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Abstract: In this paper, parameters of the tuned mass dampers are optimized to improve the
performance level of steel structures during earthquakes. In this regard, a six-story steel frame is
modeled using a concentrated plasticity method. Then, the optimum parameters of the Tuned Mass
Damper (TMD) are determined by minimizing the maximum drift ratio of the stories. The performance
level of the structure is also forced to be located in a safety zone. The incremental dynamic analysis
is used to analyze the structural behavior under the influence of the artificial, near- and far-field
earthquakes. The results of the investigation clearly show that the optimization of the TMD parameters,
based on minimizing the drift ratio, reduces the structural displacement, and improves the seismic
behavior of the structure based on Federal Emergency Management Agency (FEMA-356). Moreover,
the values of base shear have been decreased for all studied records with peak ground acceleration
smaller or equal to 0.5 g.
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1. Introduction

Structural disruption resulting in dangerous vibrations might be inevitable due to dynamic loads,
such as wind and earthquake (see, for example, [1–4]). The use of different methods to minimize
these vibrations and make structures more resistant to dynamic loads is growing day by day [5–8].
Accordingly, many researchers have focused their investigations on studying the effectiveness of
different control systems, including dampers, base isolation, etc. [9–15]. Some of the most popular
types of dampers include the Tuned Mass Damper (TMD; see [16–19]) and the Tuned Liquid Damper
(TLD) [20]. Both are known as passive control systems. These vibrations control systems can absorb
some of the input energy due to the earthquake motion [21]. There are also other passive control
vibration systems, such as friction tuned mass damper (see [22–24]), viscous damper (see [25–27]),
magnetorheological damper (see [28,29]), tuned mass-damper–inerter (see [30,31]), and pendulum
tuned mass damper (see [32]).

Numerous researchers used various meta-heuristic algorithms to optimize the parameters of the
TMD systems. Among all existing meta-heuristic algorithms, some lead to more suitable results for
nonlinear optimization models (see [33], for example). Some researchers used the algorithm of the
Genetic Algorithm (GA) and Charged System Search (CSS) to optimize the parameters of the TMD
subjected to the critical earthquake [16–18,34–38]. Kamgar et al. [17] optimized the parameters of the
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TMD system using the Grey Wolf Optimization (GWO) method. The results of their research show
that the maximum structural responses (i.e., roof displacement and stroke ratio) may be reduced by
optimizing parameters of the TMD system and the dynamic behavior of the structure in terms of
minimizing the input, and kinematic energies can be improved. Khatibinia et al. [19] investigated the
optimum parameters of the TMD system intending to minimize the sum of the root-mean-square of
drifts in the frequency domain under the critical earthquake for a 10-story shear building. Wong [39]
evaluated the problem of the input energy dissipation for non-elastic structures equipped with the
TMD. The author demonstrated the effectiveness of the TMD system in reducing the dynamic responses
of the structures and concluded that the control of the structure using the TMD system could absorb
more input energy, and subsequently, could damp the absorbed energy. This damping energy improves
the dynamic performance of the structure. Nigdeli et al. [40] optimized the parameters of the TMD
system based on the minimization of the acceleration transfer function. The results of their research
indicate that the use of meta-heuristic algorithms to optimize the TMD parameters is more effective
than classical methods. Kamgar et al. [16] calculated the optimum parameters of the TMD system,
taking into account the soil-structure interaction effect adapting the whale optimization algorithm.
They showed that the soil type and the objective function were very effective in the optimal parameters
obtained for the TMD system.

An accurate estimation of the dynamic capacity of structures is one of the most critical challenges
for researchers. The use of the Incremental Dynamic Analysis (IDA) is essential to evaluate accurately
the dynamic performance of structures subjected to earthquake loads. For the first time, Bertero
in [41] presented the IDA’s time history analysis by scaling the earthquake records step by step and
incrementally. Vamvatsikos and Cornell [42] introduced the IDA analysis as a method often used today.
The most important advantage of the IDA analysis, in comparison with other methods, is the high
ability of this type of analysis to show the actual attitude of the structure from the elastic state to the
inelastic one. Additionally, this method can consider structural instability due to entering the structure
from the elastic state into the inelastic one [43]. The optimization algorithm has also been utilized to
design semi-rigid steel frames and reinforced concrete sections (see [44,45]).

In the present paper, a moment-resisting steel frame equipped with the TMD system is selected
(see [39,46]). The nonlinear behavior of the joints is modeled using zero-length spring elements and
rotational springs at the end of the beam-column elements [47]. Additionally, OpenSees software is
used to simulate the dynamic structural behavior. Herein, the parameters of the TMD system are
optimized to minimize the maximum drift ratio of structures subjected to earthquakes. Then, the effect
of an optimal TMD on the development of the nonlinear seismic efficiency of steel moment-resisting
frames is investigated. The main aim of the paper is to investigate a system that, in addition to
lower cost, can improve the performance of the structure in comparison with the other vibration
control systems.

