
applied  
sciences

Article

Aerodynamic Analysis of a Flapping Wing Aircraft for
Short Landing

Bing Ji 1, Zenggang Zhu 1 , Shijun Guo 2,*, Si Chen 3, Qiaolin Zhu 1, Yushuai Li 1, Fan Yang 1,
Rui Song 1 and Yibin Li 1

1 School of Control Science and Engineering, Shandong University, Jinan 250061, China;
b.ji@email.sdu.edu.cn (B.J.); zhuzg@mail.sdu.edu.cn (Z.Z.); 201744530@mail.sdu.edu.cn (Q.Z.);
201734508@mail.sdu.edu.cn (Y.L.); yangfan0407@mail.sdu.edu.cn (F.Y.); rsong@sdu.edu.cn (R.S.);
liyb@sdu.edu.cn (Y.L.)

2 School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK
3 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China; wozchen@nuaa.edu.cn
* Correspondence: s.guo@cranfield.ac.uk

Received: 15 March 2020; Accepted: 10 May 2020; Published: 14 May 2020
����������
�������

Abstract: An investigation into the aerodynamic characteristics has been presented for a bio-inspired
flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation
powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an
experimental model of the flapping wing aircraft has been built and tested to measure the motion
and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried
out based on the measured motion of the flapping wing model using an unsteady aerodynamic
model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of
the average lift force between the UAM and CFD method is 1.3%, and the difference between the
UAM and experimental results is 18%. In addition, a parametric study is carried out by employing
the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift
and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of
60◦~70◦ as the flight velocity decreases from 5 m/s to 1 m/s during landing.

Keywords: flapping wing; short landing; unsteady aerodynamic model; experimental aircraft model

1. Introduction

Landing is a crucial stage for the safety and performance of aircraft flight. It is reported that
47% of aircraft accidents happen in the stage of landing. Flying animals in nature, such as birds,
have demonstrated much advanced capability of short landing comparing with fixed-wing aircraft.
By flapping the wings, birds can make use of the stall delay phenomenon and produce great aerodynamic
lift and drag forces at large pitching angles and low flight velocity. By adjusting the flapping motion
and pitching angle of the wings and body, the required lift and drag forces can be gained to achieve
a safe short landing. As illustrated in Figure 1, the forward flight velocity of birds decreases rapidly
during landing although the descending velocity in vertical direction increases. However, the forward
velocity of a fixed-wing aircraft must be maintained to prevent stall and produce adequate lift for safe
landing. Consequently, a fixed-wing aircraft usually lands with a certain runway distance.

Inspired by the superior flight performance of birds, research has been conducted on the kinematics
of flapping wing motion during landing. Green et al. [1] observed large pitching angles between 40
and 90 of the wing together with the body of a pigeon during landing. Berg et al. [2,3] recorded the
kinematics of motion of the flapping wing and body motion of a pigeon in descending flight. The study
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results pointed out that the body pitching angle combined with the wing twist plays an important
role for a bird to achieve a short landing. The majority of lift and drag forces are produced by the
modulation of the pitching angle during landing.
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Figure 1. The landing trajectories of a bird and fixed-wing aircraft.

On the other hand, research efforts have been made on the theoretical analysis and numerical
simulation of the aerodynamic performance of the flapping wing. Ellington et al. [4] revealed that
the leading edge vortex generated by flapping wings led to a significant increase of lift coefficients
compared to the steady-state aerodynamics of a fixed wing. Pesavento et al. [5] found that a flapping
wing flight could save aerodynamic power compared to steady flight. Wu et al. [6–8] employed the CFD
method to simulate the unsteady aerodynamics of an insect-like flapping wing and found that increased
aerodynamic lift can be obtained at large flapping amplitude and large pitching angle (angle of attack,
AOA) beyond the stall AoA. Based on potential flow theory [9,10] and Joukowski transformation [11,12],
Ansari et al. [13] constructed an unsteady aerodynamic model (UAM) to calculate the aerodynamic
force produced by the leading edge vortex [14–16] and trailing edge vortex [17–19]. Chen et al. [20]
further developed the UAM to prevent the adverse effect of vortex penetration using a collision
avoidance algorithm and enforced a zero-through-flow boundary condition for both two-dimensional
(2D) and three-dimensional (3D) wings.

