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Featured Application: This work focuses on the use of deep learning and convolutional neural
networks to classify dysplasia in patients with Barrett’s Esophagus. For this, we use the Narrow
Band Imaging modality, which exploits different wavelengths to capture the tissue at different
levels of penetration depth, leading to high-contrast imaging of mucosal and vascular patterns.
Such patterns reveal information on histology, but they are hard to interpret for physicians.
Our approach will aid the endoscopist in the interpretation of NBI imagery, leading to a higher
false positive detections and a more robust diagnosis. In addition, this work also shows the
potential benefits of using endoscopy-driven pretraining, instead of the more commonly used
natural-image pretraining based on e.g., ImageNet.

Abstract: Endoscopic diagnosis of early neoplasia in Barrett’s Esophagus is generally a two-step
process of primary detection in overview, followed by detailed inspection of any visible abnormalities
using Narrow Band Imaging (NBI). However, endoscopists struggle with evaluating NBI-zoom
imagery of subtle abnormalities. In this work, we propose the first results of a deep learning system
for the characterization of NBI-zoom imagery of Barrett’s Esophagus with an accuracy, sensitivity,
and specificity of 83.6%, 83.1%, and 84.0%, respectively. We also show that endoscopy-driven
pretraining outperforms two models, one without pretraining as well as a model with ImageNet
initialization. The final model outperforms absence of pretraining by approximately 10% and the
performance is 2% higher in terms of accuracy compared to ImageNet pretraining. Furthermore,
the practical deployment of our model is not hampered by ImageNet licensing, thereby paving the
way for clinical application.
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1. Introduction

Barrett’s Esophagus (BE) is a known precursor for Esophageal AdenoCarcinoma (EAC), a form of
gastrointestinal cancer with a particularly poor prognosis. For this reason, patients with BE undergo
regular endoscopic surveillance. This offers early detection of neoplasia and enables endoscopic
treatment, which has an excellent prognosis [1,2]. However, the current BE surveillance protocol is
suboptimal, mainly due to the fact that neoplasia is difficult to detect because of their subtle endoscopic
appearances [1]. Additionally, BE surveillance is time consuming, expensive, and has a high potential
for sampling error of random biopsies [3].

Generally, endoscopic diagnosis is established in two stages. First, primary detection of a
suspected lesion is determined with White Light Endoscopy (WLE) in overview, followed by a
detailed inspection of the mucosa for any visible abnormalities and to identify the lesion boundaries.
This inspection is often performed using Narrow Band Imaging (NBI), an imaging modality that
exploits light of specific blue and green wavelengths to enhance the visible details of e.g., the surface
texture of the mucosa. More specifically, NBI is used in combination with a magnified view to improve
the visualization of mucosal and vascular patterns. Several different NBI clinical classification systems
have been proposed, which involve complicated and diverse criteria, all of which have demonstrated
suboptimal diagnostic accuracy and inter-observer agreement [4–6]. In daily practice, endoscopists
performing BE surveillance struggle with the evaluation of NBI imagery in magnified view for
characterization of BE neoplasia. New advances in Computer-Aided Detection (CAD), more specifically
deep learning techniques, may be able to overcome limitations related to the varying observations of
different endoscopists, and thereby improve on the diagnostic accuracy for detailed inspection.

Especially deep learning techniques have shown promising results in a variety of different
scientific research domains, including gastrointestinal endoscopy [7–9]. Recently, our group
demonstrated a highly effective computer-aided detection system, that recognizes and localizes BE
neoplasia on WLE overview images in real time with high accuracy, enabling primary detection [10].
The aim of the current study is to investigate the feasibility of a deep learning algorithm for the
characterization of NBI-zoom imagery after primary detection in WLE.

To our knowledge, there is no prior art pertaining to the classification of early cancerous lesions in
BE using NBI-zoom videos. However, other work has investigated the use of NBI-zoom still images [11]
or NBI in overview [12] for the classification of colorectal tumors. In earlier work, we initially explored
extracting the additional information contained in multi-modal imaging, using deep learning and
a combination of NBI and WLE in overview, to improve localization scores for dysplasia in BE [13].
Ebigbo et al. [14] performed a similar classification study using both WLE as well as NBI images,
using the near-focus functionality of the endoscope. However, results in these studies were preliminary
and based on small image-based data sets to illustrate a proof of concept.

