
(discrete sine transform) groups [34,37,41,42].

The DTTs that best approximate open contours with few coefficients are those that have HS or
WS implicit extensions on both extremes. That happens for the DCT formulation types -1, -1I, -V, and
-VI. In those cases, the sequence considered with implicit extensions does not lose continuity. In the
particular case of the DCT-II, the continuity in both extremes is defined as x_; = xp and xy = xy_1.
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Figure 2. The four possible sequence extensions in discrete trigonometric transforms (DTTs) depending
on the point of symmetry (POS) and the type. HS, HA, WS, and WA stand for half sample-symmetry,
half sample anti-symmetry, whole sample-symmetry and whole sample anti-symmetry, respectively.

In the case of the DFT, it is easy to verify that xn4, = x,;. From (5) we have:

LS zmeeny _ LNS 2k ok
XpiN = ﬁ Z Xke N = N Z Xke N -e = Xy. (7)
k=0 k=0

Thus, for the DFT, reconstructions with few coefficients are very efficient only when xg and xn_1
are closed, as occurs in the case of objects with smooth contours. When xy ~ xx_1,as x_1 = xy_1 and
XN = X0, the continuity is perceived in the extended sequence. However, DFT loses the property of
compacting energy in few coefficients when a discontinuity appears as x( differs from xy_1, which
usually is the case of open contours [25]. See Figure 3c.

When the open contour is directly represented with the ¥, sequence without any transformation
(one sequence for each contour coordinate), the most efficient representation, which uses fewer
coefficients, is obtained with the DCT-II. Figure 3a shows (with the main sequence represented in bold)
the implicit extensions of the sequence outside the main range for DCT formulations -, -II, -V, and
-VL. Figure 3b shows the DFT implicit extensions for the same main sequence. Figure 3c represents
the reconstruction of a set of 32 original points using four real DCT-II coefficients and seven complex
DFT coefficients.

DFT
DCT-
o o 00,

ﬂw?ﬂ m g iWﬂ 1 ﬁ%wﬂ ‘ITQWHTT TMOM

DCT-Il

b)

I lgMT T?%u;il W

Partial Reconstruction with 4 Main Transformed Coefficients

DCT-V

e i
I S]] 1

(<]

DCT-VI

T, d
i s

a) c)

Figure 3. (a) Implicit extensions outside the main range for discrete cosine transform (DCT)
formulations -1, -1II, -V and -VI. The main sequence is in bold. (b) Discrete Fourier transform (DFT)
implicit extensions for the same sequence. (c) Reconstruction of a set of 32 original points (squares)
using four real DCT-II coefficients ¢, c1, ¢, c3 (circles) and seven complex DFT coefficients fy, f1, f2, f3
and f29, f30, f31 (triangles). Note that fy9, f39, f31 are the complex conjugates of f3, f», f1, respectively.



Appl. Sci. 2020, 10, 3408 7 of 23

2.2. Data Used

Red Mullet specimens were collected on the trawl-fishing grounds along the island shelf and
slope of Mallorca and Menorca during the 2002 survey of the BALAR project (2000-2004), which was
integrated in the Spanish ‘Programa Nacional de Datos Basicos Pesqueros’ for the Balearic Islands.
Trawls were carried out during daylight hours on board the oceanographic vessel R/V “Francisco
de Paula Navarro” [43]. Gurnard specimens were collected on the trawl-fishing grounds along the
Catalan Coast in commercial fishing boats of the ROSES and BOLINUS projects, both funded by the
Catalan Government, during 2015 and 2017 [44].

Side-view images of the whole fish were taken in the field with all specimens in the same
standardised position and orientation. The fish appear in the center of the image, with the head
oriented to the left and the belly facing the bottom of the image. The specimens had different ages
and lengths, and the distances from which the pictures were taken were not the same. An expert
taxonomist added two points to each image, one to mark the tip of the snout and the other to mark
the anterior insertion of the first dorsal fin. Those points indicate the beginning and the end of the
contour segments used by taxonomists to identify the mullet’s species. Figure 4 shows, on the bottom,
a specimen of each species and, at the top, the profile portion used by the expert to identify the species
for all individuals in the database. For this study, we have a data set of 23 images for each species of
Red Mullets. The left part is devoted to M. barbatus and the right part to M.surmuletus. Figure 5 shows
the head contours of 108 specimens belonging to nine species of Gurnards.
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Figure 4. (a) Mullus barbatus and (b) Mullus surmuletus specimens in the database. The images on the
top show the profile of interest according to taxonomist criteria. The specimens are identified with the
letter B/S plus a number.
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b) c) d) e) f) g)

Figure 5. The images show the profiles of interest of the specimens in the database according
to taxonomist criteria. (a) Chelidonichthys cuculus (C.c#), (b) Chelidonichthys lucerna (C.1#),
(¢) Chelidonichthys obscurus (C.o#), (d) Eutrigla gurnardus (E.g#), (e) Lepidotrigla cavillone (L.c#),
(f) Lepidotrigla dieuzeidei (L.d#), (g) Peristedion cataphractum (P.c#), (h) Trigla lyra (T.1#), and (i) Trigloporus
lastoviza (T.1#).