The previous research has established a solid base for aerodynamic analysis of flapping wings.
However, less attention has been paid so far to the analysis of short landing performance of a bird-like
aircraft. In this context, the investigation has been conducted into the kinematic of motion and
associated aerodynamics of a flapping wing aircraft for short landing by employing the UAM validated
by CFD. Experimental study of a bird-like flapping wing aircraft model was also carried out to measure
the wing motion, inertia, and aerodynamic forces. The test data was used to compare and verify the
numerical analysis results by UAM. In addition, a parametric study was carried out to evaluate effect
of the kinematics of motion in particular the pitching angle and flapping frequency of flapping wings
on the aircraft landing performance. The investigation results demonstrate the advantages of flapping
wings in short landing performance compared to a fixed-wing aircraft.

2. Theoretical Analysis

2.1. UAM Method

The platform and geometry of the wing considered in the present study is shown in Figure 2a.
It should be noted that the wings are assumed to be rigid and the deformation of wings are not
considered, which serves a limitation of the study. A 2D airfoil of the rigid wing defined in an inertial
coordinate system is illustrated in Figure 2b. The UAM developed in [20] is used to calculate the



Appl. Sci. 2020, 10, 3404 3 of 18

aerodynamic forces of the airfoil. The inertial coordinate system (ξ̃ − η̃) remains fixed with respect
to the Earth. The airfoil coordinate system (ξ− η) is fixed at the center of the airfoil and moves with
it during flapping motion. The 2D airfoil has three degrees of freedom as illustrated in Figure 2,
the pitching (α,α), lunging (l, l), and heaving (h, h), where the dot () means the differentiation with
respect to time.
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Figure 2. (a) The 3D wing platform and dimension; (b) a 2D airfoil in inertial coordinate system.

As shown in Figure 3, the classical Joukowski transformation [11,12] can be used to uniquely map
a circle of radius R in the z-plane into an airfoil in the ζ-plane. The transformation can be expressed in
ζ-plane as follows:

ξ = 2Rcosθ+ σ
(
sinθ−

1
2

sin2θ
)
− τ

(
cosθ−

1
2

cos2θ
)

(1)

η = τ
(
sinθ−

1
2

sin2θ
)
+ σ

(
cosθ−

1
2

cos2θ
)

(2)

where ζ and z are the complex coordinates in the ζ-plane and the z-plane respectively; τ and σ are
non-dimensional factors governing the thickness and the camber of the airfoil. θ is the angular
displacement about the origin of the z-plane.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 19 
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According to the UAM [20], the aerodynamic force dF of a 2D airfoil of unit span dx can
be expressed:

dF = (F0 + F1 + F2 + F3)dx (3)
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F0 = ρU0Γ0 (4)

F1 = ρ
d
dt

∫
a
ξΥ0(ξ)dξ (5)

F2 = ρ
d
dt

∫
a
ξΥ1(ξ)dξ (6)

F3 = −ρU0Γ0 + ρ
d
dt

∫
wk
ξΥwk(ξ)dξ+ ρ

d
dt

∫
lv
ξΥlv(ξ)dξ (7)

Γ0 = 2π
[
2R

((
l−U∞

)
sinα+ hcosα

)
+ α

(1
2
τ2 +

1
2
σ2
− 2R2

)
+ Rσ+ 0.5τσ

]
(8)

Υ = Υa +Υs = Υ0 +Υ1 +Υwk +Υlv (9)

where U0 refers to the complex conjugate of the incident velocity U0. ρ is the air density. Γ0 is the total
quasi-steady wake-free bound circulation. Υ is the vorticity in the aerofoil-wake system which can be
decoupled into the aerofoil-bound component Υa and the shed component Υs. Υ0 is the wake-free
component of Υa and Υ1 is the wake-induced component. Υwk and Υlv are the trailing edge wake and
the leading edge wake component of Υs. R is the wing dimension as in Figure 3. In addition to the
above parameters, the wing motion is represented by the pitching angle (α,α), lunging (l, l) heaving
amplitude (h, h) and incident velocity U0 that are dimensional parameters in Equations (4)–(9) and
illustrated in Figure 2b. The UAM takes into account the shedding process of the leading edge and
trailing edge vortices considering the stall case in a very large AOA.