In this work, a large data set of NBI-zoom imagery is used for the classification of dysplasia in BE.
In contrast to prior work, endoscopic zoom videos, rather than still images, are used to improve
the classification performance. Additionally, this work does not rely on ImageNet pretraining.
Instead, it builds further upon endoscopy-driven pretraining, as introduced in previous work [15,16].
Networks that do not depend on ImageNet pretraining are preferable, since there are licences associated
with the ImageNet data set. In this work, we give another empirical example in favor of endoscopic
pretraining. Besides this, we show the benefit of a pseudo-labeled bootstrap ensemble for classification
of NBI-zoom videos.

2. Methods

This section is structured as follows: first, the setting of the study is discussed in Section 2.1.
Second, in Section 2.2, the employed pre-training and training data sets are discussed together with a
few examples of the training set. Third, an in depth description of the employed deep learning model
is presented in Section 2.3. Fourth, the pretraining methodology is discussed in Section 2.4. Fifth,
the additional training details of the employed algorithm and the comparison to other pretraining
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strategies are presenter in Sections 2.5 and 2.6, respectively. Finally, the metrics that are used to
compare the different models are explained in Section 2.7.

2.1. Setting

This study was performed at at the departments of Gastroenterology and Hepatology of the
Amsterdam University Medical Centers, location Academic Medical Center, and Karolinska University
Hospital, Stockholm, both tertiary referral centers for Barrett neoplasia. Official approval for the use of
all imagery was obtained by the local Ethics’ Committee at both centers. The technical development
was performed at the Video Coding and Architectures research group in the department of Electrical
Engineering of the Eindhoven University of Technology.

2.2. Data Sets

2.2.1. GastroNet Data Set

The pretraining data set, which we have coined GastroNet, contains 494, 364 endoscopic images
from 15, 286 patients [15,16]. The images in this set contain a variety of endoscopic imagery (e.g., colon,
stomach, duodenum, esophagus). All images were collected retrospectively, during the years 2012–2018
at the Amsterdam University Medical Centers, location Academic Medical Center, and automatically
anonymized after extraction from the database. From this set, 3743 of the images were labeled by
two gastroenterology research fellows into five categories: colon (n = 679), duodenum (n = 339),
stomach (n = 876), esophagus (n = 1305), or other (n = 544). This set is used for pretraining with the
pseudo-labeled bootstrapping algorithm, as described in prior work [15], thereby also exploiting the
unlabeled data. The GastroNet database contains images (All imagery was recorded with HQ190,
HQ180, HQ140, and HQ290 endoscopes (Olympus, Japan), and the 700 series endoscopes (Fujifilm,
Japan)) with a large variety of resolutions, which are normalized to 256 × 256 pixels.

2.2.2. NBI-Zoom Data Set

For this work, 159 endoscopic NBI-zoom videos from 51 patients were collected. The videos were
unaltered except for resizing, i.e., no optically bad videos or frames were removed prior to analysis.
Of these patients, 17 were diagnosed with dysplasia in BE and 34 patients had a Non-Dysplastic
Barrett’s Esophagus (NDBE), as confirmed by histopathology. For each imaged region within the BE
of a patient, a biopsy was obtained for histopathological assessment. In total, 59 videos of our data
set contain dysplasia and 100 videos show NDBE only. All videos were resized to 256 × 256 pixels
for computational efficiency (original video resolution: 720 × 576 pixels). The average duration of
each NBI-video was 10 seconds. These short videos consisted solely of one tissue type, either NDBE or
neoplastic BE. From the endoscopic videos, frames were sampled at 5 frames per second and assigned
the label of the corresponding video. In this work, all videos of a single patient are always designated
to the same set (training or validation). Two examples of regions with a dysplastic lesion and without
a lesion are shown in Figures 1a and 1b, respectively.

(a) (b)
Figure 1. (a) Two examples of dysplastic lesions. (b) Two examples of non-dysplastic BE.
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2.3. Deep Learning Architecture Description

The applied deep learning encoder-decoder network used in this study was adopted from
previous work (details are provided in [15]). An encoder-decoder network is a type of architecture
that converts a particular input representation (in this case an rgb image) into an abstact feature
space using a encoder. A decoder then takes this abstract feature space and converts it into a
different representation (e.g., a segmentation mask, an image caption, or a depth map). Note that this
architecture comprises of an encoder-decoder network capable of both classification and segmentation.
Since endoscopic-zoom videos only require classification, the decoder branch of the model is not used
in this study. A schematic overview of the designed classifier is shown in Figure 2. The classification
network is a Resnet-based architecture, which enables a mapping from a single input image (256× 256
pixels) to a frame classification score S ∈ [0; 1].