2.3. Open Contour Extraction and Normalization

As the fish were photographed following a certain protocol, they appear in the center of the image,
in a horizontal position, with the dorsal fin at the top and the nose oriented to the left. To establish
the fragment with relevant information, the expert introduced two marks in all images, one in the
snout and the other in the starting point of the dorsal fin, indicating the limits of the contour fragment.
These marks are in the background but close to the figure of the fish. Those images are our input
data. At that point, the image processing is entirely conventional. Landmark detection can be done by
colour. The landmark points are the references that make it possible to automatically crop the original
images and thus isolate the profile of interest in a more straightforward and smaller image. In addition,
the small size of the new images make the background color more uniform. Contour detection can
also be established with a common algorithms presented in the image processing toolbox of MATLAB.

The first step is to convert the region of interest, the ROI, (a colour image) to a grey level in
terms of luminance, and then binarize it. There are various methods that can be used to carry out
a binarization, but they all depend on a threshold. In our particular case, we employed a global
threshold computed using Otsu’s method, which chooses the threshold that minimizes the intraclass
variance of black and white pixels [45]. There are more sophisticated methods that can be used to
obtain the threshold, but this is the default option used by the function imbinarize in the MATLAB
image processing toolbox.

In Figure 6, the sequential steps that are applied in order to obtain the contour segment of interest
are shown, for a particular case; in Figure 6a the results of the binarization; in Figure 6b, the black
holes in the white region are filled; in Figure 6¢, the complement of the previous image; in Figure 6d,
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the black holes corresponding to the fish are filled; and in Figure 6e, the image is complemented
once again to represent the fish in black and the background in white. In Figure 6f, the boundaries
of the white region (in red) are found by exploring the image starting from the upper-left pixel and
continuing in a downwards direction. In Figure 6g, the image borders are removed to find the contour
of interest, which is the final result of the process. Finally, in the sub-image Figure 6h, the obtained
result is shown overlapped against the original ROL

As will be seen, the method developed for this work is very robust to the high-frequency noise
that can appear in the determination of contours. Notice that the binary image in Figure 6g can be used
as a segmentation template to remove the background, as done in the compositions of Figures 4 and 5.
After completing this step, the contour of the specimen i, C’, is given by its two sequences of horizontal
and vertical pixel positions in the cropped image. The origin was taken to be the first point of the open
contour, which corresponds to the mark of the nose, and was assigned the (0,0) co-ordinate. The rest of
the pixel positions are given relative to this first point and are grouped in the two series (1, vk)i. Each
contour is represented by a different number of points N;. Figure 7 shows a cropped image where the
contour of interest is delimited by the landmarks L; and L,.

Steps for the contour segment extraction

e) f) g) h)

Figure 6. Steps for the contour segment extraction. In (a), binarization; in (b—e), the steps to fill the
gaps in the background and in the fish regions; in (f), the boundary detection of the white region; and
in (g), the contour of interest found after removing the image borders.

Figure 7. Fragment of interest of the fish delimited by landmarks L; and L,.
Open Contour Normalization

Before the development of the features can be addressed, the open contours must first be
normalized. The normalization should be able to compare segments that are represented by a different
number of points while also neutralising variations with respect to rotation and scale. Furthermore,
care will be taken to ensure that the normalization respects the aspect ratio of the segments. In the
case of open contours, the reader can see that the first, (ho, vg) = (0,0), and the last point, (hx, -1, on,-1),
of the open contour must necessarily differ and, therefore, the reconstruction done with few DFT
coefficients could present strong distortions due to the Gibbs phenomenon. However, although the
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elements xo and xy,_1 of the sequence differ significantly, the DCT can efficiently approximate the
sequence x, with £, using few coefficients (L).