Since the UAM is based on 2D aerodynamic theory, the total aerodynamic force of a 3D wing can
be obtained from the integration of number of 2D airfoil sections divided along the wing span with
an approximate spanwise lift distribution. Since the wing, as shown in Figure 2, is of 63% uniform
platform with the rest of wing chord reduced to zero at the tip, it is divided into eight sections with an
elliptical shape of spanwise lift distribution to gain sufficient accuracy for the total aerodynamic force
F. The force F is a complex value written as F = FH + iFV , and the real part FH and imaginary part FV

refer to the force components in 90 degree phase difference. The aerodynamic forces acting on the
airfoil are resolved into vertical lift force L and horizontal drag force D components in the inertial
coordinate system (ξ− η):

F = D+ iL (10)

As LX is the wing span, the total lift and drag forces of an entire 3D wing can expressed by
Equations (11) and (12) as follows:

Ltotal =

∫ LX

0
Ldx (11)

Dtotal =

∫ LX

0
Ddx (12)

2.2. CFD Model of a Flapping Wing

In this research, the CFD simulation of the rigid wing is implemented by using the solver
ANSYS-Fluent(ANSYS, Inc. Canonsburg, PA, USA). Generally, the program evaluates the effect of
the wing motion on the initial mesh, and update the mesh to ensure that the mesh quality meets
the requirements. In order to avoid long-time reconstruction and the poor quality of the dynamic
mesh [21], the algebraic mesh generation method based on the transfinite interpolation theory [22] is
used to generate a tetrahedral moving mesh around the flapping wing. The method is highly adaptable
to the shape of the flapping wing and suitable for unsteady aerodynamic calculations.

As shown in Figure 4, the fluid field modelling is divided into inner-fluid and outer-fluid field.
The inner-fluid field moves with the airfoil flapping and pitching, hence, will not be reconstructed
during the calculation process. The whole structure contains five trailing surface meshes and three
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tetrahedral volume meshes. A grid resolution test is performed before the CFD method is implemented
for the unsteady flow solution of the flapping wing. The effect of the grid density, time step and
computational domain size on the solution have been taken into consideration. The radius of the
interior circle is four times the wingspan and the radius of the far field circle is 10 times the wingspan.
A non-dimensional time-step of 0.002 is taken so that 500 calculations are performed within one
flapping cycle.
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3. Experimental Model Development

3.1. The Bird-Like Aircraft Model

The experimental aircraft model of flapping wings with the wing spar and root rib only is shown
in Figure 5a. The wing is of semi-span 0.5 m and maximum chord 0.2 m. The flapping and pitching of
the flapping wing is driven by a motor through a rotating shaft and a crank mechanism with further
details shown in Figure 5b. The motor (2824MT) of mass 50 g is employed in the model. The motor can
operate in a voltage range 7–12 V and current 4–8 A at maximum rotation speed 13,000 r/m. Connected
to the crankshaft through the main connecting bar, the wing spar can flap about its root periodically
along with the shaft rotation. In the same time, the wing rib connected to the crankshaft by a slave
connecting bar makes the spar rotate and produce pitching variation associated with the flapping
motion. The phase difference of the pitching from the flapping motion in a flapping cycle is determined
by the connecting position of the phase angle bar. The flapping and pitching angles can be determined
in a range by changing the dimension of the crankshaft and the connecting bars. Figure 5c shows the
model mounted on a test rig when measuring the inertia force produced by the flapping motion.

Table 1 shows the main parts and their mass of the experimental aircraft model. The wing spar
and ribs and all the connecting bars are made of carbon/epoxy composite material; the shaft and
ball joints are made of aluminum alloy. A high-precision six-axis force sensor, Nano 17 SI-25-0.25
(ATI Industrial Automation, Apex, NC, USA) was used to measure the forces produced by the flapping
wing and mechanism during the experiment. The measurement ranges in different directions and the
deviation of the Nano 17 are shown in Table 2.
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Table 1. Parts and mass of the experimental aircraft model.