Each green block (residual module) in Figure 2 consists of two convolutional layers with ReLU
(Rectified Linear Unit) activation functions. A residual skip-connection is used as proposed by He et al.,
in the original ResNet paper [17]. Batch normalization [18] is used after each convolutional layer for
normalization purposes. After each residual module, an average-pooling operation is performed with
kernel size 2 and stride 2 to reduce the feature-map resolution by a factor 2 at each level. In the first
residual module, 32 filters are employed. The amount of convolutional filters in each subsequent
level is multiplied by a factor 2 after each pooling operation, as is standard in nearly all classification
algorithms. After the final residual module, a global average pooling filter is employed to convert the
3D feature map to a single vector which contains the encoded relevant features. Finally, two small fully
connected layers followed by a softmax activation function, are used to assign a classification score
to the input frame where values closer to unity indicate dysplasia and values close to zero indicate
non-dysplastic Barrett’s esophagus.

Figure 2. Schematic overview of the classification branch of the designed deep learning model.

2.4. Pretraining Methodology

The network is pretrained on a large variety of endoscopic imagery (Section 2.2.1), instead of the
natural images contained in the ImageNet [19] data set. Endoscopy-driven pretraining has two main
advantages. (1) The images in the GastroNet data set are more similar to the target domain compared
to ImageNet and are therefore more likely to be a good initialization. (2) While the ImageNet data
set and labels are freely available for scientific research, the data cannot be used for commercial use,
which is important if CAD algorithms emerge in a clinical setting. In this work, 5 models with different
initializations are trained to create the ensemble. In order to pretrain the networks, Pseudo-Labeled
Bootstrapping (PLB) is employed. An overview of the PLB algorithm can be summarized as follows.
First, the portion of the GastroNet data set that has labels is used to create a supervised model. Second,
pseudo-labels are generated for the remaining data using this supervised model. Third, 5 unique
subsets of the entire data set with the newly generated pseudo-labels are used to pretrain 5 models.
A more in-depth description of the PLB methodology used for pretraining is described in prior
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work [15]. Resulting from the 5 models, multiple instances of the network are available, which are
exploited to create a diverse ensemble to increase the algorithm performance.

2.5. Training Details

The algorithm is trained using Adam [20] and AMS-grad [21] with a weight decay of 10−4.
A cyclic cosine learning-rate scheduler [22] is used to control the learning rate. Binary cross-entropy is
employed for the classification loss, as defined by Equation (1), which is given by:

Lce = ∑
i
(−ci · log( p̂i)) , (1)

where the binary coefficient ci ∈ {0, 1} is the true classification label and p̂i ∈ [0; 1] is the predicted
classification score.

Additionally, batch normalization is used to regularize the network. The model is further
regularized with data augmentation. Images are randomly rotated with θ ∈ {0, 90, 180, 270} degrees
and randomly flipped along the x- and y-axis with probability 0.5. Moreover, random permutations are
made to the color, contrast and brightness of the images. Furthermore, images are randomly sheared
by up to 8 degrees and randomly translated by up to 10% of the image width. Lastly, random crops of
various sizes are taken from the original images without resizing, to preserve consistency in feature
size. All experiments are performed on a desktop PC with the following specifications, Xeon CPU
E5-1650 v4, operating at 3.60 GHz, RAM of 32 GB, Titan Xp 12-GB GPU. Since all frames in any given
video have the same pathology, a video-level prediction score is calculated by taking the average over
all frame predictions of a single video which is thresholded to obtain a classification label per video.
These labels are then finally used to calculate the metrics described in Section 2.7. Fourfold subject-wise
cross-validation is used to train and test the algorithm, where all videos of a single patient are contained
in a single fold to avoid intra-patient bias.

2.6. Comparison to ImageNet and without Pretraining

To assess the added value of domain-specific, endoscopic pretraining, the exact same neural
network architecture is used to train models without pretraining and pretraining with ImageNet.
As described in Section 2.5, 5 different models are trained with GastroNet from different initializations.
To facilitate a fair comparison, a no-pretraining ensemble is created using 5 different random weight
initializations and an ImageNet ensemble is created using the model pretrained on ImageNet with
5 different random seeds. Table 1 in the results section shows the averaged metrics of the 5 models as
well as the ensemble predictions.

