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Abstract: The pipeline system in the oil and gas industry is the heart for transportation of crude
and refined petroleum. Nevertheless, continuous exposure of the pipeline surfaces to impurities
and sources of corrosion such as sulfur and chromate is totally unavoidable. Vast employment
of commercial corrosion inhibitors to minimize the corrosion is being restrained due to toxicity
towards the environment. The emergence of “green” chemistry has led to the use of plant extracts
and fruit wastes which have proven to be good corrosion inhibitors. This paper aims to provide
insight into carrying out further investigation under this research theme for accurate inhibition
efficiency measurement.

Keywords: corrosion; mechanism of corrosion; sources of corrosion; commercial corrosion inhibitor;
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1. Introduction

In oil and gas industries, the corrosion issue has always been of great importance,
with consequences similar result to those of natural disaster. Corrosion normally occurs in oil
and gas pipelines. Since the pipelines play the role of transporting oil and gas from the wellheads
to the processing facilities, they are exposed to the continuous threat of corrosion, from the date of
commissioning up to decommissioning or abandonment. According to [1], the rough estimation of the
aggregate yearly cost of corrosion is $1.372 billion, which is the total of surface pipeline and facility
costs ($589 million), down-hole tubing costs ($463 million), as well as capital expenses ($320 million).

Corrosion inhibitors are one of the mediums applied to minimize corrosion in petroleum industries.
For an optimum inhibition to be achieved, the inhibitors must be added above a certain minimum
concentration. There are plenty of techniques, e.g., cathodic protection [2,3], organic coatings [4–6],
and application of first-rate corrosion-resistant alloys [7], that can be implemented to fight against
corrosion, yet film-forming inhibitors are still known to be the unrivalled method of defense for
mild steel in an acidic environment [8,9]. The film-forming inhibitors are used in industries to create
a molecular layer right on the surface of the steel and aliphatic tail as a second layer in hydrocarbon to
prevent the water from contacting the steel surface and causing corrosion [10].

Recently, the rise of the “green” chemistry concept in the fields of science, technology and
engineering [11,12] is restraining the application of commercial corrosion inhibitors by implementing
certain theories or ideas to reduce the contamination [13] from being discharged into the environment
as well as coming up with the eco-friendly chemicals [14–16]. As a movement to support this concept,
the use of green-based corrosion inhibitors like plant extracts [17], chemical drugs [18], and ionic
liquids [19,20] are being practiced. These green inhibitors are organic compounds that function through
the adsorption on the surface of the metal to prevent the occurrence of corrosion. Moreover, fruit-based
corrosion inhibitors are also one of the natural elements utilized due to their richness in vitamins,
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minerals, and phenolic compounds. Nevertheless, the corrosion inhibitors adhere to certain factors like
concentration, rate of dispersion, velocity, temperature, film persistency, pH, flow regime, and fluid
composition, as well as the presence of instabilities able to perturbate the flow in minimizing corrosion.

This review paper assesses the trilateral view of corrosion: mechanism of corrosion, sources of
corrosion, commercial and green-based corrosion inhibitors. Hence, this paper is anticipated to serve as
the foundation for future research on green corrosion inhibitors. Note that comprehensive discussions
or analysis regarding the current state and the future of green-based inhibitors will not be covered.

2. Corrosion

Corrosion is observed as one of the main reasons for the failures of oil and gas infrastructure.
The existence of corrosion is the consequence of chemicals such as naphthenic acid (NA) reacting with
iron particles or developing a surface film; this occurs with sulfur particles (S) in the hydrocarbon
industries. As the foremost drivers of corrosion, sulfur and naphthenic acid exist as organic acids
in various crude oils. However, the rate of corrosion is also dependent on the quality of the crude
oil, its acidic constituents, and the environment of the transport [21]. It is crucial to study the nature
of these acids and the amount of sulfur and naphthenic acid components present in the crude oil to
understand the performance and the root of corrosion. Despite the defects in oil and gas infrastructure
(e.g., pipelines), the nature of crude oil itself promotes corrosion due to its harmful impurities like
naphthenic acid and sulfur [22].