The authors of previously published papers focused on the optimization of the parameters of the
TMD system by calculating the optimal values of the TMD system numerically using the optimization
algorithms [16–19,34–40]. The most important question is whether these optimal values can still control
the dynamic responses of structures by changing the characteristics of the earthquake. Therefore,
in this paper, the controlled structure is subjected to several incremental dynamics analyses using
the optimal values for the TMD system to answer this question. The answer to the question that the
controlled structure can withstand large earthquakes is vital in this regard. Additionally, the other
question is whether the controlled structure can minimize the structural responses in other ranges of
the peak ground acceleration (PGA) rather than the studied earthquakes? In fact, the structure is first
designed to an earthquake with the PGA equal to 1 g (g is the acceleration of gravity) using a TMD
system. Then the responses of the controlled structure are examined using the incremental dynamic
analyses by changing the PGA from 0.1 g to 1 g. Additionally, in this paper, for the first time, the Life
Safety constraint is introduced to keep the structure in a safe zone based on FEMA-356 [48].
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2. Optimal Design of the TMD System

The paper is focused on an optimization method of the parameters of the TMD system (including
damping, stiffness, and mass). The optimization is conducted according to a reduction in the maximum
drift ratio of structures exposed to earthquakes. This criterion is upon the limitation proposed by
FEMA-356 [48] for the maximum allowable drift ratio of the steel moment-resisting frame. Therefore,
the optimal design of the TMD system for a steel moment-resisting frame can be formulated as:

Find : Md, Kd, Cd

Minimize : max
(

max|dri f ti|with TMD
max|dri f ti|without TMD

)
× 100, i = 1, 2, 3, . . . , n

Subjected to : Mmin
d ≤Md ≤Mmax

d

Kmin
d ≤ Kd ≤ Kmax

d (1)

Cmin
d ≤ Cd ≤ Cmax

d

max(
∣∣∣ud(t) − xroo f (t)

∣∣∣) ≤ 1000 (mm)

max
∣∣∣dri f ti

∣∣∣
with TMD ≤ 0.025, i = 1, 2, 3, . . . , n

where Md, Kd and Cd indicate the mass, stiffness, and damping coefficient for the TMD system,
respectively. Mmin

d , Mmax
d , Kmin

d , Kmax
d , Cmin

d and Cmax
d are the lower and upper bounds of the TMD

mass, stiffness and damping constants, respectively. These lower and upper bounds have been selected
based on the work [46].

3. Passive Control Systems

Currently, the control of the seismic response of the structures subjected to dynamic loads is
a method that can help engineers to design structures. Among various methods of seismic control,
the passive control method is one of the most popular, due to the lower cost of construction and
maintenance. One of the passive control systems is the application of TMD. This system, consisting
of a mass, damping, and linear spring, is typically installed on the roof of the structure. The system
reduces the dynamic response of the structure by affecting its dominant mode. The mass of the TMD
system moves with a different phase relative to the structure, and it improves the seismic structural
response by the dissipation of energy [49–51]. The efficiency of the TMD system is highly dependent on
its parameters. Therefore, the optimization of these parameters for the seismic control of tall structures
against dynamic loads is one of the crucial issues.

A schematic view of the TMD system is exhibited in Figure 1. In this study, the Water Cycle
Algorithm (WCA) has been used to reduce the relative displacement of the considered frame by the
LS performance level presented in FEMA-356 [48] (i.e., the maximum allowable drift ratio for the
steel moment-resisting frame is 2.5%). Therefore, the dynamic capacity and the performance of the
controlled structure have been investigated using the IDA analysis.
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Figure 1. Schema of a single-degree-of-freedom system controlled by a TMD system.

4. Water Cycle Algorithm (WCA)

The optimization algorithms are generally based on natural phenomena, social events, and physical
laws to solve different problems. The clever way used by these algorithms for computation is based
on iterations to improve the performance of a system. Eskandar et al. [52] proposed WCA based on
the rotational cycle of water in nature (i.e., the flow of streams toward the sea). The flow of water
in the environment is like a tree or root of a tree. The small branches of this stream are small rivers
that form the rivers by joining together. A sea is a place with the lowest elevation, and eventually,
the rivers flow into it. The initial population is computed to formulate the equations of the water cycle
algorithm, as in other population-based algorithms. Detailed information has been illustrated in [52].
The streams in the rivers arise from existing differences in the levels of two points, i.e., water flows
from higher altitudes to lower altitudes. After rain comes down, the streams and rivers are formed and
move to the lowest area, usually to the sea. The water cycle in nature consists of three processes: (1)
the precipitation that creates the initial population, (2) the surface movement of the rivers and streams
to the sea, and (3) the procedure of the evaporation and condensation.

Therefore, to formulate the first step, Equations (2) and (3) are used.

Raindrop = [x1, x2, x3, . . . , xN] (2)

Population o f raindrops =



Raindrops1

Raindrops2

Raindrops3
...

RaindropsNpop


=


x1

1 x1
2 x1

3 · · · x1
Nvar

x2
1 x2

2 x2
3 · · · x2

Nvar
...

...
...