Table 1. NBI-zoom video classification results. The top three rows show the average performances
of the 5 obtained models, standard deviation is added between the brackets. The bottom three rows
depict the performances of the ensemble predictions. The highest scores per metric are indicated in
boldface, for both evaluation approaches.

Average Accuracy Sensitivity Specificity F1-Score

No pretraining 69.7(±2.2) 68.1(±3.4) 70.6(±3.3) 69.2(±2.1)
ImageNet 74.1(±5.1) 77.3(±5.8) 72.2(±9.3) 74.1(±3.9)
GastroNet 79.0(±2.1) 83.1(±5.1) 76.6(±3.0) 79.6(±2.4)

Ensemble

No pretraining 73.6(117/159) 69.5(41/59) 76.0(76/100) 72.6
ImageNet 81.8(130/159) 79.7(47/59) 83.0(83/100) 81.3
GastroNet 83.6(133/159) 83.1(49/59) 84.0(84/100) 83.5
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2.7. Metrics

In line with conventional detection and classification algorithms, we measure true positives TP,
true negatives TN, false positives FP and false negatives FN. In our implementation, cancerous frames
are defined as positive samples. Using the aforementioned parameters, we evaluate all models on the
following four metrics:

Accuracy: Acc = (TP + TN)/N, (2)

Sensitivity: Se = TP/(TP + FN), (3)

Specificity: Sp = TN/(TN + FP), (4)

F1-score: F1 = (2 · Se · Sp)/(Se + Sp). (5)

In addition to these metrics, the ROC curves with corresponding Area Under the Curve (AUC) of
the 3 ensemble models are computed to yield an indication of the performance over several different
operating points.

3. Results

3.1. Primary Outcome Measures

Table 1 shows the results of the experiments. The top three rows of this table show the average
performances of the 5 models for each pretraining method when evaluated individually, where the
numbers in brackets show the standard deviations. The trained GastroNet models outperform the
ImageNet and no-pretraining models on all metrics by approximately 5 and 10 percentage points,
respectively. The standard deviations of the experimental results are notably smaller with GastroNet
pretraining compared to ImageNet pretraining, indicating that domain-specific pretraining converges
more reliably to suitable values when compared to ImageNet pretraining.

The bottom three rows display the results when the 5 models per pretraining method are combined
into an ensemble, leading to a single prediction per image, rather than 5 individual predictions.
The numbers between the brackets indicate the number of correctly classified videos as a fraction
of the total. As expected, ensembling improves the results for each pretraining method. However,
Imagenet pretraining benefits more from the ensembling approach (+7% accuracy) compared to
GastroNet pretraining (+5% accuracy) or no pretraining at all (+4% accuracy). However, the GastroNet
ensemble still consistently outperforms the ImageNet ensemble by approximately 2% or even more.
The Wilcoxon signed-rank test [23] was used to compare the diagnostic accuracy of the three pretraining
methods based on the video-level predictions. A statistically significant difference (p < 0.01) was
found between the model that was pretrained with GastroNet and the other two models that used
conventional pretraining. This shows the merit of endoscopy-driven pretraining over pretraining with
natural images for CAD applications in endoscopy. This finding is in line with results from prior work,
where the same conclusion was found for primary detection using white light endoscopy [10].

Figure 3a shows the ROC curves for the three ensembles. In this figure, the green line indicates
the ROC of the proposed ensemble with GastroNet pretraining, while the blue and yellow lines
depict the ROCs of the ensembles pretrained with ImageNet and without pretraining, respectively.
The AUC scores of both pretrained models (GastroNet AUC = 0.91 and ImageNet AUC = 0.90) clearly
outperform the model without pretraining (AUC = 0.82). Although the difference is not as large,
the GastroNet ensemble still slightly outperforms the ImageNet ensemble. The system performance is
mostly interesting for high specificity (false positive rate between 0.1 and 0.3), where the green curve
is notably better.
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(a) (b)
Figure 3. (a) ROC curves of the three ensemble models. (b) Example of dysplasia score over time.