As previously demonstrated, the DFT works very well for closed contours because the natural
shapes tend to have a smooth variation and, if sampled correctly, the point (hg, vp) is very similar
to (hn,—1,0N,-1), with hg and vg being close to hy, 1 and vy, 1, respectively. The normalization put
forward is simple and takes these issues into account. It can be performed following these next
two steps:

e  First, for each open contour, we compute the Euclidean distance a between (hg,vg) and
(hn;—1,7Nn,—1), and the angle 0 that the segment defined by these two points forms with the
horizontal. Seen graphically in Figure 7, the points (o, vp) and (hy,—1,0n,—1) correspond to the
landmarks L; and L, respectively. As all the segments begin at (o, v9) = (0,0), we have:

x= ,/h%\]i_l + v%\]i_l and 0 =tan"' (on,_1/hN—1) - 8)

Then, « and 6 are used to rotate and re-scale all the contours points according to:

[pkl _1 lcos(@) sin(é))] [vkl ©)
Ik a |sin(0) cos(0) | |h|”

After this operation, without changing the aspect ratio, all profiles have been re-scaled and rotated
so that they start at point (0,0) and end at point (1,0). Figure 8 separately shows both the scale and
scale-and-rotation effects on the original Red Mullet contours. Note in Figure 8 that the relevant
information to discriminate the contours is concentrated in gy (the vertical axis after the rotation)

while g (the horizontal axis after the rotation) will be very close for all contours and will always
go from 0 to 1 in approximately constant increments.

w0 rotation
: L
20 L " n L
' T e 1

Figure 8. Representation of the scale and scale-&-rotation effects on the original Red Mullet contours.
These changes are performed during the contour normalization process.

e Second, in order to balance the number of points, the sequence of points g is re-sampled so that
they all have 256 values. The re-sampling is performed by cubic splines in order to have values at
equispaced intervals in the range going from 0 to 1. We call the re-sampled sequence x;. Finally
the contours are represented with a single sequence. In addition, the points xg and x,55 practically
take the same value (0), which allows the DFT to be used as well.

2.4. Features Development

Two types of features were developed to feed the classifiers. One is based on the DCT and the
other on the DFT. Both take the normalized contour described in the previous section and apply either
a DCT or a DFT. In the case of the DCT, we take the first L real coefficients as features F;. In the case of
the DFT, the coefficients are complex and the features are made of the first real parts followed by the
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first imaginary parts. In that case, as the normalized contour takes real values, the first DFT coefficient
is also real and therefore its imaginary part is always zero, and thus is excluded.

From the first N DFT complex coefficients L = 2N — 1 features F;, i € [0,---,L — 1] are
obtained. In addition, for all cases, the vectors of the features are standardised according to the
zscore transformation. Thus, in the training step, the means m; and standard deviations o; of feature
F,i€[0,---,L— 1] are computed. The employed features x; will be x; = (F; — m;)/0;. In the test,
the averages m; and standard deviations o; obtained in the training phase are used to form the features
of the segment that is to be classified.

2.5. Extreme Learning Machines, Training and Classification

A single-hidden layer feed-forward neural (SLEN) network is trained as a classifier following the
extreme learning machines (ELM) framework [46,47]. The main idea under ELM is that a SLEN network
can be trained by randomly assigning both input weights and bias. Proceeding this way, the only
parameters to determine in the SLEN network setting are the weights that connect the hidden layer
neurons to the outlets (named output weights) and the number H of hidden neurons. This strategy
changes the problem of computing the SLEN output weights to a linear problem. The resulting linear
over-determined system can be quickly solved using a Moore-Penrose pseudo-inverse in one single
step [46,47].

Focusing on our classification problem, each individual i in a set of N is characterized with L
features organized in a vector x; = [xo---x7_1]T. The matrix X = [xq---X;---xy] of size L x N
organizes the features of all N specimens. These individuals are classified into C classes. For each class,
there is a vector t. that indicates with either a 1 or a —1 in the position i whether the individual i belongs
(1) or does not belong (—1) to the class c. The vectors t. are arranged in the matrix T = [t; - - - tc - - - tc]”
of size N x C so that in each row of T only one 1 appears. Considering that H is the number of hidden
neurons, the input weight matrix W will have a size of L x H in which its element wy, is the weight
that connects the feature | with the hidden node h. As there are H hidden nodes, there is a vector of
bias b containing the bias by, of each node.