Unit Weight (g) Unit Weight (g)

Crankshaft 4.33 Slave Connecting Bar 8.80
Phase Angle Bar 3.28 Wing Spar 12.35

Main Connecting Bar 9.53 Wing Rib 5.06
Ball Bearing 5.46 Wing Spar Sleeve 11.15

Skin 9.64 Whole aircraft 310.73

Table 2. The measurement ranges and deviation of the force sensor used in the experiment.

Sensor Sensing Ranges (N) Deviation

Nano 17 FX, FY FZ FX, FY FZ
SI-25-0.25 0.25–25 0.25–35 1/160 1/160

3.2. Test Rig and Experiment Setting

To validate the analytical method and results, an experimental platform was built to measure the
flapping wing motion and forces of the aircraft model. As shown in Figure 6a, the test rig for force
measurement consists of a carrier plate, craft splint, link span, force sensor, and bracket. Figure 6b
shows the aircraft model mounted on the test rig at the bottom of the body 70 mm below the center
of gravity of the whole model. The angle of the platform can be adjusted by tilting the carrier plate
manually about the joint of the link span.

The platform also includes a module to measure the flapping wing motion utilizing the OptiTrack
motion capture system with 12 three-dimensional space cameras (Prime 13, NaturalPoint, Inc. Corvallis,
OR, USA) as shown in Figure 7. Parameters of the cameras are listed in Table 3. To capture the motion
of the flapping wing and aircraft body, three reflective balls are mounted at the leading edge tip,
root and trailing edge root of each wing. From the three ball locations, the geometric center of the
closed triangle surface can be determined by the system to create a reference point for data processing.
Similarly, three balls are fixed on the body of the aircraft model as shown in Figure 8.
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Table 3. The parameters of the cameras used in the experiment.

Camera Resolution Frame Rate 3D Accuracy Latency

Prime13 1280 × 1024 120–240 Hz ±0.20 mm 4.2 ms

3.3. Data Acquisition and Processing

The OptiTrack motion system can capture the spatial displacement information of the balls moving
with the wing as shown in Figure 7 to create a set of quaternion data [23,24]. The displacement data
is measured in the body coordinate system formed by the camera. As shown in Figure 8, the body
coordinate system is a left-hand coordinate system for the OptiTrack motion system. The origin of the
coordinate system is set at a point on the body which may not coincide with the center of gravity of the
model. The image data from the reflective balls is transformed from the body coordinate system to the
inertial coordinate system [25].

The flapping angle of the wing is measured as the angle between the leading edge Py1 − Py2 and
its projecting line on the XoZ plane as shown in Figure 9. Therefore, the flapping angle θ is positive
when the wing is above the XoZ plane and can be expressed as:

θ = arcsin

 y1 − y2∣∣∣Py1 − Py2
∣∣∣
 (13)

The angle α between the chord line Py2 − Py3 and the XoZ plane is defined as the wing pitching
angle and positive when the wing leading edge is greater than trailing edge, and can be expressed as:

α = arcsin

 y2 − y3∣∣∣Py2 − Py3
∣∣∣
 (14)
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3.4. Aerodynamic Force Acquisition and Processing

The dynamic forces acting on the aircraft are mainly from the flapping wing aerodynamic force
and inertial force [26–28] including the body and flapping mechanism motion. The inertia force Fi f can
be expressed as:

Fi f = −ma (15)
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where m and a refer to the aircraft mass and acceleration, respectively.
The inertia force of the flapping wing and mechanism was measured by removing the skin of the

flapping wing in a separate test. In the same approach as a previous research [29], the skin was cut to
eight pieces and rolled onto the wing spar and ribs as shown in Figure 5c to make the mass distribution
as close to the original skin as possible. The total inertia force Fv1 of the model in a flapping cycle can
be measured by the force sensor in the vertical direction and expressed as:

Fv1 = Fa f 1 + Fi f 1 + Fd (16)

where Fa f 1 is the inertia force of the flapping wing structure. Fi f 1 is the inertia force of the linkage bars.
Fd is the inertia force of the body.