Pipelines, as one of the common tools of the oil and gas industries, have seen an increased
demand in infrastructure due to the augmentation of the Canadian oil and gas industry to create
improved operational and management conditions. It is vital to maintain the integrity of this pipeline
infrastructure from being affected by the environment in ways that will have consequences of economic
loss [23,24]. Moreover, internal corrosion of the pipelines turns out to be a key threat to the initial stage
of production [25]. In accordance with this, more than 9000 failures due to internal corrosion were
reported from 1990 to 2012 [26], which accounted for 54.8% of all spills. The United States’ (US) oil and
gas companies disburse 1.052 billion dollars annually to prevent internal corrosion [25]. Considering
these issues, there is an urge to come up with an effective corrosion prevention approach within the
given budget of the companies.

2.1. Mechanism of Corrosion

Anodes and cathodes are the two cells of corrosion generally used to demonstrate the transfer of
charges between the iron and electrolyte as well as within the iron itself. The presence of charged ions
in the electrolyte causes the electrolyte to transform into an electrically conductive solution. During
the corrosion process, the metal ions shift from the active site (anode) into the solution and pass the
electrons from the metal at the lower active site (cathode) to an acceptor. Electron acceptors like oxygen,
oxidizing agents, or hydrogen ions are required for the cathodic process to take place. Equation (1)
represents the general chemical corrosion reaction in the presence of oxygen in moist air. Figure 1
signifies the basic electrochemical cell built using the anode and cathode cells partially immersed into
an electrolyte.

The anode cell experiences rusting during the oxidation process, whereas the cathode cell reduces
but does not rust. In the production of oil and gas, the Fe2+ ions are produced at the anode when the
iron from steel is driven into the solution. These ions act in response with oxygen, hydrogen sulfide,
or carbon dioxide to form decay yields as presented below. The additional electrons change from the
anode to the cathode where hydroxyl ions are produced by reducing water. The hydrogen ions are
broken into hydrogen gas by the electrons if the oxygen does not exist at the cathode. The anodic and
cathodic positions are regions on the outer surface of the metal that vary in electric potential. Due to
the occurrence of salts, the electrolyte is normally transformed from water into being conductive.
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The chemical reaction of corrosion is given as follows:

4Fe + 3O2 = 2Fe2O3 (1)
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2.2. Sources of Corrosion

Mostly, corrosion is thought to occur in the water phase, except when the water is restricted in
the middle of the stream or surrounded by oil, in which there will be no occurrence of corrosion.
The major sources of corrosion in the oil industries are hydrochloric acid and its aqueous solutions,
hydrogen sulfide, corrosion of steel at hydrocarbon–electrolyte interfaces and in emulsified two-phase
environments, oxygen, naphthenic acids, carbon dioxide, as well as water cut. The sources and
respective roles are described below:

a. Hydrogen Sulfide

Hydrogen sulfide is known to be very harmful in the corrosion of metals or alloys, regardless
of its application in oil and gas. In a matter of fact, hydrogen sulfide can be the root of sulfide stress
corrosion cracking (SSCC) failure in pipelines. However, hydrogen sulfide is only corrosive when it is
dissolved in water, where its solubility is relatively higher than that of carbon dioxide and oxygen.
Moreover, hydrogen sulfide can cause danger in sour oil and gas fields due to its abundance in oil
and production processes. The issues associated with the corrosion by the hydrogen sulfide acid are
becoming more significant, as the sulfur availability in crude oil is growing proportionally with the
reduction of existing sweet oil [28].

Iron sulfide and hydrogen are the products of the corrosion by sulfide. The hydrogen crack is
created by the internal stresses that are caused by the molecular hydrogen. The outcomes of hydrogen
cracking are unexpected and disastrous most of the time, since there are not any visible signs shown
during the early phase [29]. Therefore, it is vital to select the optimal material for well completions,
particularly in fields containing sour oil and gas, as the presence of hydrogen sulfide and tensile
strength can possibly be the root of sulfide stress cracking (SSC) that might result in equipment loss.

b. Chloride

Chloride, which can be found in the mineralized water at the well bottom is known as another
vital substance that causes severe corrosion at high temperatures. This can lead to failure that results
from intergranular corrosion and chloride stress corrosion cracking (CSCC). Both the existence of
sulfide and chloride have been detected in deep sour gas production that consists mainly of methane
without liquid hydrocarbons under high pressure [30].

c. Carbon dioxide

Normally, the corrosion that results from carbon dioxide is labelled as “sweet corrosion”.
The carbon dioxide that is produced along with oil and gas dissolves in water to procedure carbonic
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acid, ensuing a decrease in pH. Moreover, using an injection method for enhanced oil recovery can
lead to further corrosion that is caused by CO2. This will eventually lead to downhole and surface
equipment corrosion. One of the characteristics of CO2-based corrosion is pitting, which is imaged as
deep, sharp-edged pits.