Now, considering the individual 7, the flow of information into the network can be written
as x/ W + b!. Taking into account the activation function, which is typically a sigmoid, we have
sig(x] W +bT), where sig(A) applies the sigmoid function to each a;;. Then, when the resulting 1 x H
row vector is multiplied by the output weight matrix B of size H x C the resulting 1 x C row vector will
indicate the class to which the individual 7 belongs. If we group the same equation for all previously
classified individuals, ideally we will have the equation:

sig(XTW +ub")B =T, (10)
where u is the N x 1 all-ones vector We define the N x H matrix H as:
H = sig(X"W + ub?). (11)
Then, the ANN formulation can be compactly written as:
HB =T. (12)

Once H is decided, W and b are randomly selected from a Gaussian distribution function with
a mean of zero and a standard deviation of one. The only unknown parameter is B. Note that
Equation (12) is over-determined. For ELM networks, it is common to choose a number H of hidden
nodes lower than the number N of classified cases used for training, thatis, N > H. Intuitively, if we
see Equation (12) in terms of vectors b; and t; of B, and T respectively, we have Hb; = t;, for i going
from 1 to C, meaning that for N equations, we have H unknown weights. The output weight matrix B,

provided that (HTH) ! is non singular, is computed by:
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B — (HTH)_1 HIT = H'T, (13)

where H is the Moore-Penrose inverse.
Once W, b, and B are defined, the SLEN can then be used to predict a new individual from its
vector of characteristics x by applying the following relationship:

cl = arg max (sig (xTW + bT) B) (14)

where, given a vector al, the function arg max (aT) finds the maximum value of al and returns its
C

position; ¢l € [1,---,C] is the assigned class.
3. Results
3.1. Features Based on the Dct and the Dft. a Comparative Study

3.1.1. Leave-One-Out Cross-Validation

A significant limitation we deal with in this work is the limited number of classified images
available for each species used for the training. In the binary classification problem, the two classes
are balanced, with 23 individuals in each group. However, in the multi-classification problem,
this limitation is more severe, as we have to deal with an even more reduced set of data, which
is also unbalanced for the nine groups that need to be classified, meaning that there are different
numbers of individuals in each of these groups, as shown in Figure 5.

Despite having these nine classes unbalanced and some of them badly under-represented,
the same methodology has been applied in both problems. The leave-one-out cross-validation (LOO-CV)
strategy is commonly used to evaluate the performance of the classifier when dealing with small
data-sets [48]. This strategy uses a single observation taken from the original data-set to validate the
data, while the remaining observations are used for the training phase. This way, the model is built
with all the labeled elements except one, which is used for validation. Once the element has been
tested, it is added to the group again, and the next element is extracted, repeating the process until all
elements have been used for the test. Thus, all the elements are tested against the rest of the known
classified elements. The advantage of this method is that all observations are used for both training
and validation, and each observation is used for validation exactly once.

3.1.2. LOO-CV Tests

The following tests are intended to determine both the size of the network and the optimal number
of characteristics that achieve the best classification rate. The tests that were carried out using features
coming from the DFT were then repeated; however, this time using features coming from the DCT,
and their results are summarized in Figures 9 and 10.

In all these tests, LOO-CV was used to obtain realistic results, and the experiments were repeated
100 times in order to show existing tendencies. Mean values of accuracy, the quotient between the
number of correct predictions divided by the number of the predictions done, are represented by color
balls and their corresponding standard deviations are shown by vertical lines. The SLFN weights,
W and b, were randomly selected according to a zero-mean Gaussian distribution with a standard
deviation of one, where H indicates the number of hidden nodes and L the number of input features.
In Figures 9 and 10, N number of transformed coefficients were used. In these figures, note that in the
case of the DCT, the number of features (N) is the same as the number of coefficients (L), but in the
DFT, L = 2N — 1 instead.
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Figure 9. The accuracy obtained by training a single-hidden layer feed-forward neural (SLEN) with the
DFT-based features. Leave-one-out cross-validation (LOO-CV).

Figures 9 and 10 share the same structure. In both, the Figures 9a,b and 10a,b show the results
of the binary classification problem and Figures 9¢,d and 10c,d portray the results of the multi-class
classification problem. When it comes to the binary problem, the optimal number of DFT-based
features is L = 5, quite independently of the size of the network (see Figure 9a). The best accuracy
values were obtained for H values of around 10 (see Figure 9b).

The best results achieved using the DCT-based features were also obtained for when L = 5
independently of the size of the network (see Figure 10a). In the same way, the best accuracy results
were obtained when H = 10 (see Figure 10b). In both cases, the best average value for the accuracy
was around 0.9 (90%). To obtain the first five features, the first three and five DFT and DCT coefficients
were required, respectively. The two encoding alternatives behave in a very similar way, and to decide
which one is the best one, the tests need to be refined. Regarding the multi-class classification problem,
when using DFT-based features, the best results were attained when L = 5.

In this context, the optimum network size increases to values of about H = 30 (see Figure 9c).
Above H = 30, there is a wide range of H values for which networks work properly (see Figure 9d).
When the DCT is used in this context, the results are very similar, and so from L = 5 (see Figure 10c)
and from H = 30 (see Figure 10d) there is a wide range of values of L and H for which the networks
work correctly. In both cases, independently of the use of DFT/DCT, the average accuracy values are
also similar and in the better configurations appear to be slightly above 80%.