...
...

x
Npop

1 x
Npop
2 x

Npop
3 · · · x

Npop
Nvar



(3)

where the values of the decision variables (x1, x2, x3, . . . , xN) can be expressed by several floating points
of the problem. The cost of Raindrop is also obtained by Equation (4) as follows:

Ci = Costi = f
(
xi

1, xi
2, . . . , xi

Nvar

)
i = 1, 2, 3, . . . , Npop (4)
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in which Npop and Nvar represent the stream population as the initial population and some design
variables, respectively. Costi shows the cost estimation function of the variables, see for example [53].
Firstly, the parameter Npop is generated, and a number is selected for the Nsr parameter as the best
value (minimum values) for the rivers and sea in the first step. The number of rivers and the sea is
calculated as a variable Nsr as follows:

Nsr = Number o f Rivers + 1︸︷︷︸
Sea

(5)

NRaindrop = Npop −Nsr (6)

The parameter NRaindrop is the rest of the population that make up possible routes to the sea or the
rivers. Equation (7) is used depending on the intensity of the flow to determine and assign raindrops
in rivers and sea:

NSn = Round


∣∣∣∣∣∣∣ Costn∑Nsr

i=1 Costi

∣∣∣∣∣∣∣×NRaindrops

, n = 1, 2, . . . , NSR (7)

in which NSn is a number of streams that flow into some specific rivers or the sea. Besides, the new
positions of the streams and rivers are also expressed as follows:

→

X
t+1

Stream =
→

X
t

Stream + rand×C×
(
→

X
t

River −
→

X
t

Stream

)
(8)

→

X
t+1

River =
→

X
t

River + rand×C×
(
→

X
t

Sea −
→

X
t

River

)
(9)

in which rand is a uniformly distributed random number from the interval 〈0, 1〉. Additionally,
the parameter C has a number between 1 and 2, and it is usually close to 2. If the evaporation conditions
are taken into account, it can help the algorithm to prevent premature convergence:

I f ‖
→

XSea(t) −
→

X
i

River(t)‖ < dmax(t)orrand ∈ 〈0, 1〉,
n = 1, 2, 3, . . . , Nsr − 1

(10)

where dmax is a small number (close to zero). It indicates that the river is connected to the sea when
the river is away from the sea less than the value of dmax. The parameter dmax can control the optimal
solution, and its value is updated as follows:

dmax(t + 1) = dmax(t) −
dmax(t)

MaxIteration
(11)

Additionally, after considering the evaporation conditions for the algorithm, the new streams are
randomly generated in the search space as follows:

→

X
New

Stream = LB + rand · (UB− LB) (12)

in which the parameters UB, LB are the minimum and maximum boundary conditions, respectively.
Then, the river flowing to the sea is selected from the best new raindrops, and the other remaining
new raindrops create streams that can flow to the river or sea. Equation (13) is utilized for the streams
that have flowed to the sea to check the computational performance and convergence rate of the
optimization problem:

→

X
New

Stream = Xsea +
√
µ× randn(1, Nvar) (13)

where µ is a coefficient, and the value of 0.1 has been proposed for it in [52].
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5. Incremental Dynamic Analysis (IDA)

IDA is an accurate analysis method that is capable of estimating the seismic behavior of structures
subjected to different earthquakes. One of the principles of the functional design of structures is the
use of the nonlinear dynamic capacity of load-bearing members in the design of structures.

The stiffness values of the structural elements decrease when a severe dynamic load is applied to
the structure. As a result, the stiffness matrix of the structure will decrease when the plastic joints are
formed in the members. Finally, it results in the redistribution of the forces among the members of the
structure. Finally, the structure experiences more deformation because of yielding in some elements,
and it leads to more significant energy absorption and damping.

In IDA, a structure is subjected to a mapping acceleration. The mapping acceleration is selected
from an earthquake. Then, the earthquake is scaled so that its maximum acceleration is equal to 1 g.
Hence, the structure is subjected to the scaled earthquake record. Next, the maximum acceleration is
added to the value of 0.2 g, and the structure is re-analyzed. This process continues until the maximum
acceleration of the earthquake is equal to 1 g. Finally, the IDA curve is plotted for the frame and
earthquake. The IDA shows the nonlinear dynamic response of the structure against the intensity of
the seismic excitation.

6. Modeling and Verification

A six-story steel frame is selected in this study (see Figure 2). The frame has already been studied
by several researchers (see [39,46]). A finite element software named OpenSees [47] is used to model
the frame. Additionally, the modified Ibarra–Krawinkler (IMK) deterioration model (see [54–56]) is
utilized to simulate the nonlinear behavior of the plastic joints. According to this constitutive model,
the zero-length elements are considered as concentrated plasticity at the beam-column connections.
The IMK model takes into account the cyclic response of the springs, which shows the nonlinear
behavior of the frame. Due to the presence of the gravitational loads, as well as the TMD mass,
the P-delta effect must be taken into account to consider the enhanced structural responses. For this
purpose, a virtual column with truss elements attached to the base of the structure is analyzed.
Additionally, all columns are considered to be fixed at the base of the structure. Since the rotational
springs and frame elements are connected in series, the stiffness of the rotational elements must be
modified in such a way that the stiffness value of elements and the actual stiffness of the frame are
the same. For this purpose, the stiffness of the rotational springs is considered to be n = 10 times
higher than the rotational stiffness of the elastic elements. The stiffness and also the moment of inertia
of the elastic element are multiplied into the (n + 1)/n. Finally, to match the nonlinear behavior of
the elements and the actual behavior of the frame, the strain coefficient of the plastic joint should be
modified according to Equation (14)—see [54–57].