In the oil and gas industries, one of the most acidic surroundings found is the aqueous system
that has higher concentrations of carbon dioxide. The partial pressure, temperature, speed, and pH are
the examples of factors that contribute to corrosion in the existence of carbon dioxide [31,32].

d. Oxygen

Oxygen plays a vital role as the corrosive agent in the secondary recovery by water flooding.
The corrosion caused by the dissolved oxygen causes pits in the drill pipe, where propagated fatigue
cracks occur due to the stress. Additionally, oxygen can be detrimental to water injection equipment
like pumps, piping, and water storage tanks, and the byproduct of corrosion might plug the formation.

Figure 2 shows a comparison of the rusting rates of oxygen, hydrogen sulfide, and carbon
dioxide on carbon steel in a water solution containing 2 to 5 g/L sodium chloride at the temperature
of 25 ◦C. From this, it can be derived that oxygen ought to be the source for higher rusting rates
at much lesser concentrations than carbon dioxide and hydrogen sulfide. It should be considered
that the rusting rates in pits can be a few times larger and that the carbon dioxide rusting rate is
inconsistent at low temperatures. Mixtures of oxygen with carbon dioxide or hydrogen sulfide prompt
immediate-corrosion environments with smaller oxygen concentrations such as 0.1 ppm [33].
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Figure 2. Comparison of rusting rates of three gases [27].

a. Bacteria

Microorganism activity is the root of bacterial corrosion, which can be damaging, especially in
enhanced recovery processes. Sulphate-reducing and iron bacteria are known to be the most common
bacteria that promote corrosion. Microbiologically-influenced corrosion (MIC) was thoroughly
examined from the industrial practice perspective, in order to attain profitable solutions in observing
large water injection systems [34].

b. Water Cut

The presence of oil is considered advantageous as it employs a kind of inhibition effect by forming
a film on a steel surface to prevent water wetting. On the other hand, gas and condensates do not
employ any useful effect due to its non-inhibition characteristic. As for the vertical tubing, an oil film
produced on the surface of the steel is steady up to about 20%–40% water cuts. Using the de Waard and
Milliams method, the corrosion rate for higher water quantities can be predicted, as the steel can be
considered water-wet. Besides, the volume of water is not a significant factor for the horizontal pipes.
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Commonly, water is heavier compared to oil, gas and condensed products, thus it may segregate
on the lowest surfaces at the 6 o’clock position for stratified flow. As for this case, the corrosion is
anticipated to occur only on the water-wet surfaces. For the stratified flow, corrosion is probable to
happen in the highest point of the line because of the condensation of water droplets from the wet gas.
In this case, the inhibition effect is said to be poor and the corrosion rate in the highest point of the line
can be expected to be 10% of the projected rate in a completely immersed condition, regardless of the
carbon dioxide content.

c. Strong Acids

In the oil and gas industries, the acid stimulation method is widely applied to enhance production
by improving the formation permeability. The commonly used fluids for this method are hydrofluoric
acid and hydrochloric or acetic acids for sandstone and carbonates, respectively, which can cause
corrosion of production tubing, downhole tools and casing in the absence of corrosion inhibitors [27].

d. Brines

Usually, brines are utilized during the completion stage of oil and gas wells to aid the final
operations before the fluid production begins. This is because brines consist of zinc chlorides or
calcium bromides and have the capability to regulate the well without damaging the formation.
However, they can be harmful to the downhole equipment of the well, since there is the presence of
dissolved oxygen.