From the previous graphs, it is difficult to determine which coding (DFT/DCT) provides the
best accuracy, since they behave in a very similar way. In the tests performed below, the number of
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iterations is incremented to 1000 for a small range of values of H and L near the optimal point of
network operation. LOO-CV is always performed. The results are presented in tables indicating the
accuracy regarding the average value, standard deviation, and both the maximum and minimum
values obtained. The optimal values are represented in bold.

We found that the optimum number of features was 5, independently of which transform (DCT
or DFT) was used. Using more than five features reduces the performance of the networks. The only
case that differs from the others in the sense of optimal number of features used is that of the binary
classification case if the DFT is used, where the best accuracy scores were obtained with three features.

Table 1 shows, for the binary classification problem, a comparative summary of the network
accuracy achieved for the best combinations of the DFT (three features) and the DCT (five features)
depending on the hidden nodes (H), and Table 2 shows the same information but for the multi-class
classification problem, for which the best combination of features is 5 in both the DCT and DFT feature
configurations. Table 2 reveals that the best DFT-based configuration exceeds the best DCT-based one
by almost two percentage points.

In Table 1, however, it can be seen that the difference between using features derived from the
DCT or the DFT is minimal. Regarding the case of the binary classification problem, no combination of
features based on the DCT and the DFT was found that improved the results shown in Table 1. In the
multi-class classification problem, the aggregation of the five features of each of the best options shown
in Table 2 achieved an improvement in the results by almost one percentage point as shown in Table 3.
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Figure 10. The accuracy obtained by training SLFN with the DCT-based features.
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Table 1. The binary classification problem. A comparative summary of the network accuracy obtained
for the best combinations of the DCT (five features) and the DFT (three features) depending on the
hidden nodes used. The LOO-CV was performed and the experiments were repeated 1000 times. For
each feature set, there is an optimum number of hidden nodes that provide the best results. In the table
the bests accuracy results are highlighted in bold.

Binary-Class Classification Accuracy (LOO-CV 1000 Iterations)

Hidden DCT-5 DFT-3
Nodes mean std max min mean std max min
7 88.44 0.031 9565 7826 88.46 0.032 95.65 76.09
8 89.09 0.031 9565 7826 89.09 0.030 95.65 78.26
9 89.37 0.030 97.83 8044 89.29 0.031 95.65 76.09
10 89.30 0.031 95.65 78.26 89.36 0.028 95.65 80.44
11 89.34 0.029 95.65 8044 89.19 0.030 95.65 78.26
12 89.33 0.031 9565 8044 89.20 0.030 95.65 78.26
13 89.04 0.031 9565 7826 89.10 0.030 95.65 80.44
14 88.76  0.032 9565 7826 88.64 0.032 95.65 78.26
15 88.80 0.031 9565 7826 88,57 0.031 95.65 76.09
16 88.40 0.032 9565 7826 88.14 0.033 9565 7391
17 88.05 0.033 9565 7826 8792 0.033 95.65 76.09

Table 2. The multi-class classification problem. Comparative summary of the network accuracy
obtained for the best combinations of the DCT (five features) and the DFT (five features) depending on
the hidden nodes used. For each feature set, there is an optimum number of hidden nodes providing
the best results. In the table the bests accuracy results are highlighted in bold. The LOO-CV was
performed and the experiments were repeated 1000 times.

Multi-Class Classification Accuracy (LOO-CV 1000 Iterations)

Hidden DCT-5 DFT-5
Nodes mean std max min mean std max min
5 7266 0.024 79.63 64.82 56.78 0.035 66.67 44.44
10 7266  0.024 79.63 64.82 7229 0.029 8148 63.89
15 76.66 0.023 8426 6852 7778 0.024 8519 69.44
20 7862 0.022 85.19 7222 80.52 0.024 8889 7222
25 79.84  0.023 87.04 7222 82.04 0.021 8796 74.07
30 80.42 0.023 87.04 7222 8259 0.021 88.89 75.00
35 80.64 0.022 87.04 73.19 8249 0.022 8796 75.00
40 80.54 0.023 8796 7319 8194 0.022 88.89 74.07
45 80.00 0.024 87.04 7222 81.18 0.029 87.04 74.07
50 7938 0.025 87.04 7130 79.79 0.024 86.11 7222
55 7818 0.025 87.04 6944 7815 0.025 85.19 6852
60 76.71 0.026 85.18 6852 7626 0.027 8519 6852

Figure 11 shows the confusion matrices and realizations for both the binary (a) and the multi-class
classification (b) problems, respectively. The results were obtained by performing LOO-CV. In both
sub-figures, a confusion matrix is shown with a resulting accuracy slightly above the corresponding
mean accuracy value. From Figure 11b the correct classification rates of the different classes were
acceptably high compared to the ones obtained for the class of Lepidotrigla dieuzeidei.