For the model with the wing skin as shown in Figure 5b, the total force Fv1 measured in vertical
direction can be expressed as:

Fv2 = Fa f 2 + Fv1 (17)

where Fa f 2 is the unsteady aerodynamic force produced by the flapping wing.
The measurement of the total vertical force with the skin and the inertia force without skin is

synchronized by setting the maximum flapping amplitude in the same based on the two sets of flapping
motion data obtained from the OptiTrack capture system. Therefore, these two points are selected as
the start of a flapping cycle for comparison in the time domain. Since the inertia force Fv1 remains the
same for the same flapping condition, the aerodynamic lift force of the flapping wing, which varies
with time in a flapping cycle can be calculated as follows:

L = Fa f 2 ≈ Fv2 − Fv1 (18)

Similarly, the aerodynamic drag or thrust of the wing D is given by:

D ≈ Fh2 − Fh1 (19)

where Fh1 and Fh2 are the forces measured in horizontal direction by the load cell during tests.

4. Study Results and Discussion

4.1. Experimental Results

From the experiment, the flapping and pitching angles of the wing measured during one flapping
cycle vary in the range of −26.1◦ to 25◦ and −18.2◦ to 43.9◦, respectively, as shown in Figure 10. It is
noted that there is a small asymmetry in the measured flapping and pitching angles and time delay
between the wing up-stroke and down-stroke in a cycle. For example, when the flapping motion was
started from 0◦ flapping angle where the wing was at the middle position in down-stroke, the pitching
angle was about −10◦; when the flapping wing is back to 0◦ again in up-stroke, the pitching angle was
increased to the maximum 44◦.

Based on the test data, the wing motion can be modelled by Sine function and Fourier function
below. The measured flapping motion is idealized as a symmetric flapping and pitching angle functions
with the amplitude varying from −25◦ to 25◦ and from −18◦ to 44◦, respectively, as shown in Figure 10.
The fitted data matches experimental data very well, and the R-squared values between experimental
and fitting values of flapping and pitching angles are 0.9991 and 0.9921, respectively. Such slight fitting
deviations are mainly caused by measurement errors of OptiTrack cameras and the fitting model as
shown in Equations (20) and (21).

θ = Hsin(wt) (20)

a = A0 + A1 cos(wt) + B1 sin(wt) + A2 cos(2wt) + B2 sin(2wt) (21)
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where θ and H refer to the flapping angle and its amplitude of the wing. w is the flapping frequency in
radian. a represents the pitching angle. A0, A1, B1, A2, B2 are the correlation coefficients of the pitching
amplitude. The pitching angle amplitude is defined as the difference between the smallest pitching
angle to the largest pitching angle.
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non-dimensional time normalized by flapping cycle).

Figure 11a shows the measured forces of the model produced by the flapping wing with and
without the wing skin in a stable flapping cycle at 2.1 Hz and zero flight velocity. To identify the main
source that affects the results, the dynamic behavior of the model can be presented in the frequency
domain as shown in Figure 11b by Fourier transformation. Three frequencies of 2.1 Hz, 4.3 Hz, and
6.5 Hz below 10 Hz can be identified from the experimental data. Since the 0 Hz mode can be ignored
and the dominating 2.1 Hz is the flapping frequency, the additional modes of 4.3 Hz and 6.5 Hz remain
as a concern. It can be speculated that those higher-order modes are from the test rig, which has little
influence on the motion of the flapping wing and aerodynamic force.
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Figure 11. Measured force with (a) and without skin; (b) transformed data in the frequency domain.

According to Equations (16) and (17), the difference between the measured force with and without
the wing skin results in the aerodynamic lift as shown in Figure 12a. The corresponding drag force
(negative value indicates thrust) can be also obtained and shown in Figure 12b. From the calculation,
the measured peak value of lift force is 2.02 N and average lift in a flapping cycle is 0.123 N; the peak
value of drag force is −0.68 N and the average drag is −0.43 N. It is noted that the average aerodynamic
lift obtained from the experimental result is very low for the size of the wing. This is not only due
to the relatively low flapping frequency (2.1 Hz) but also at zero flight velocity. The lift will increase
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significantly with the increase in flapping frequency and flight velocity as shown in the parametric
study results in Section 4.3.
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4.2. UAM Validation