3. Commercial Corrosion Inhibitors

As problems related to the corrosion issue have been skyrocketing, especially in the oil and
gas industries, corrosion scientists have developed various techniques to mitigate this issue, such as
corrosion inhibitors [35], cathodic protection [36], and paint-based corrosion inhibitors [37]. Most of
the corrosion inhibitors utilized are mainly organic and inorganic composites, where organic inhibitors
reduce corrosion through adsorption techniques, while the inorganic ones prevent corrosion by reacting
with the anodic or cathodic parts of the process [38,39].

Organic compounds that consist of nitrogen, oxygen, and/or sulfur are considered as competent
industrial corrosion inhibitors [40]. These inhibitors inherit the ability to form a protective layer
between the metal surface and corrosive environment [41] through the adsorption process to delay
the metal disintegration [42–44]. For instance, azole and pyrimidine byproducts are the most-used
inhibitors to minimize the corrosion of metals and alloys by injecting the inhibitors into the system
at low treatment concentrations [45,46]. In addition, organic inhibitors have the tendency to work
productively in all acid concentrations and do not poison the refinery catalysts.

Nevertheless, the disposal of contaminated industrial corrosion inhibitors results in damaging
effects on the ecosystem; thus, the use of green and environmental-friendly inhibitors is on the
rise [47,48]. To illustrate, the benzotriazoles that are usually utilized to minimize the corrosion of
heat exchangers were proven to poison marine creatures, even at concentrations as low as 3 ppm [49].
However, organic inhibitors chemically reduce as time passes in the presence of acid yet cannot
withstand at temperatures above 95 ◦C; furthermore, their use is expensive.

Next, inorganic corrosion inhibitors contain the salts of zinc, copper, nickel, arsenic, and additional
metals, with the arsenic compounds being the ones that are most commonly used. When these arsenic
compounds are mixed with the corrosive solution, they scrape at the cathode cell of the unprotected
metal surfaces. The plating reduces the percentage of hydrogen ion interchange due to the formation
of iron sulfide amid the steel and acids that act as an obstacle. The reaction of acid with iron sulfide is
known as a dynamic process. There are advantages as well as disadvantages when using the inorganic
inhibitors. The advantages are they work excellently at high temperatures for longer periods and are
less expensive than organic inhibitors. As for the shortcomings, inorganic inhibitors are more likely
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to lose their grip in acid solutions that are stronger than 17% hydrochloric acid, tougher to combine,
and might release toxic arsine gas as the product of corrosion.

Although these inhibitors are potent at high concentrations, they are unarguably damaging to the
environment. In conjunction with this problem, new inhibitors concentrating on polymers [50–52] and
plant-based [53,54] substances were studied. However, polymers were defined as moderate inhibitors,
needing secondary refinement that will only result in higher cost [55,56]. Thus, extensive research is
being undertaken on plant parts, as they are easily accessible in an inexpensive way.

4. Green-Based Corrosion Inhibitors

Green-based inhibitors that are nontoxic in nature, such as plant extracts, have higher demand
compared to commercial inhibitors [57–59]. This is because plant extracts are observed to be green
and sustainable materials due to their natural and biological properties and will be able to inhibit
the metals and alloys from corroding [60]. The leaf, out of all parts of the plant, has the utmost
preference for its abundance of phytochemicals (active components) produced through synthesis,
that act similarly to commercial inhibitors. It is also vital to acknowledge that the extract of other
parts of a plant such as root, bark, flower, fruit, wood, seed and peel have contributed to the inhibition
efficiency [61–63]. Furthermore, the phytochemical synthesis uses carbon dioxide, which is known
as the highly poisonous greenhouse gas, to undergo the photosynthesis, contributing to the green
chemistry theory as well.

The green corrosion inhibitors function when used in a very low concentration to inhibit the metal
surface from a corrosive medium. The rate of corrosion by adsorption process on the metal surface
is affected by plant extracts via influencing either the anodic or cathodic reaction kinetics and then
affecting the rate of diffusion of aggressive ions from interacting with the metal surface. Consecutively,
a layer of film can be established by increasing the electrical resistance of the metal surface [64].
Besides, green corrosion inhibitors are well known for their adsorptive properties (site-blocking
elements), enabling the active molecules from the plant extract to adsorb on exposed metal surfaces [65].
Equation (2) shows the working mechanism of the inhibitor molecules in the form of neutral molecules
adsorbing on the metal surface instead of the hydrogen ions [66]:

Inhibitor + nHads→ Inhibitorads + H2 (2)

where nHads is adsorbed hydrogen ions sourced from water and Inhibitorads is adsorbed neutral
molecules sourced from plant extract.