As explained in this paper, the two points introduced by the specialist were used to segment the
region of interest. The introduction of these points unambiguously determines the contour segment
used to make the decision. However, this procedure can also be performed automatically. To show
that, we conducted the following experiment. We took a set of 50 images, and we randomly took 40 of
them to train a faster region-based convolutional network (Faster R-CNN) for object detection, leaving
the rest of the images for the test. With this small amount of images, we were able to train a robust
model that worked acceptably well. The procedure for training the model was as follows.
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Table 3. The multi-class classification problem. Summary of the network accuracy obtained by using
10 features (five coming from the DCT and five from the DFT) depending on the hidden nodes used.
The best results, highlighted in bold, are obtained when the net has 34 hidden nodes. The LOO-CV
was performed and the experiments were repeated 1000 times.

Multi-Class Classification Accuracy (LOO-CV 1000 Iterations)

Hidden DCT-5 DFT-5
nodes  mean std max min
20 80.70 0.024 8796 73.15
21 81.50 0.023 8796 75.00
24 82.08 0.022  88.89 75.00
26 82.48 0.022  88.89 75.93
28 82.89 0.022  89.82 75.00
30 83.15 0.022  90.74 75.93
32 83.41 0.023 91.67 75.00
34 83.53 0.022  89.82 76.85
36 83.40 0.023  89.82 75.00
38 83.34 0.023  89.82 75.00
40 83.48 0.023  89.82 75.93
42 83.20 0.022  89.82 76.85
44 83.20 0.024 89.82 75.00
46 82.82 0.023  89.82 74.07
48 82.57 0.023  89.82 75.00
50 82.11 0.024  88.89 75.00
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Figure 11. (a) The confusion matrix of binary-classification realization with an accuracy value of 95.7%.

The results were obtained by performing LOO-CV using five features based on the DFT with a SLFN
of 10 hidden nodes. The mean accuracy value after performing 1000 LOO-CV iterations was 89.3%.

(b) The confusion matrix of multi-class classification realization with 85.2% accuracy. The results were

obtained by performing LOO-CV using five features based on the DCT plus five more based on the
DFT, with an SLFN of 30 hidden nodes. The mean accuracy value after performing 1000 LOO-CV

iterations maintaining the same SLEN size was 83.15%.
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The first step was to reduce the images to a size of 384 x 512 pixels. For training, we used the
40 images without marks, and we indicated the region of interest found with the specialist’s marks.
This region of interest is a rectangle that is specified with the two extreme points on its main diagonal.
We employed the Faster R-CNN object detector provided by MATLAB [49,50]. A Faster R-CNN object
detection network is constituted of a feature extraction network followed by two subnetworks.

The feature extraction network is usually a pre-trained CNN. The first subnetwork that supports
the feature extraction network is a region proposal network (RPN) devoted to finding the areas in
the image where objects are likely to exist. Those areas are known as object proposals. The second
subnetwork is dedicated to predicting the class of each object proposal. In the case we are dealing
with, for the first network, instead of using a pre-trained CNN as, for instance, the ResNet-50 or the
Inception v3, we used a much simpler CNN that has only three convolutional layers from a total of
fifteen, that was trained for another problem.

The main characteristics of the structure are summarized in Table 4. The main training options
chosen for the Faster R-CNN are ‘MaxEpochs’, ‘MiniBatchSize” and ‘InitialLearnRate’, which were
set to 12, 8, and 5x10~* with a ‘NegativeOverlapRange’ of [0 0.3] and a ‘PositiveOverlapRange’
of [0.6 1]. From these parameters, we note that the ‘MaxEpochs’ specifies the number of epochs, that is,
the number of full passes of the training algorithm over the entire training set, and the learning rate
that controls the speed of training. The training was performed using the CPU of a MacBook Pro with
eight-core Intel i9 processor at 2.4 GHz and 64 GB of RAM running the MATLAB environment on the
macOSCatalina 10.15.3 operating system.