3.2. Predictions with High Confidence-Estimates

To help improve the robustness of the algorithm performance, a post-hoc analysis was performed.
If the neoplasia score for a specific video was within ±10% of the classification threshold, the CAD
algorithm was considered to have insufficient confidence to make a prediction. Hypothetically,
in clinical practice, videos with scores that fall within this range could be further analyzed by an
experienced physician. In this post-hoc analysis, 12% (19/159) of the videos with a low level of
confidence were excluded. The accuracy of the remaining 140 videos was 87% (CI, 81–93%), with a
corresponding sensitivity of 90% (CI, 81–99%) and specificity of 86% (CI, 78–93%). Excluding low
confidence videos increases the average performance by 4%, especially the sensitivity benefits with an
increase of 7%.

3.3. Assessment Time

The mean assessment time for the ensemble method per NBI-zoom video on a single GPU was
5.1 s (SD ± 2.6). Mean assessment time per video frame was 0.026 seconds (SD ± 0.0024). The CAD
system was able to process 38 frames per second. Since the ensemble model scores can be computed
in parallel. processing time could be reduced significantly if more parallel processing power would
be available.

4. Discussion

Endoscopic diagnosis of early BE neoplasia is generally a two-step process of primary detection in
overview, followed by detailed inspection of visible abnormalities using Narrow Band Imaging.
However, endoscopists struggle with characterizing NBI-zoom imagery of subtle abnormalities,
because NBI classifications are either too crude (‘regular’ vs. ‘irregular’) or consist of too many
sub-classifications, which results in a subjective assessment. In adjunct to our earlier work on CAD
analysis of WLE overview imagery for primary detection of neoplasia [9,10,16], this work improves on
BE characterization using CAD analysis of NBI-zoom imagery. Here we have reported the first results
of a well-developed and tested deep learning CAD system for the characterization of NBI-zoom videos
of in BE.

Most classification algorithms applied to the medical domain use models pretrained with
ImageNet. This is a valid approach, considering that large data sets of more related imagery are usually
not available. Additionally, models that employ pretraining typically outperform non-pretrained
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models. However, pretraining with ImageNet is not necessarily optimal. In previous work [15],
we hypothesized that endoscopy-driven pretraining is preferable to more general pretraining with
natural images. For the classification of NBI-zoom videos, in this work we provide empirical proof
that endoscopy-driven pretraining outperforms not only the absence of pretraining, but standard
pretraining as well. Moreover, ImageNet cannot be used for commercial use straightforwardly, which is
essential when CAD algorithms are going to be deployed in clinical practice.

High specificity is vital for successful clinical implementation of a CAD system for
BE characterization in the second zoom-enhanced stage of the endoscopic diagnosis process.
During surveillance endoscopies, endoscopists will most likely first be triggered by abnormal areas
in overview, after which they will interrogate this area in detail for the presence of neoplasia using
NBI. A characterization CAD system with high specificity would then be able to decrease the number
of false-positive predictions by endoscopists, thereby reducing unnecessary biopsies. This system is
vital for successful implementation of the primary detection system in WLE overview. Our previous
work was conducted on high quality overview images in white light, captured by expert endoscopists.
If this primary detection system is tested in real-life by non-expert endoscopists on endoscopic
videos, the number of false-positive predictions would increase incrementally due to the presence
of low quality and non-informative frames. In order to make this primary detection system more
clinically-applicable, we propose a second NBI zoom algorithm to reduce the number of false positive
predictions. Subsequently this may decrease the number of unnecessary biopsies, and thus decrease
procedure time and increase cost-effectiveness. Additionally, the NBI zoom algorithm can investigate
all potentially suspicious areas after the endoscopist or primary detection algorithm and thereby detect
additional neoplastic areas.

Work by Sharma et al. [6] has shown that good system performance can be achieved (85%
accuracy) with an internally validated clinical classification system. Additionally, performance
can be increased further when only assessing high confidence samples are evaluated (Accuracy
92%). However, an average high level of confidence among experts was achieved only in 62% of the
examinations. This indicates that assessor inter-variability remains a problem for these clinical systems.
While detection of dysplasia might be higher for experienced endoscopists for now, a CAD system as
proposed in this work could aid practicing endoscopists in making better decisions.