αs,spring = αs,mem/(1 + n · (1− αs,mem)) (14)

where αs,mem shows the real strain coefficient of the frame, and αs,spring is the strain hardening coefficient
of the rotational spring. All beam elements are subjected to the uniformly distributed load equal to
21.89 kN/m. Additionally, the following relations (Equations (15)–(22)) are used to determine the
parameters required in the definition of the behavioral curve of the rotational springs [54–57]:

θp = 0.318
(

h
tw

)−0.55
(

b f
2tw

)−0.345(Lb
ry

)−0.023(
L
d

)0.09
(

c1
unit·d
533

)−0.33( c2
unit·Fy
355

)−0.13

d ≥ 21in
(15)

θpc = 5.63
(

h
tw

)−0.565
(

b f
2tw

)−0.8( c1
unit·d
533

)−0.28( c2
unit·Fy
355

)−0.43

d ≥ 21in
(16)
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∧ = 536
(

h
tw

)−1.26
(

b f
2tw

)−0.525(Lb
ry

)−0.13( c2
unit·Fy
355

)−0.291

d ≥ 21in
(17)

θpc = 7.5
(

h
tw

)−0.61
(

b f
2tw

)−0.71(Lb
ry

)−0.11( c1
unit·d
533

)−0.161( c2
unit·Fy
355

)−0.32

d < 21in
(18)

θp = 0.0865
(

h
tw

)−0.365
(

b f
2tw

)−0.14(
L
d

)0.34
(

c1
unit·d
533

)−0.721( c2
unit·Fy
355

)−0.23

d < 21in
(19)

∧ = 495
(

h
tw

)−1.34
(

b f
2tw

)−0.595( c2
unit·Fy
355

)−0.36

d < 21in
(20)

My = 1.17 ·Z · Fy (21)

θy =
(
1.17 ·Z · Fy/6EI

)
/L (22)

where h is the web depth; bf is the width flange of a beam; Lb is the distance from the column face to
the nearest lateral brace; d is the beam depth. Additionally, ry shows the radius of gyration about the
y-axis of the beam, and tw is the web thickness of the beam. The parameter Z is the plastic section
modulus, and Fy shows the expected yield strength. Moreover, the parameters c1

unit and c2
unit are the two

coefficients for unit conversion, while E depicts Young’s modulus, and I shows the moment of inertia.
The parameters θp, θpc, θy, exhibit pre-capping plastic rotation in monotonic loading, post-capping
plastic rotation, and yield rotation, respectively. The parameter L is the beam shear span (distance
from plastic hinge location to the point of inflection); Λ shows the capacity of the reference cumulative
rotation, and My is the effective yield moment [56].Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 27 
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Figure 2. Six-story steel moment-resisting frame.

The mass of all stories and also the values of the damping ratio for all modes are assumed to
be equal to m = 300,000 kg, and 3%, respectively. The Young’s modulus is 200 MPa. The maximum
allowable stroke for TMD is considered to be equal to 1000 mm. The values for the first six natural
frequencies of the six-story steel frame are calculated numerically and compared with the results
presented by Wong in [39] and Bilondi et al. in [46] to validate the model (see Table 1). It can be seen
from Table 1 that the differences are negligible. It confirms the accuracy of the modeling approach.
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Table 1. The benchmark Special Moment Resisting Frame’s (SMRF’s) natural frequencies of vibration.

Mode Number
Natural Periods of Vibration (rad/s)

Wong [39] Bilondi et al. [46] Present Study

1 5.15 5.07 5.07
2 14.28 13.96 14.22
3 25.13 25.13 25.13
4 34.91 34.91 34.91
5 44.88 44.88 44.88
6 57.12 57.12 57.12

Additionally, the time history of cumulative hysteresis energy, Eh, (see Equation (23)) for the
structure with (W) and without (W/O) TMD are compared with [46] (see Figure 3) subjected to the
Northridge earthquake (see Figure 4). The values of mass, stiffness, and damping ratio of the TMD
system are considered to be equal to 180,000 N·s2/m), 5,264,000 N/m, and 0.05 based on [46], respectively.
Figure 3 also shows the verification of the result obtained by this study and described in [46]:

Eh =

ne∑
k=1

Eh,k (23)

where Eh,k, k, and ne present the summation of work done by internal forces (e.g., moment, axial, shear),
an integer counter, and the number of elements, respectively.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 27 
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respectively. In this paper, gω  and gξ  are considered to be equal to 25.13 rad/s and 0.8 rad/s, 
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Figure 3. The cumulative hysteresis energy of the controlled and uncontrolled six-story steel
frame building.
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Figure 4. Acceleration time history of the Northridge 1994 earthquake.