Table 4. Network layers that compose the feature extraction network. The convolution put the input
images through a set of convolutional filters, each of which activates certain features from the images.
The pooling layer simplifies the output by performing nonlinear downsampling, reducing the number
of parameters that the network needs to learn. The rectified linear unit (ReLU) allows for faster and
more effective training by mapping negative values to zero and maintaining positive values. The fully
connected layer “flattens” the network’s 2D spatial features into a 1D vector that represents, and, finally,
the Softmax provides probabilities for each category in the dataset image-level features for classification

purposes.
Feature Extraction Network
Layer Type Main Characteristics

1 Image Input 32 x 32 x 3 images with ‘zerocenter’ normalization
2 Convolution 325 x 5 x 3 convolutions with stride [1 1] and padding [22 2 2]
3 Max Pooling 3 x 3 max pooling with stride [2 2] and padding [0 0 0 0]
4 ReLU ReLU
5 Convolution 325 x 5 x 32 convolutions with stride [1 1] and padding [22 2 2]
6 ReLU ReLU
7 Average Pooling 3 x 3 average pooling with stride [2 2] and padding [0 0 0 0]
8 Convolution 64 5 x 5 x 32 convolutions with stride [1 1] and padding [22 2 2]
9 ReLU ReLU
10 Average Pooling 3 x 3 average pooling with stride [2 2] and padding [0 0 0 0]
11 Fully Connected 64 fully connected layer
12 ReLU ReLU
13 Fully Connected 2 fully connected layer
14 Softmax softmax
15 Classification Output  crossentropyex

Training lasted approximately 3 min. Due to the reasonably fast training time, many random
tests on the whole set of images could be performed, and thus the solidity of the approach could
be checked. The FasterRCNN object detection network output provides a rectangle by giving two
points corresponding to the endpoints of one of its diagonals (specifically the one that goes from the
top right to the lower-left point of the rectangle). Some ROI detection results are shown in Figure 12.
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These points can be used to crop the original image and obtain the ROI, which is practically the same
provided by the specialist (although the specialist selects the other diagonal because its endpoints are
more near to the segment of interest).

Figure 12. Example of the detection results performed on the test images using the trained faster
region-based convolutional network (Faster R-CNN) object detector. The obtained ROI is shown
in yellow.

3.2. Regarding Automation of the Whole Process

A step that is required to be carried out if the ROI detection is performed without the support
of the two points provided by the expert is to re-scale the original image to the FasterRCNN object
detection input size, and then, once the ROI is found, it must be mapped onto the original image.
This allows the extraction of the ROI from the original image. The following step is to obtain the
contour, compute the features, and to introduce them in the ELM network to identify the class of the
specimen. The diagram presented in Figure 13 can help to clarify the whole process, which can be
described in four stages. The first stage is the ROI detection. This procedure can be supervised or it
can be carried out automatically using a Faster-RCNN object detector.

Once the ROI has been determined, the second stage consists of extracting the fish contour
segment from this region. The result of stage two is the horizontal and vertical pixel coordinates that
describe it in relation to the first contour point, which is taken to be the origin of the coordinate system.
The third stage is the "feature extraction’, in which this sequence of contour points obtained from the
previous stage is used as input. These points are standardized by applying a rotation, a re-scaling and
a re-sampling by using third-order splines. The result is a single sequence (gi) of 256 values. Then,
in the same stage, DCT and DFT are taken on g, and we select the first five DCT and DFT coefficients
to form the vector of features. In the multi-class classification problem, a features vector containing
only 10 real numbers produced the best accuracy results. The vector of features was used in the last
stage to add to an already trained ELM of 34 hidden nodes. Finally, the ELM output is the species that
the individual belongs to.

Figure 14 shows the details of a feature extraction stage and of a classification stage corresponding to
a model that solves the binary classification problem. It is an SLFN network of 10 hidden nodes trained
with features based on the DFT. Figure 14a— graphically show the steps required to obtain the sequence
of 256 points in vector q that represent the contour after the standardization, and Figure 14a shows the
way to obtain the vector x of features. Note than F is the Fourier matrix and f, the DFT of q. In this case,
the vector of features x has five real elements obtained from the first three Fourier coefficients, as fo € R
Figure 14e shows the classification stage, which begins with a Z-score standardization, being the vectors
m and ce, the means and standard deviations of x. The normalized features after the Z-score are the
inputs of the SLFN network. W, b and B are the input weights, the bias, and the output weights of the
trained SLEN net, respectively. Finally, the decision is taken on the values achieved in the output nodes.
This simple architecture reached accuracy values up to 95.65% and, in 1000 LOO-CV experiments a mean
accuracy of 89.36% (see the column DFT-3 of Table 1).
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Note that, in this case, the fish appears in the images following a standardization, and the
problem is not overly complicated. In a random disposition of the objects of interest in the image,
one would have to train the model with many more images, using a data augmentation strategy and
likely a more complex feature extraction network. Additionally, the substitution of Faster-RCNN by
Mask-R CNN [51,52] could be explored to see if the contour segment of interest could even be detected
automatically in the ROI directly.
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Figure 13. Simplified block diagram of the process chain when the ROI detection is done automatically.
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Figure 14. Detail at the parameter level of the feature extraction and classification stages of the
binary classification solution working with features based on DFT. (a—c) show the steps required to
obtain the vector q from the contour, and (d) shows the way to obtain the vector x from q. In (e),
the classification stage is shown with the parameters that interact in each step. The matrices and vectors
show their dimensions in a subscript (in order to check the coherence of the operations involved).
In the classification stage, three parts, the Z-score normalization, an LSFN network of 10 hidden nodes,
and the decision rule, are employed.
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4. Conclusions