Although the performance of the proposed algorithm is promising, the current results do not yet
support its application in clinical practice. In contrast to earlier work which used WLE imagery [10],
one drawback of this study is the relatively small amount of unique patients that are used for training
and testing. While the deep learning algorithm is exposed to a large amount of single frames,
the correlation between sequential frames is very high, since the videos are focused on a single
area. For this reason, the practical benefit of using all video frames is limited and only 5 frames
are extracted per second instead of the 25 that are available. Additionally, different videos from
the same patient are subject to intra-patient correlation as well. While each video is recorded at a
unique site, intra-patient correlation can still lead to reduced performance. However, we corrected
for this when analyzing the NBI zoom videos, to reduce the intra-patient bias. A second drawback
of the current study is that the collection of the zoom videos was performed in multiple hospitals,
by different endoscopists and endoscopes, which results in varying levels of image quality and levels of
magnification. Normally, this would help generalization over larger populations. However, due to the
limited sample size of this pilot study, the algorithm may not be robust against this background noise,
which is a clear constraint of the current acquisition approach. Dysplasia in BE is relatively rare which
makes data acquisition more difficult, so that simply collecting more data is not a viable short-term
solution. Finally, upon review, decreased video quality such as blurring, specular reflections and
lens movement was observed in many of the incorrectly classified videos. For example, in Figure 3b,
the likelihood of dysplasia is plotted as a function of time. There is a pronounced dip in the confidence
of the algorithm in the first half of the segment. This coincides with lens movement and blurring in
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this specific video. This indicates that artifacts such as movement, blurring and specular reflections
pose a time-varying problem when classifying NBI-zoom videos.

In future work, efficacy of the algorithm can be improved by excluding non-informative frames
prior to classifying an NBI-zoom video. Other work has shown that removal of non-informative frames
is beneficial for classification performance of videos using white light endoscopy [24]. The artifacts
that cause non-informative frames are less prevalent in zoom video compared to standard endoscopies,
since the entire segment is focused on a single site in the NBI-zoom case. However, analysis
from this study has shown that performance also decreases in some cases due to the occurrence
of non-informative frames in the video.

As alternative future work, more extensive experiments should be performed with additional
problems and data sets related to the gastrointestinal tract, such as for example: angiodysplasia
detection with pill-cam imagery, polyp detection and classification using colonoscopy imagery,
and stomach cancer classification using white light endoscopy. Together with a prior study [15],
two separate experimental setups have indicated that endoscopy-driven pretraining is beneficial for
BE CAD problems. Future work could indicate whether this finding holds for other gastrointestinal
diseases as well.

5. Conclusions

Detailed inspection of the mucosa in Barrett’s esophagus is often performed using Narrow Band
Imaging with a magnified view, to improve visualization of mucosal and vascular patterns. However,
most clinical classification systems have suboptimal diagnostic accuracy and inter-observer agreement.
Computer-aided detection is able to overcome limitations in the varying observations of different
endoscopists and help improve diagnostic accuracy.

This work has presented the benefit of endoscopy-driven pretraining for the classification of
NBI-zoom videos. The accuracy of the ensemble based on pseudo-labeled bootstrapping with 5 models,
increases by 10% when a domain-specific endoscopy data set (GastroNet) is used to initialize the
weights compared to random initialization. Additionally, this training approach outperforms ImageNet
pretraining by approximately 2% for the classification of NBI-zoom videos in addition to more stable
convergence as indicated clearly by the lower standard deviation. Since the performance of the
proposed model is non-inferior, and even slightly better, compared to the broadly used conventional
ImageNet pretraining, we anticipate that it serves as a better source for pretraining other models
related to endoscopic image analysis. Future studies should confirm this hypothesis.
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Abbreviations

The following abbreviations are used in this manuscript:

BE Barrett’s Esophagus
CAD Computer-Aided detection
EAC Esophageal AdenoCarcinoma
NDBE Non-Dysplastic Barrett’s Esophagus
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NBI Narrow Band Imaging
PLB Pseudo-Labeled Bootstrapping
ReLU Rectified Linear Unit
WLE White Light Endoscopy

References

1. Weusten, B.; Bisschops, R.; Coron, E.; Dinis-Ribeiro, M.; Dumonceau, J.M.; Esteban, J.-M.; Hassan, C.;
Pech, O.; Repici, A.; Bergman, J.; et al. Endoscopic management of Barrett’s esophagus: European Society of
Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy 2017, 49, 191–198. [CrossRef] [PubMed]