In conjunction with this, there are a few limitations that must be examined during the preparation
of plant extracts. Normally, the solvents used for extraction will diffuse into plant tissue, solubilize,
and extract the available phytochemicals [67,68]. Hence, it is essential to select the right solvent for
better results. One of the solvents that is readily available, cheap, and safe is water [69,70], yet ethanol
and methanol are still in demand for selective plant extracts [71,72]. Next, the temperature creates
a noticeable result when it comes to extract preparation. The solubility of the phytochemicals will
be hindered at relatively low temperature, whereas at high temperatures, the phytochemicals result
in decomposition. The recommended temperature for an ideal extraction falls between the range
of 60–80 ◦C [73,74]. As for the drying temperature, oven drying is advisable, since drying at room
temperature can take up to months to accomplish.

Green-based corrosion inhibitors can be divided into two classes: organic and inorganic [75–77].
The organic class of green-based corrosion inhibitors consist of synthetic substances that are nontoxic for
the environment. Flavonoids, alkaloids, and byproducts of plants are example of organic inhibitors [78].
The inorganic class of inhibitors are vastly utilized in aqueous systems due to their high productivity [79].
The chromates exhibit a toxic nature in which the employment of this inorganic inhibitor for industrial
use is limited. Concerning this issue, lanthanide salts were studied as an eco-friendly inhibitor
substitute [80].
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Correspondingly, the fruit wastes, e.g., seeds and peels, have gained noticeable attention for
their natural antioxidant properties. For instance, mango, orange, passionfruit, and cashew peels are
known to contain ample amounts of antioxidants like polyphenols, carotenoids, and vitamins C and
E. Emphasizing on the phenolic compounds, specifically flavonoids, the efficiency of the antioxidant
activity depends on their structural characteristics like figure and location of phenolic hydroxyls. On the
other hand, mango, orange and passion fruits are said to have ample sources of pectin, which belongs
to the polysaccharide group [81].

Recently, a study on banana peel extracts was conducted for mild steel in an acidic environment,
and another study was performed simultaneously, utilizing mango and orange peel to combat corrosion
of mild steel, aluminum, zinc, and copper in acid solutions (HCl and H2SO4) [82]. In conjunction
with this, it can be derived that the industrial waste and aqueous fruit peel extracts can be used as
green-based corrosion inhibitors, as they fulfil the criteria of green chemistry. Tables 1 and 2 show the
gap analysis from the previous case studies of inhibitors from plant- and fruit-based origin from 2010
to 2019. Remarks listed under the gap column give insight towards carrying out further investigation
under this research theme for accurate inhibition efficiency measurement.

Table 1. Summary of research gaps for plant-based green corrosion inhibitors from 2010 to 2019.
-Note: EIS-Electrochemical impedance spectroscopy; IE- inhibition efficiency; FTIR- fourier transformed
infrared spectroscopy

Details Gap Reference/Year

(a) Borage flower
(b) Experiments: Weight loss, EIS, surface analysis
(c) Parameters: Concentration (200, 400, 600, 800 ppm) and
immersion time (0.5, 2.5, 5.0 h)
(d) Results: 800 ppm; 2.5 h; 91% IE

Limitation: Constant
temperature (25 ◦C)
Remark: Vary the temperature
from 25 up to 90 ◦

[83]/2019

(a) Rice straw extract
(b) Experiments: Weight loss, surface and morphology analysis, and
electrochemical test
(c) Parameters: Immersion time (7, 14, 21, 28, 35, 42 days) at room
temperature (25 ◦C)
(d) Results: Immersion time of 7 to 14 days and 85% IE

Limitation: Constant
temperature (25 ◦C) used
throughout 42 days
Remark: Vary the temperature
from 25 up to 90 ◦C

[84]/2019

(a) Glycyrrhiza glabra (Pea and bean family) leaves
(b) Experiments: EIS, surface characterization
(c) Parameters: Concentration of inhibitor (200, 400, 600, 800 ppm)
(d) Results: 800 ppm gave 88% IE