In this paper, to optimize and analyze the structure dynamically, several real earthquakes and
one artificial earthquake are selected (see Table 2). Figure 5 shows the acceleration time history of the
artificial earthquake. The artificial earthquake is calculated using the Gaussian White Noise process
and based on the Kanai–Tajimi filter and power spectral density function (PSDF) [58–60]:
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SKanai−Tajimi(ω) = S0[
ω4

g+(2×ωg×ξg×ω)
2

(ω2−ω2
g)

2
+(2×ωg×ξg×ω)

2 ]

S0 =
0.03×ξg

π×ωg×(4×ξ
2
g+1)

(24)

where S0, ωg, and ξg are the intensity of the PSDF, frequency, and damping of the soil, respectively.
In this paper,ωg and ξg are considered to be equal to 25.13 rad/s and 0.8 rad/s, respectively, based on [61],
which indicates that the structure has been located on the stiff soil. The strong ground motion of the
artificial earthquake is big enough, and it can be used in the dynamic analysis of the structures based
on Uniform Building Code 97 [62].

It should be noted that Chandler’s classification has been considered in the selection of the
earthquake to cover all existing categories for the earthquakes (see [8,63]).Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 27 
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7. Results and Discussion

7.1. Optimization of the Parameters of the TMD System

In this paper, a six-story steel frame equipped with the TMD system is studied. One of the most
critical issues with the TMD systems is to determine their optimal parameters. Therefore, different
methods are used to optimize these parameters. Among them, the meta-heuristic algorithms are
commonly used due to the current uncertainty of the mathematical problem as well as different
scenarios used for the objective function. In general, all meta-heuristic algorithms start from a local
search and eventually reach the desired values. In this paper, a WCA (see Section 4) meta-heuristic
algorithm has been selected because of its ability to solve constraint problems. Therefore, the optimum
parameters for the TMD system are calculated by WCA to minimize the relative displacement of the
stories adapted to the LS performance level presented by FEMA-356 [48]. The optimum parameters of
the TMD system exposed to the near- and far-field earthquakes, as well as to the artificial earthquake,
have been presented in Table 3.

In fact, the water cycle algorithm has been used to optimize the parameters of the TMD system
subjected to the far-, near-field, and artificial earthquakes. Equations (2)–(13) are utilized to perform an
optimization problem using Matlab software. Additionally, Equation (1) is used to make an optimization
problem with an upper and lower boundary for the optimization variables. Table 3 shows the optimum
parameters of the TMD system subjected to different studied earthquakes.

Table 3. Optimum parameters achieved for TMD subjected to the drift ratio constraint.

Earthquake Ktmd (N/mm) Ctmd (N·s/mm) Mtmd (N·s2/mm)

FE1 404.94 770.18 180
FE2 543.76 304.28 180
FE3 490.1 942.89 180
NE1 421.67 1753.1 180
NE2 315.87 972.87 141
NE3 405.02 500.0 180
AE 405.47 935.66 180

7.2. The Structural Seismic Performance

The results for the structure controlled with the TMD system are shown in Table 4. As it is
observed from the table, the reduction in the base shear is less than 3.49% under different earthquakes,
even though the base shear has increased slightly during the earthquakes NE1 and AE. Hence, due to
the insignificant reduction in the base shear under different earthquakes, it might be concluded that
the optimization of the TMD parameters focused on reducing the drift will not have a significant effect
on the base shear of structures. Table 4 shows that the average acceleration of the structure equipped
with the TMD system has increased under the FE2 and AE earthquakes by about 5% but, for the rest
of earthquakes, the parameters of TMD optimized based on drift can reduce the acceleration of the
structure. Similar results have been obtained for the average displacement of the structure controlled
with the TMD system. In fact, for the FE2, NE3 earthquakes, the average displacement of the controlled
structure has increased while this parameter has decreased for other earthquakes. It should be noted
that the negative and positive signs in Table 4 show the decrease and increase in the average reduction,
respectively. In other words, the positive value shows that the parameter is reduced, and the negative
value shows that it is increased.

The maximum drift ratio of all stories and the roof displacement time history of the structure are
depicted in Figures 6 and 7 with and without the TMD system subjected to the near- and far-field
earthquakes. It is clear from the table that the maximum drift ratio of the stories has been reduced for
all earthquakes. It is also observed that the roof displacement has increased for some earthquakes
(e.g., FE2, and NE3). The controlled structure has been vibrated about a new plastic axis subjected to
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these earthquakes, and the non-elastic deformation of the structure has increased. This indicates that
the drift-optimized TMD system is unable to improve the seismic performance of the structure for
some earthquakes.

Table 4. The average reduction in the structural responses.

Earthquake Average Reduction (%)

Displacement Drift Acceleration Base Shear

FE1 5.78 5.02 8.10 2.61
FE2 −20.56 25.08 −5.25 0.81
FE3 11.14 6.53 10.06 2.75
NE1 14.81 10.96 3.15 −2.49
NE2 12.26 4.18 9.03 0.65
NE3 −31.34 42.92 19.69 3.49
AE 31.55 19.42 −5.23 −1.12Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 27 
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7.3. The Results of the Incremental Dynamic Analysis

In this section, the parameters of the TMD system subjected to the different earthquakes are
optimized based on minimizing the relative displacement criterion presented by FEMA-356 [48].
Next, the IDA analysis is used to investigate the dynamic performance of the six-story steel frame
equipped with the TMD system. The IDA analysis is calculated for the maximum base shear, maximum
acceleration, maximum displacement, and maximum drift ratio of the desired structure, and its curves
for near- and far-field earthquakes are plotted in Figures 8–11.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 27 
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7.3.1. The Results of IDA for the Drift Ratio