2. Pech, O.; May, A.; Manner, H.; Behrens, A.; Pohl, J.; Weferling, M.; Hartmann, U.; Manner, N.; Huijsmans, J.;
Gossner, L.; et al. Long-term efficacy and safety of endoscopic resection for patients with mucosal
adenocarcinoma of the esophagus. Gastroenterology 2014, 146, 652–660. [CrossRef] [PubMed]

3. Gordon, L.G.; Mayne, G.C.; Hirst, N.G.; Bright, T.; Whiteman, D.C.; Follow-Up, A.C.S.C.; Watson, D.I.
Cost-effectiveness of endoscopic surveillance of non-dysplastic Barrett’s esophagus. Gastrointest. Endosc.
2014, 79, 242–256. [CrossRef] [PubMed]

4. Kara, M.A.; Ennahachi, M.; Fockens, P.; ten Kate, F.J.; Bergman, J.J. Detection and classification of the
mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging.
Gastrointest. Endosc. 2006, 64, 155–166. [CrossRef] [PubMed]

5. Singh, M.; Bansal, A.; Curvers, W.; Kara, M.A.; Wani, S.B.; Alvarez Herrero, L.; Lynch, C.R.;
van Kouwen, M.C.A.; Peters, F.T.; Keighley, J.D.; et al. Observer agreement in the assessment of narrowband
imaging system surface patterns in Barrett’s esophagus: A multicenter study. Endoscopy 2011, 43, 745–751.
[CrossRef] [PubMed]

6. Sharma, P.; Bergman, J.J.; Goda, K.; Kato, M.; Messmann, H.; Alsop, B.R.; Gupta, N.; Vennalaganti, P.; Hall, M.;
Konda, V.; et al. Development and validation of a classification system to identify high-grade dysplasia
and esophageal adenocarcinoma in Barrett’s esophagus using narrow-band imaging. Gastroenterology 2016,
150, 591–598. [CrossRef] [PubMed]

7. Byrne, M.F.; Chapados, N.; Soudan, F.; Oertel, C.; Pérez, M.L.; Kelly, R.; Iqbal, N.; Chandelier, F.; Rex, D.K.
Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of
unaltered videos of standard colonoscopy using a deep learning model. Gut 2019, 68, 94–100. [CrossRef]
[PubMed]

8. Chen, P.J.; Lin, M.C.; Lai, M.J.; Lin, J.C.; Lu, H.H.S.; Tseng, V.S. Accurate classification of diminutive colorectal
polyps using computer-aided analysis. Gastroenterology 2018, 154, 568–575. [CrossRef] [PubMed]

9. De Groof, J.; van der Sommen, F.; van der Putten, J.; Struyvenberg, M.R.; Zinger, S.; Curvers, W.L.;
Pech, O.; Meining, A.; Neuhaus, H.; Bisschops, R.; et al. The Argos project: The development of a
computer-aided detection system to improve detection of Barrett’s neoplasia on white light endoscopy.
United Eur. Gastroenterol. J. 2019, 7, 538. [CrossRef] [PubMed]

10. De Groof, A.; Struyvenberg, M.; van der Putten, J.; van der Sommen, F.; Fockens, K.; Curvers, W.; Zinger, S.;
Pouw, R.; Coron, E.; Baldaque-Silva, F.; et al. Deep-Learning System Detects Neoplasia in Patients With
Barrett’s Esophagus With Higher Accuracy Than Endoscopists in a Multi-Step Training and Validation Study
with Benchmarking. Gastroenterology 2020, 158, no. 4: 915-929. [CrossRef] [PubMed]

11. Tamaki, T.; Yoshimuta, J.; Kawakami, M.; Raytchev, B.; Kaneda, K.; Yoshida, S.; Takemura, Y.; Onji, K.;
Miyaki, R.; Tanaka, S. Computer-aided colorectal tumor classification in NBI endoscopy using local features.
Med Image Anal. 2013, 17, 78–100. [CrossRef] [PubMed]

12. Zhang, R.; Zheng, Y.; Mak, T.W.C.; Yu, R.; Wong, S.H.; Lau, J.Y.; Poon, C.C. Automatic detection and
classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J.
Biomed. Health Informatics 2016, 21, 41–47. [CrossRef] [PubMed]

13. van der Putten, J.; Wildeboer, R.; de Groof, J.; van Sloun, R.; Struyvenberg, M.; van der Sommen, F.; Zinger, S.;
Curvers, W.; Schoon, E.; Bergman, J.; et al. Deep Learning Biopsy Marking of Early Neoplasia in Barrett’s
Esophagus by Combining WLE and BLI Modalities. In Proceedings of the 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 1127–1131.