Given the flapping wing motion as shown in Figure 9 obtained from the test data and Equations (20)
and (21), the aerodynamic lift and drag forces are calculated using the UAM and CFD, and shown in
Figures 13 and 14 respectively. Aerodynamic lift and drag forces obtained in experiments refer to the
net vertical and horizontal forces, respectively. As shown in Figure 13, it is noted that the aerodynamic
lift forces by the three methods are of the same characteristics. In particular the UAM results agree with
the experimental results very well considering the small difference of the idealized flapping motion
from the measured one. The CFD results show more time delay comparing with the test data. In terms
of average lift in a flapping cycle, the force 0.150 N calculated by UAM is very close to the CFD result
of 0.152 N but greater than the measured force 0.123 N. Refer to the motion of the flapping wing, it can
be found that when the wing is at the midpoint of the down-stroke t̂ = 0 and t̂ = 1, all the lifting forces
reach the peak value (UAM: 2.00 N, CFD: 1.96 N, and experiment: 2.02 N) with difference less than 3%.
At this moment, the speed of flapping wing motion is at its maximum and the pitching angle is −10◦,
which should result in a thrust force (see Figure 14).
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down-stroke: t̂ = 0.75~1).
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It is observed from Figure 13 that the large difference between the forces occurs in the up-stroke
during t̂ = 0.3 and t̂ = 0.7. When the wing is moving close to the midpoint in upstroke at t̂ = 0.4~0.5,
the lift forces reach the minimum value, and the timing for UAM and experiment is about 0.1T earlier
than the CFD result. The values from UAM (−1.33 N) and CFD (−1.42 N) are of 13.1% and 6.3%
difference from the experiment result (−1.53 N) respectively. At the end of the down-stroke (t̂ = 0.25)
when the flapping speed is nearly zero with pitching angle 18◦, the lift from CFD shows a small
positive value due to the wing rotation from negative to positive pitching angle, and soon reduces to
zero during up-stroke motion at t̂ = 0.32. While the lift forces from UAM and experiment reach zero
earlier at t̂ = 0.2~0.22. The same situation occurs at the end of up-stroke (t̂ = 0.75) where the UAM and
experimental results become zero, but the CFD result is still a negative value.

As shown in Figure 14, the two peak values of drag force in a flapping cycle occurring at t̂ = 0.19
and t̂ = 0.75 for the UAM are very close to the CFD and experimental results. The difference of average
drag force in a flapping cycle by UAM (−0.37 N) and the CFD (−0.42 N) from the experimental result
(−0.43 N) is 14% and 2.3%, respectively.

The results show that the UAM and CFD methods can capture the aerodynamic characteristics
measured in the experiment including the force variation and peak values. In particular, the difference
of maximum force values in down-stroke is less than 3%. The difference of the average force in
a·flapping cycle calculated by the UAM and CFD is only 1.3%. However, the difference of the results
from the measured force obtained in the experiment is 18%. Although this is caused by a number of
reasons, including the approximate wing motion measured at limited points and inertia force, the main
reason is likely to be the ignorance of the skin flexibility of the wing in the UAM and CFD model.
Nevertheless, the UAM provides a method of high efficiency and adequate accuracy to calculate the
aerodynamic forces of the flapping wing model.

4.3. Parametric Study

4.3.1. Effect of Pitching Angle of Aerodynamics

A parametric study to evaluate the effect of varying pitching angle on the aerodynamics is carried
out using UAM. This is because the aerodynamic lift is more sensitive to the pitching angle than the
flapping angle. The study is aiming to find an optimal wing motion as a combination of pitching and
flapping angles to achieve maximum lift and drag forces for short landing. The range of pitching
angles considered in the study are extended to 0◦~45◦ and 0◦~60◦ in comparison with the experimental
case −18◦~44◦ used for validation. The lift and drag force results are shown in Figures 15 and 16.
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Figure 16. The drag forces of the flapping wing in three cases of pitching angle variation.

The study shows that the average lift force 0.31 N for the pitching angle variation case 0◦~60◦

is 19% greater than the case 0◦~45◦ (0.25 N), and 52% greater than the experimental case −18◦~44◦

(0.15 N). This is mainly because the negative lift force produced by the up-stroke wing is reduced due
to large pitching angle 50◦~60◦ during t̂ = 0.4~0.6 as shown in Figure 15. In addition, the maximum lift
is increased in down-stroke during t̂ = 0.75~0.95. Regarding the drag results as shown in Figure 16,
the average drag force −0.144 N (negative for thrust) in a flapping cycle for the case 0◦~60◦ is 60%
greater than the experimental case −18◦~44◦ result of −0.359 N and 38% greater the case 0◦~45◦ result
of −0.234 N. The increased drag or reduced thrust (negative drag value) is preferable for short landing.
This is also due to the increased pitching angle during the wing flapping motion.