The drift ratio of the structures with and without the TMD system is shown in Figure 8. It can be
concluded that the maximum drift ratio of all stories has been decreased for the structure controlled
with the TMD system subjected to the FE1, NE1, and NE2 earthquakes. The drift ratio has increased
for the FE2 earthquake with PGA equal to 0.9 g and 1 g. Additionally, the maximum drift ratio of the
structure has increased under the FE3 earthquake in the range of 0.6g ≤ PGA ≤ 0.9g. A disturbance
has taken place for the NE3 earthquake in the range of 0.7g ≤ PGA ≤ 0.9g. Therefore, it might be
concluded that the TMD parameters should be evaluated for PGA values larger than 0.5 g in controlling
the drift ratio.
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7.3.2. The Results of IDA for the Maximum Displacement

The maximum displacements of the structures subjected to different earthquakes are presented in
Figure 9. This figure shows that the maximum displacement of the structure has increased subjected
to the FE3 earthquake in the range of 0.6g ≤ PGA ≤ 0.9g. Therefore, it could be concluded that the
optimized TMD based on the reduction of the drift ratio can reduce the maximum displacement of the
structure. Additionally, it has to be noticed that the TMD parameters should be evaluated for PGA
values larger than 0.5 g in controlling the maximum displacement.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 27 
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7.3.3. The Results of IDA for the Maximum Base Shear

Figure 10 shows the performance of the controlled and uncontrolled structures based on the base
shear. As it can be seen from the figure, for all the selected earthquakes and PGA values equal or less
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than 0.5 g, the maximum base shear of the controlled structure has decreased. Additionally, the base
shear has not changed for PGA larger than 0.5 g. Therefore, it could be concluded that the optimized
TMD system based on minimizing the drift ratio does not have any particular effect on the base shear
for PGA values larger than 0.5 g.
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7.3.4. The Results of IDA for the Maximum Acceleration of the Structure

A comparison between the results for the maximum acceleration is shown in Figure 11. It can
be concluded that the performance of the structure equipped with the optimized TMD system has
been improved in minimizing the maximum acceleration of the structure subjected to the FE1, NE1,
and NE2 earthquakes. The maximum acceleration of the structure has increased in the range of
0.8g ≤ PGA ≤ 1.0g under the FE2 earthquake. Besides, an increase in the acceleration response has
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occurred for the FE3 earthquake when PGA is smaller than 0.5 g. Therefore, the performance of
the controlled structure subjected to the NE3 earthquake is different in comparison to the structure
subjected to other earthquakes. An increase in the maximum acceleration can be seen for the PGA
equal to 0.9 g, while a sharp decrease has occurred for the PGA equal to 1.0 g. Therefore, it could be
concluded again that the TMD parameters should be evaluated for the PGA values larger than 0.5 g in
controlling the maximum acceleration.
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7.4. The Results for the Artificial Earthquake

7.4.1. Seismic Performance of the Controlled and Uncontrolled Structures Exposed to the
Artificial Earthquake

Figure 12 presents the responses of the controlled and uncontrolled structures (i.e., drift ratio,
maximum displacement, maximum base shear, and the maximum acceleration) exposed to the artificial
earthquake. The figure indicates that the TMD system optimized based on the drift ratio can reduce
all structural responses, except for the maximum acceleration of the structure. The optimized TMD
system has also controlled the maximum acceleration of the fifth and sixth stories, but it has increased
this value for the lower stories.
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7.4.2. IDA for the Dynamic Performance of the Controlled and Uncontrolled Structures Exposed to the
Artificial Earthquake

The results of IDA for the structure subjected to artificial earthquakes are shown in Figure 13.
The performance of the controlled structure shows an increase in the maximum acceleration values in
the range of 0.7g ≤ PGA ≤ 0.8g. The maximum acceleration of the structure has decreased for other
PGA values. Moreover, the value of base shear has decreased for PGA smaller than 0.5 g and remained
constant for PGA larger than 0.5 g. Additionally, the results show that the performance of the structure
has improved for the maximum displacement and drift ratio.
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7.4.3. Investigation of the Performance Level of the Structure Subjected to the Artificial Earthquake

The performance levels of the structure subjected to the artificial earthquake, based on the
FEMA-356 [48], are presented in Figure 14. Based on FEMA-356, the maximum drift ratios of the
controlled and uncontrolled structures have been categorized in the figure as:

1. Immediate Occupancy ≤ 0.7%;
2. 0.7% ≤ Life Safety ≤ 2.5%;
3. 2.5% ≤ Collapse Prevention ≤ 5%.

As it can be observed from Figure 14, the six-story steel moment-resisting frame without TMD
system has entered into the collapse prevention level for PGA larger than 0.8 g, but the performance
level of the structure controlled with the TMD system has remained in the life safety range. Therefore,
results indicate that the optimization of the TMD parameters to minimize the maximum drift ratio
smaller than 2.5% substantially improve the seismic performance of the structure subjected to the
artificial earthquake. It leads to a delay in the fracture of the bending connections (see FEMA-356 [48]),
and it can help the beams and columns to sustain distortion.
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Besides, to evaluate the capability of the method presented in this paper, the six-story steel
moment-resisting frame structure is considered. For this purpose, two other objective functions (see
Equation (25)) are considered, and the optimal values of the TMD system are computed under the
artificial earthquake. Table 5 shows the optimal values of the TMD system for different objective
functions. It should be noted that the constraints and upper and lower bounds are considered as in
Equation (1) and Ref. [46].