Limitation:Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[85]/2018

(a) Lemon balm extracts
(b) Experiments: Characterization technique (LBE, EIS, surface
analysis)
(c) Parameters: Inhibitor concentration (200, 400, 600, 800 ppm) and
immersion time (0.5, 2, 4, 6, 12, 24 h)
(d) Result: 800 ppm with immersion time of 24 h and 94.6% IE

Limitation: Constant
temperature (25 ◦C)
Remark: Vary the temperature
from 25 up to 90 ◦C

[86]/2018

(a) Ficus religiose (leaf, bodhi tree)
(b) Experiments: EIS, gravimetric measurements, quantum chemical
study, SEM
(c) Parameters: Temperature (25, 35, 45 ◦C), inhibitor concentration
(100–500 ppm)
(d) Results: 50 ppm gave 88.29% IE at 25 ◦C

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[87]/2018

(a) Myristica fragrans (nutmeg fruit)
(b) Experiments: Weight loss, UV-vis spectroscopy, FT-IR
spectroscopy, NMR analysis, quantum chemical studies, SEM
(c) Parameter: Inhibitor concentration (100, 200, 300, 400, 500 ppm)
D) Results: 500 ppm gave 87.81% IE

Limitation: Constant
temperature (25 ◦C) and
immersion time (24 h)
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[88]/2018
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Table 1. Cont.

Details Gap Reference/Year

(a) Sunflower seed hull (flower)
(b) Experiments: FT-IR, UV-vis
(c) Parameters: Inhibitor concentration (50, 100, 200, 300, 400 ppm)
and temperatures (25, 40, 50, 60 ◦C)
(d) Result: 400 ppm gave 98.46% IE at 60 ◦C

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[89]/2018

(a) Gongronema latifolium (utazi, herb)
(b) Experiments: Gasometric method
(c) Parameters: Inhibitor concentration (50, 100, 250, 500, 1000ppm)
and temperature (30, 40, 50, 60 ◦C)
(d) Results
i. EEGL: 1000 ppm gave 93.7% IE at 30 ◦C
ii. SEGL: 1000 ppm gave 96.5% IE at 50 ◦C

Limitation: Immersion time
was not stated in this article,
and only one major
experiment was carried out
Remark:
Immersion time should be
tested from 3 up to 30 days

[90]/2018

(a) Zizyphus lotuse (lotus)
(b) Active ingredients: Vitamin C (ascorbic acid), linoleic acid,
oleanolic acid, flavonoid compound, triterpenoic acid, jujuboside
(c) Experiments: Electrochemical methods, potentiodynamic
polarization, SEM and EDS analysis
(d) Parameters: Concentration of inhibitors (0.05–2 g L−1) and
Temperatures (25, 35, 45, 55 ◦C)
(e) Results:
i. Concentration effect: 1000 ppm gave 93% IE
ii. Temperature effect at 1000 ppm: 25 ◦C; 93.16% IE

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[91]/2018

(a) Xanthium strumarium (cocklebur) leaf extract
(b) Experiments: SEM, FTIR, weight loss
(c) Parameters: Inhibitor concentration (200, 400, 600, 800, 1000
ppm) and temperature (30, 40, 50, 60 ◦C)
(d) Results: 1000 ppm gave 94.82% IE at 60 ◦C

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[92]/2018

(a) Cuscuta reflexa (morning glory family, fruit extract)
(b) Experiments: Weight loss, electrochemical measurement,
UV-visible spectroscopy, FT-IR spectroscopy, surface analyses,
quantum chemical studies
(c) Parameter: Inhibitor concentration (100, 200, 300, 400, 500 ppm)
(d) Results: 500 ppm gave 95.47% IE

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[93]/2018

(a) Taraxacum officinale (dandelion, flower)
(b) Experiments: Weight loss, Thermometric measurements,
Electrochemical measurements, Gravimetric
(c) Parameters: Type of crude (saponins—SETOL;
flavonoids—FETOL; alkaloids—AETOL) and inhibitor
concentration (10, 30, 70, 150, 300 ppm) and temperature (25, 40,
60 ◦C)
(d) Results
i. Gravimetric
AETOL
300 ppm; 99.3% IE
ii. Thermometric
AETOL
300 ppm; 25 ◦C; 98.2% IE
iii. EIS
AETOL; 79.0% IE