According to the simulation results shown in Figures 15 and 16, it is noted that small positive
pitching angle of the wing in down-stroke results in the increase of lift, and a large pitching angle in
the up-stroke results in a reduced negative lift and increased drag force. This can be demonstrated by
a parametric study of extended range of pitching amplitude from 15◦ to 90◦. The resultant average lift
and drag forces are presented in Table 4 and Figure 17.
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Table 4. Average lift and drag forces produced by the wing of different pitching angle ranges.

Pitching Angle Range 0◦~15◦ 0◦~30◦ 0◦~45◦ 0◦~50◦ 0◦~60◦ 0◦~75◦ 0◦~80◦ 0◦~90◦

Average Lift (N) 0.0927 0.1420 0.2487 0.2623 0.3092 0.3627 0.3295 0.2661
Average Drag (N) −0.0932 −0.2223 −0.2435 −0.1967 −0.1435 −0.0116 0.0184 0.0654Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 19 
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As shown in Figure 17, the average lift increases to maximum with the pitching amplitude
from 15◦ to 75◦ before decreases. In the same time, the average thrust (negative drag value) is
produced by the wing from 15◦ and increases until reaching a maximum for pitching amplitude of 45◦.
Afterwards, the thrust starts to reduce to zero at about 75◦ and then becomes positive (drag) as the
pitching amplitude keeps increasing. The average lift and drag forces from the experimental case are
also marked in Figure 17 for comparison (the pitching amplitude is 62◦ for pitching angle variation
−18◦~44◦).

From the above case study, it is noted that the maximum average lift force and zero drag force
occur for pitching amplitude around 75◦. Therefore, the further study is focused on a small range
of pitching angles between 45◦ and 90◦. Figure 18 shows the resulting lift and drag forces in the
case of pitching angles varying within 0◦~45◦, 0◦~75◦, and 0◦~90◦ for comparison. The results show
that the lift force in the cases of 0◦~75◦ and 0◦~90◦ are very close, but the lift in the 0◦~45◦ case is
significantly smaller (larger negative) during the first half up-stroke period t̂ = 0.25~0.5 and continues
until t̂ = 0.63. In the down-stroke period t̂ = 0.75~1 however, the smaller pitching angles 0◦~45◦ result
in a significantly greater positive lift force compared to the other two large pitching angle cases. It can
be inferred that a much greater lift force can be generated if a quick increase of pitching angle from 45◦

to 75◦ can be made in the up-stroke period t̂ = 0.25~0.63 and a quick transition back from 75◦ to 45◦~0◦

in the down-stroke period t̂ = 0.75 ∼ 1. The results indicate that an optimal kinematics of motion can
produce a much greater lift force although additional driving power may be required.

The resulting drag forces in a flapping cycle for the three pitching angle cases 0◦~45◦, 0◦~75◦

and 0◦~90◦ is shown in Figure 19 with a similar feature to the lift variation. A large difference occurs
between the drag forces in case 0◦~45◦ and large pitching angle cases 0◦~75◦ and 0◦~90◦ in the up-stroke
period t̂ = 0.25~0.6. In the first half of the up-stroke, negative drag forces (thrust) are produced in
the case of a small pitching angle of 0◦~45◦, and achieves a peak value −1.4 N when the pitching
angle reaches maximum 45◦ at the midpoint of up-stroke (t̂ = 0.5). While a small positive drag force
occurs in this period and reaches a peak value 0.22 N and 0.76 N at large pitching angles 0◦~75◦ and
0◦~90◦, respectively. The drag forces keep small positive for the three cases in the down-stroke period
t̂ = 0.75~1.
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4.3.2. Effect of Flight Velocity

Based on the above results at zero flight velocity, the study is extended to the influence of flight
velocity on the aerodynamic forces to evaluate the short landing behaviors of the aircraft. To validate
the UAM used for the flapping wing of large pitching angle at low flight velocity, the lift and drag
forces are calculated by CFD and UAM for a case of the pitching angle at 0◦~60◦ at 4 m/s. As shown in
Figure 20, the variation of the forces by the two methods is in very good agreement. The difference of
average lift and drag forces between the UAM and CFD is only 2.3% and 2.1%, respectively. The results
indicate that the UAM can also be utilized to calculate the aerodynamic forces of the flapping wing at
low flight velocity.