In this work, a method was presented that reproduced the procedure that experts perform
manually to separate species of fish that exhibit a very similar shape. The technique consists of
classifying a fragment from the profile of fish contours. Thus, a way to parameterise open contours was
developed based on both the DFT and the DCT transformations, which already allow the discrimination
of contour fragments with the use of only five parameters.

The presented approach for the Mullus binary classification case can be compared to the seminal
work of Reference [10], which based on handmade measurements of the angle of head contour obtained
an 88% correct distinction between both species. The mean accuracy values obtained (89.4%) in this
work slightly improved those results. In addition to the difficulty of discriminating between very
similar forms, we also had the limitation of having small, unreliably labeled image data sets.

For the second case considered in this work, the multi-class classification problem, it is important
to note that there have been no handmade studies carried out that would allow for the comparison
of results. The specimens of the database were cataloged at the ICM (Institut de Ciencies del Mar)
in Barcelona while different types of studies were being conducted. Given the complexity of the
problem, the average classification results were close to 80%, which is in line with what trained
professionals obtain when they take on the identification and classification task from photographs.
If the classification is considered by classes, we observed that the class of Lepidotrigla dieuzeidei was
very difficult to classify and thus caused the global accuracy to decrease; however, for the rest of the
classes, high correct classification rates were reached.

Our goal was to prove that it is possible to automatically achieve results similar to those obtained
by specialists when it comes to classifying very similarly-shaped species of fish. The goal achieved
was to automatically classify the images of the specimens in the database into their species. Given
the physical similarity between species and the size of the database, this is a difficult objective, which
(as we mentioned before) we have overcome with success comparable to that obtained by the expert.
The results suggest that we should expect even better results when working with species with more
differentiated forms.

For future work, a far more ambitious goal involving government administrations, which must
be addressed incrementally, is to computerize the analysis of fish boxes sold at fish markets. In these
boxes, fish are stacked in a non-orderly fashion, with the body parts partially hidden but usually with
their heads being visible. Thus, the classification of specimens based only on their head contour seems
to be indeed an important improvement to be made.

These studies are important as fish markets are beginning to develop projects with the aim
of photographing all fish boxes sold, followed by these images being then registered containing
information on the labeling, sale prices, and so forth. These large amounts of images can only be
processed automatically. As long as the techniques for extracting information from images continues
improving, we will be able to obtain a gradually deeper understanding on the exploitation of marine
resources. This work is a pioneer in the classification of biological forms through contour segments.

In this paper, the identification of the contour fragments was made with the help of marks. In this
way, we were sure to deal with the fragment used by the experts. In the type of images used, the marks
were located in easily identifiable positions and, even though this was not the purpose of this work,
it was even shown in a prior subsection that these are not entirely necessary. Although this technique
has been developed for a certain type of image, the capacity of representing contour segments between
landmarks with very few parameters could be interesting and further explored in different contexts
and applications.

The human visual system is particularly sensitive to the contour of a shape, and curves constitute
an essential information element when it comes to image analysis, classification and pattern recognition,
which are vital tasks that humans carry out on a daily basis. The necessity to quantify this visual
information continues in present challenges, as was the case for this work, in which the relevant
information that led to a good classification rate was concentrated only on a specific fragment of the
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silhouette instead of the whole contour. In this work, we have the additional restriction of having
little data available to use for training purposes, which imposes a classic machine learning work-flow,
typically seen when dealing with small datasets.

In spite of that, this study suggested that the combination of machine learning (ML) and
deep learning (DL) techniques can provide compelling solutions. On the one hand, through ML,
we can (1) handle small datasets and (2) maintain the understanding of the problem. At the same
time, DL reached milestones in image processing that were previously difficult to obtain, such
as the identification of the ROI where the contour fragment is located. Finally, the ELM-based
classifiers provided excellent results at low computational and time costs, which allowed for complete
statistical tests.
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