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[94]/2018

(a) Tridax procumbens (daisy flower) and Chromolaena odorata
(Christmas bush-leaf)
(b) Experiments: EIS and adsorption isotherm
(c) Parameters: Inhibitor concentration (100, 200, 300, 400 ppm)
(d) Results: 100 ppm gave 95.06% IE

Limitation: Constant
temperature (40 ◦C) and
immersion time
Remark: Vary the temperature
from 25 up to 90 ◦C and the
immersion time from 3 up to
30 days

[95]/2018
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Table 1. Cont.

Details Gap Reference/Year

(a) Diospyros kaki (persimmon)
(b) Experiments: EIS and polarization, weight loss, surface analysis
(c) Results: 225 ppm gave 83.45% IE at immersion time of 6 h

Limitation: Constant
temperature (25 ◦C) and short
immersion time (3–6 h)
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[96]/2016

(a) Sida acuta leaves and stem (wireweed)
(b) Experiments: Weight loss, hydrogen evaluation measurement,
spectrophotometric analysis
(c) Parameters: Temperature (30–60 ◦C)
(d) Results: 500 ppm gave 85% (leaves) and 52% (stem) IE at 30 ◦C

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark: Vary the immersion
time from 3 up to 30 days

[97]/2016

(a) Bamboo leaf extract
(b) Experiments: Weight loss measurements, electrochemical
measurements and atomic force microscope
(c) Parameters: Acid concentration (1 M HCl and 0.5 M H2SO4),
temperatures (20, 30, 40, 50 ◦C), immersion time (6–160 h)
(d) Results:
i. 1 M HCl
40 ◦C temperature
91.2% IE
ii. 0.5 M H2SO4
50 ◦C temperature
86.5% IE
iii. Immersion time
36 to 160 h
95% IE; 1 M HCl
86% IE; 0.5 M H2SO4

Limitation: Constant inhibitor
concentration was used
Remark: Vary the
concentration from 50 to
250 ppm

[98]/2012

(a) Murraya koenigii (curry leaves)
(b) Experiments: Weight loss method, EIS
(c) Parameters: Inhibitor concentration, acid concentration
(d) Results
i. Concentration: 600 ppm
96.66% and 94.66% IE in HCl and H2SO4
ii. Acid concentration 1 M HCl; 97.54% IE

Limitation: Small temperature
range (35–65 ◦C) and short
immersion time (2 to 8 h) used
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[99]/2010

Table 2. Summary of research gap for fruit-based green corrosion inhibitors from 2010 to 2019.

Details Gap References/Year

(a) Rosa canina fruit
(b) Experiments: Characterization, quantum chemical and EIS
(c) Parameters: Inhibitor concentration (200, 400, 600, 800 ppm) and
immersion time (2, 4, 6, 24, 48 h)
(d) Result: 600 ppm gave 85.7% IE at immersion time of 6 h

Limitation: Constant
temperature (25 ◦C)
Remark: Vary the temperature
from 25 up to 90 ◦C

[100]/2019

(a) Lychee waste
(b) Experiments: Weight loss, EIS, FTIR and SEM, and
computational studies
(c) Parameters: Extraction process (blank, etoh-U, etoh-R, H2O-U),
immersion time (1.5, 3.0, 4.5 h) and inhibitor concentration
(300, 400, 500, 600, 700 ppm)
(d) Results
Etoh-U: 97.95% IE
1.5 h: 97.95% IE
600 ppm: 97.95% IE

Limitation: Constant
temperature (25 ◦C)
Remark: Vary the temperature
from 25 up to 90 ◦C

[101]/2018
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Table 2. Cont.