Figure 21 shows the average lift and drag forces of the flapping wing in full range of pitching
amplitude 15◦~90◦ at flight velocity 0~5 m/s during landing. The flight velocity in Figure 21 is also
translated to the advance ratio (J), which is the ratio of the flight speed to the speed of the wing tip.
The advance ratio can be expressed by:

J =
V

2ΦFb
(22)

where Φ is the amplitude of the flapping angle, F is the flapping frequency and b is the wing semi-span.
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Figure 21. Average lift (a) and drag (b) of different amplitudes under different flows.

The average lift and drag forces increase with the velocity above zero for any pitching amplitude.
As shown in Figure 21a, the maximum average lift occurs within the range of pitching amplitude
60◦~75◦. In this range, the higher the velocity, the smaller the pitching amplitude required for maximum
lift force. As shown in Figure 21b, the average drag force increases with the pitching amplitude for any
flight velocity except zero. At zero velocity, however, the average drag is negative and reduced (thrust
increases) until the pitching amplitude is increased to 45◦, and then slowly increases (thrust reduces)
to a small positive value at 90◦.

Based on the above study results, it can be revealed that the pitching angle of the flapping wing
for maximum lift in the above cases is in the range between 60◦ and 70◦ at the flight velocity range
from 1 m/s to 5 m/s. For a pitching angle of the wing pre-determined by the flapping mechanism,
the variation of the aircraft pitching angle can be altered by the changing the tail-plane.

The pitching angle is only one of the factors that affect the landing of the flapping wing aircraft.
The flapping frequency and velocity of the incoming flow also play important roles in landing. Table 5
shows average lift force and drag force produced by the wing of different flapping frequencies with
pitching angle 0◦~60◦ at zero flight velocity. The average lift varies with flapping frequency in an
almost linear relationship, but with the square of flight velocity. If an optimal kinematics of motion
including all the above factors is obtained at different flight velocities and attitudes during landing,
an optimal landing strategy may be achieved. However, this optimization process is beyond the scope
of the present study.
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Table 5. Average lift and drag forces produced by the wing at different flapping frequency with pitching
angle 0◦~60◦ at zero flight velocity.

Flapping Frequency (Hz) 1 2.1 3 4

Average Lift (N) 0.085 0.248 0.486 1.097
Average Drag (N) −0.063 −0.242 −0.332 −0.686

5. Conclusions

Based on validation by using CFD and experimental data, the UAM is suitable for the unsteady
aerodynamic force calculation of a flapping wing with large pitching amplitude at low flight velocity.
For the experimental case where the pitching angle is idealized as −18◦~44◦ and flight velocity is zero,
the average lift forces between the UAM and CFD method have a small difference of 1.3%, but a large
difference of 18% occurs when compared to experimental result. For the study case of flight velocity at
4m/s and pitching angle 0◦~60◦, the average lift force difference of 2.3% and drag force difference 2.1%
between the UAM and CFD remain in the same level as the zero velocity case.

From the parametric study of the flapping wing, it is revealed that an optimal pitching amplitude
and change rate of pitching angle near the end of up-stroke play a critical role for the lift force.
The kinematics of motion of a flapping wing can be improved by a quick reduction of pitching angle in
up-stroke during t̂ = 0.25~0.5 to achieve maximum lift force.

For this aircraft model, the maximum lift occurs in the range of pitching angle amplitude between
60◦~70◦ when the flight velocity is reduced from 5 m/s~0 m/s during landing. In general, the drag
increases with the flight velocity. As the forward flight velocity decreases during landing, the aircraft
should continuously increase the wing pitching angle up to 75◦ to gain maximum lift. In the same
time, the increased pitching angle results in increased drag to decelerate the aircraft motion.
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