Find : Md, Kd, Cd

Minimize : max
(

max|dri f ti|with TMD
max|dri f ti|without TMD

)
× 100, i = 1, 2, 3, . . . , n (O .F 1)

Minimize : max
(

max
∣∣∣Accroo f

∣∣∣
with TMD

max
∣∣∣Accroo f

∣∣∣
without TMD

)
× 100, i = 1, 2, 3, . . . , n (O .F 2) (25)

Minimize : max
(

max
∣∣∣Disproo f

∣∣∣
with TMD

max
∣∣∣Disproo f

∣∣∣
without TMD

)
× 100, i = 1, 2, 3, . . . , n (O .F 3)

where O.F., Accroof, and Disproof show the objective function, roof acceleration, and displacement,
respectively. The last-second objective functions are usually used by researchers to optimize the
parameters of vibration control systems [18,34,37,40]. Additionally, the computational workload, in the
form of required running time, for each objective function is presented in Table 5. The calculations
have been run on a computer with a 64-bit operating system and CPU Intel(R) Core(TM) i3-4170 CPU
3.70 GHz with 4 GB RAM.

Table 5. Optimum parameters and required running time achieved for the TMD subjected the artificial
earthquake for different objective functions.

O.F Ktmd (N/mm) Ctmd (N·s/mm) Mtmd (N·s2/mm)
Required Running Time

(s)

O.F 1 405.47 935.66 180 997.854
O.F. 2 211.021 1130.6 122.87 865.528
O.F. 3 250.025 749.317 163.156 1114.548
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It can be seen from Table 5 that the required running time for O.F. 2 is shorter than for two other
objective functions. Moreover, the computational workload of the proposed objective function (O.F 1)
is between those of the two traditional objective functions (O.F. 2 and O.F. 3).

Table 6 presents the maximum responses of the controlled and uncontrolled structures subjected
to the artificial earthquake for different objective functions. The maximum roof displacement,
roof acceleration, and drift ratio for the uncontrolled structures are 0.642 m, 18.06 m/s2, and 4.09%,
respectively. Table 6 shows that O.F 1 has the best performance between all studied objective functions
in reducing the maximum responses of the structure and therefore improving the seismic behavior of
the structures.

Table 6. Maximum responses of the controlled structure subjected to the artificial earthquake for
different objective functions.

Objective
Function

Max.
Roof
Disp.
(m)

Max.
Roof
Acc.

(m/s2)

Max.
Drift Ratio

(%)

O.F 1 0.504 17.74 2.45

O.F. 2 0.509 17.52 2.82

O.F. 3 0.515 17.75 2.61

Additionally, to evaluate the capability of the method presented in this paper, the 10-story steel
moment-resisting frame structure is considered here that has been studied by Wong and Johnson [64].
The mass of all stories and the damping ratio for all 10 modes are assumed to be equal to m = 218,900 kg,
and 3%, respectively [64]. The cross-sections and lengths for the beams and columns of the structure
are shown in Figure 15. The material has the yield stress equal to 248.2 MPa. Additionally, a gravity
uniformly distributed load, equal to 21.89 kN/m, is applied to all beams. The modulus of elasticity is
considered to be equal to 200 GPa. All beam-to-column connections are considered to be rigid [64].
The first natural frequency of the 10-story steel frame is 4.19 rad/s, which is equal to the results
presented by Wong and Johnson in [64]. It can be seen that the differences are negligible, therefore,
it confirms the accuracy of the modeling approach. Then, the optimum parameters of the TMD system
are computed using WCA for the first objective function (O.F 1) subjected to the artificial earthquake,
a far- and near-field earthquake. The optimal values of the TMD system are shown in Table 7.

Table 7. Optimum parameters achieved for the TMD system subjected the far-, near- and
artificial earthquakes.

Earthquake Ktmd (N/mm) Ctmd (N·s/mm) Mtmd (N·s2/mm)

FFE3 263.34 130.87 91.08
NE2 170.78 89.06 59.28
AE 84.21 2000 131.59

Finally, for the controlled structure using the optimum parameters presented in Table 7, the IDA
analysis is run. Figures 16–18 show the IDA curves for the responses of the controlled structure in
comparison with the uncontrolled one.

Figure 16 shows that the performance of the controlled structure shows a decrease in the maximum
acceleration, maximum displacement, and drift ratio for all regions of PGA; but, the maximum base
shear has been increased in the range of 0.5g ≤ PGA ≤ 0.6g. It can also be seen from Figure 17 that
the performance of the controlled structure shows a decrease in the maximum displacement in the
range of PGA ≤ 0.6g. The maximum acceleration of the structure has decreased for all values of
PGA, except for 0.8 g, and 1 g. Moreover, the value of base shear has decreased for PGA smaller
than 0.9 g. Additionally, the results show that the performance of the structure has improved for the
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maximum drift ratio for the PGA smaller than 0.5 g. Figure 18 indicates that the performance of the
controlled structure shows a decrease in all regions of PGA for the maximum drift ratio, acceleration,
and base shear. The maximum displacement of the structure has decreased for all values of PGA
in the range of PGA ≤ 0.8g. Therefore, the results show that the performance of the structure has
improved significantly.Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 27 
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Figure 17. Results of IDA analysis for the frame subjected to a far-field earthquake
(Superstition earthquake).