Details Gap References/Year

(a) Musa paradisica peels (banana)
(b) Experiments: EIS, polarization, surface analysis
(c) Parameters: Acid solution (1 M HCl and 0.5 M H2SO4) and
inhibitor concentration (200, 300, 400 ppm)
(d) Results: 1 M HCl, 400 ppm gave 90% IE

Limitation: Constant
temperature (25 ◦C) and
immersion time (24 h)
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[102]/2018

(a) Longan seed and peel
(b) Experiment: EIS, Weight loss, FTIR, SEM and computational
studies
(c) Parameters: Inhibitor concentration
(300, 400, 500, 600 ppm) and temperature (25, 35, 45, 55 ◦C)
(d) Results:
600ppm: 92.93% IE
55 ◦C: 89.29% IE

Limitation: Constant
immersion time (24 h)
Remark: Vary the immersion
time from 3 up to 30 days

[103]/2017

(a) Papaya Seed
(b) Experiments: Electrochemical studies, adsorption studies
(c) Parameter: Different H2SO4 solutions (0.5 M, 1 M, 3 M)
(d) Results: 3 M H2SO4 gave 90% IE

Limitation: Constant
temperature (25 ◦C) and
immersion time (24 h)
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[104]/2016

(a) Capsicum annuum fruit paste
(b) Experiments: Weight loss, contact angle measurements, analysis
of protective film
(c) Parameter: Immersion time (24, 96, 168 h)
(d) Results: 96.48% IE at immersion time of 24 h

Limitation: Constant
temperature (25 ◦C) and
concentration
Remark: Vary the temperature
from 25 up to 90 ◦C and
concentrations from 50 to
250 ppm

[105]/2016

(a) Gingko biloba fruit
(b) Experiments: MS, FTIR, EIS, contact angle measurement and
SEM
(c) Parameters: Inhibitor concentration (250, 500, 1000 ppm)
(d) Results: 1000 ppm gave 97% IE

Limitation: Constant
temperature (25 ◦C) and
immersion time (24 h)
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[106]/2015

(a) Litchi fruit
(b) Experiments: Weight loss, EIS, surface analysis
(c) Parameter: Inhibitor concentration (25, 75, 100, 150, 200, 300 ppm)
(d) Results: 300 ppm gave 97.8% IE

Limitation: Constant
temperature (25 ◦C) and
immersion time (24 h)
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[107]/2015

(a) Watermelon waste
(b) Experiments: EIS, SEM, UV-vis and FTIR
(c) Parameters: Watermelon waste (rind, seed, peel) and inhibitor
concentration (10, 50, 100, 200 ppm)
(d) Results:
Rind: 200 ppm, 79.86% IE
Seed: 200 ppm, 83.67% IE
Peel: 200 ppm, 72.42% IE

Limitation: Constant
temperature (25 ◦C) and
immersion time (24 h)
Remark: Vary the temperature
from 25 up to 90 ◦C and extend
the immersion time from 3 up
to 30 days

[108]/2015

(a) Apricot juice
(b) Experiments: Adsorption study and inhibition mechanism
(c) Parameters: Inhibitor concentration (100, 200, 300, 400 ppm) and
temperature (30, 40, 50, 60 ◦C)
(d) Results: 400 ppm gave 75% IE at 30 ◦C

Limitation: Constant
immersion time (24 h) used
throughout experiment
Remark:
Vary the immersion time from
3 up to 30 days

[109]/2013
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Table 2. Cont.

Details Gap References/Year

(a) Fruit peels
(b) Experiments: EIS, polarization, weight loss, SEM
(c) Parameters: Type of fruit peels (mango, orange, passion, and
cashew), inhibitor concentration (100–800 ppm), immersion time (1,
4, 24 h) and temperature (25, 40, 60 ◦C)
(d) Results:
i. Mango
600 mg/L: 91% IE
Orange
400 mg/L: 95% IE
Passion
500 mg/L: 90% IE
Cashew
800 mg/L: 80% IE
ii. Immersion time
24 h: 96% IE
iii. Temperature
25 ◦C: 92% IE

No limitation or remarks [110]/2010

5. Conclusions

The issue is unavoidable for the oil and gas industry, creating a similar impact to those of natural
disasters. Hence, completely stopping this issue is not possible, but taking preventative measure
to inhibit the metal surface from corroding is more economical. The use of conventional corrosion
inhibitors has long been in practice. Nonetheless, employment of commercial inhibitors has been
restrained over time. This is due to their toxic properties that contribute to the destruction of the
environment. Hence, with the aim of combating this, knowledge concerning the green (plant- and
fruit-based) corrosion inhibitors has been consolidated in this paper to aid in mitigating the corrosion
of pipelines.
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