http://dx.doi.org/10.1055/s-0042-122140
http://www.ncbi.nlm.nih.gov/pubmed/28122386
http://dx.doi.org/10.1053/j.gastro.2013.11.006
http://www.ncbi.nlm.nih.gov/pubmed/24269290
http://dx.doi.org/10.1016/j.gie.2013.07.046
http://www.ncbi.nlm.nih.gov/pubmed/24079411
http://dx.doi.org/10.1016/j.gie.2005.11.049
http://www.ncbi.nlm.nih.gov/pubmed/16860062
http://dx.doi.org/10.1055/s-0030-1256631
http://www.ncbi.nlm.nih.gov/pubmed/21833901
http://dx.doi.org/10.1053/j.gastro.2015.11.037
http://www.ncbi.nlm.nih.gov/pubmed/26627609
http://dx.doi.org/10.1136/gutjnl-2017-314547
http://www.ncbi.nlm.nih.gov/pubmed/29066576
http://dx.doi.org/10.1053/j.gastro.2017.10.010
http://www.ncbi.nlm.nih.gov/pubmed/29042219
http://dx.doi.org/10.1177/2050640619837443
http://www.ncbi.nlm.nih.gov/pubmed/31065371
http://dx.doi.org/10.1053/j.gastro.2019.11.030
http://www.ncbi.nlm.nih.gov/pubmed/31759929
http://dx.doi.org/10.1016/j.media.2012.08.003
http://www.ncbi.nlm.nih.gov/pubmed/23085199
http://dx.doi.org/10.1109/JBHI.2016.2635662
http://www.ncbi.nlm.nih.gov/pubmed/28114040


Appl. Sci. 2019, 10, 3407 11 of 11

14. Ebigbo, A.; Mendel, R.; Probst, A.; Manzeneder, J.; de Souza Jr, L.A.; Papa, J.P.; Palm, C.; Messmann, H.
Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut
2019, 68, 1143–1145. [CrossRef] [PubMed]

15. Van der Putten, J.; de Groof, J.; van der Sommen, F.; Struyvenberg, M.; Zinger, S.; Curvers, W.; Schoon, E.;
Bergman, J.; de With, P.H.N. Pseudo-labeled Bootstrapping and Multi-stage Transfer Learning for the
Classification and Localization of Dysplasia in Barrett’s Esophagus. In International Workshop on Machine
Learning in Medical Imaging; Springer: Shenzen, China, 2019; pp. 169–177.

16. De Groof, J.; Struyvenberg, M.R.; van der Putten, J.; van der Sommen, F.; Curvers, W.; Zinger, S.; Pouw, R.E.;
Pech, O.; Weusten, B.L.; Bisschops, R.; et al. The ARGOS project: First deep learning algorithm for detection
of Barrett’s neoplasia outperforms conventional computer aided detection systems in a multi-step training
and external validation study. Gastrointest. Endosc. 2019, 89, AB99. [CrossRef]

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

18. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

19. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

20. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
21. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of adam and beyond. arXiv 2019, arXiv:1904.09237.
22. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE

Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March
2017; pp. 464–472.

23. Wilcoxon, F.; Katti, S.; Wilcox, R.A. Critical values and probability levels for the Wilcoxon rank sum test and
the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1970, 1, 171–259.

24. Van der Putten, J.; de Groof, J.; van der Sommen, F.; Struyvenberg, M.; Zinger, S.; Curvers, W.; Schoon, E.;
Bergman, J.; de With, P.H. Informative frame classification of endoscopic videos using convolutional neural
networks and hidden Markov models. In Proceedings of the 2019 IEEE International Conference on Image
Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 380–384.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1136/gutjnl-2018-317573
http://www.ncbi.nlm.nih.gov/pubmed/30510110
http://dx.doi.org/10.1016/j.gie.2019.04.094
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Setting
	Data Sets
	GastroNet Data Set
	NBI-Zoom Data Set

	Deep Learning Architecture Description
	Pretraining Methodology
	Training Details
	Comparison to ImageNet and without Pretraining
	Metrics

	Results
	Primary Outcome Measures
	Predictions with High Confidence-Estimates 
	Assessment Time

	Discussion
	Conclusions
	References