Appl. Sci. 2020, 10, 3403 23 of 27Appl. Sci. 2020, 10, x FOR PEER REVIEW 24 of 27 

Figure 18. Results of IDA analysis for the frame subjected to the artificial earthquake. 

8. Conclusions 

The performance-based design of the steel structure controlled with the TMD system has been 
investigated in this paper. All studied earthquakes have been scaled in such a way that all have had 
the PGA value equal to 1 g. Then, the optimum parameters of the TMD system have been calculated 
using a meta-heuristic algorithm (i.e., WCA) focused on minimizing the maximum drift ratio of the 
stories based on the FEMA-356 subjected to the scaled earthquakes. For this purpose, two different 
frame buildings (i.e., a six-story and a 10-story moment-resisting frame) have been considered and 
modeled with the OpenSees software. The optimum parameters of the TMD system have been 
computed subjected to the scaled earthquakes. Then, PGA has been changed in the range of 0.1 g to 
1 g in IDA, and the responses of the controlled structure have been examined. The results of the study 
show that the base shear decreases for the PGA value smaller than 0.5 g under all earthquakes 
studied. At the same time, for all records with PGA larger than 0.5 g, the TMD system does not make 
any considerable reduction in the base shear value of the controlled structure. This sentence is correct 
for the maximum drift ratio. Finally, the responses of controlled structure (i.e., the maximum 
acceleration and displacement) have almost decreased for all regions of PGA. 

Moreover, the results of the investigation show that optimizing the TMD parameters, based on 
minimizing the drift ratio, decreases the structural displacement, and improves the seismic behavior 
of the structure based on FEMA-356. The results also indicate that the response of the controlled and 
uncontrolled structure (e.g., drift ratio, maximum displacement, maximum base shear) is reduced 
during the artificial earthquake. Additionally, the optimization of the TMD parameters, to keep the 
maximum drift ratio smaller than 2.5%, improves the seismic performance of the structure subjected 
to the artificial earthquake. It leads to a delay in the fracture of the bending connections, and it can 
help the beams and columns to sustain distortion. 

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PG

A 
(g

)

 Maximum displacement (mm)

 

 

W/o TMD
With TMD

AE

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum drift ratio (%)

PG
A 

(g
)

 

 

W/o TMD
With TMD

AE

0 5 10 15 20 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PG
A 

(g
)

 Maximum acceleration (m/s2)

 

 

W/o TMD
With TMD

AE

0 2 4 6 8 10
x 106

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum base shear (N)

PG
A 

(g
)

 

 

W/o TMD
With TMD AE

Figure 18. Results of IDA analysis for the frame subjected to the artificial earthquake.

8. Conclusions

The performance-based design of the steel structure controlled with the TMD system has been
investigated in this paper. All studied earthquakes have been scaled in such a way that all have had the
PGA value equal to 1 g. Then, the optimum parameters of the TMD system have been calculated using
a meta-heuristic algorithm (i.e., WCA) focused on minimizing the maximum drift ratio of the stories
based on the FEMA-356 subjected to the scaled earthquakes. For this purpose, two different frame
buildings (i.e., a six-story and a 10-story moment-resisting frame) have been considered and modeled
with the OpenSees software. The optimum parameters of the TMD system have been computed
subjected to the scaled earthquakes. Then, PGA has been changed in the range of 0.1 g to 1 g in IDA,
and the responses of the controlled structure have been examined. The results of the study show
that the base shear decreases for the PGA value smaller than 0.5 g under all earthquakes studied.
At the same time, for all records with PGA larger than 0.5 g, the TMD system does not make any
considerable reduction in the base shear value of the controlled structure. This sentence is correct for
the maximum drift ratio. Finally, the responses of controlled structure (i.e., the maximum acceleration
and displacement) have almost decreased for all regions of PGA.

Moreover, the results of the investigation show that optimizing the TMD parameters, based on
minimizing the drift ratio, decreases the structural displacement, and improves the seismic behavior of
the structure based on FEMA-356. The results also indicate that the response of the controlled and
uncontrolled structure (e.g., drift ratio, maximum displacement, maximum base shear) is reduced
during the artificial earthquake. Additionally, the optimization of the TMD parameters, to keep the
maximum drift ratio smaller than 2.5%, improves the seismic performance of the structure subjected to
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the artificial earthquake. It leads to a delay in the fracture of the bending connections, and it can help
the beams and columns to sustain distortion.

Finally, a comparison between the traditional objective functions and the proposed objective
function (i.e., the maximum drift ratio of less than 2.5%) has been presented. The results show that
the optimum parameters of the TMD system based on the proposed objective function have a better
performance in reducing the structural responses in comparison with the other previously used
objective functions.
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