
applied  
sciences

Article

Automatic Salient Object Extraction Based on Locally
Adaptive Thresholding to Generate Tactile Graphics

Akmalbek Abdusalomov 1 , Mukhriddin Mukhiddinov 2, Oybek Djuraev 2,
Utkir Khamdamov 2 and Taeg Keun Whangbo 3,*

1 Department of IT Convergence Engineering, Gachon University, Sujeong-Gu, Seongnam-Si,
Gyeonggi-Do 461-701, Korea; akmalbekabdusalomov@gmail.com

2 Department of Hardware and Software of Management Systems in Telecommunications, Tashkent University
of Information Technologies named after Muhammad al-Khwarizmi, Tashkent 100200, Uzbekistan;
mmuhriddinm@gmail.com (M.M.); odjuraev@gmail.com (O.D.); utkir.hamdamov@mail.ru (U.K.)

3 Department of Computer Science, Gachon University, Sujeong-Gu, Seongnam-Si,
Gyeonggi-Do 461-701, Korea

* Correspondence: tkwhangbo@gachon.ac.kr

Received: 10 March 2020; Accepted: 8 May 2020; Published: 12 May 2020
����������
�������

Abstract: Automatic extraction of salient regions is beneficial for various computer vision applications,
such as image segmentation and object recognition. The salient visual information across images is
very useful and plays a significant role for the visually impaired in identifying tactile information.
In this paper, we introduce a novel saliency cuts method using local adaptive thresholding to obtain
four regions from a given saliency map. First, we produced four regions for image segmentation
using a saliency map as an input image and local adaptive thresholding. Second, the four regions
were used to initialize an iterative version of the GrabCuts algorithm and to produce a robust and
high-quality binary mask with a full resolution. Finally, salient objects’ outer boundaries and inner
edges were detected using the solution from our previous research. Experimental results showed
that local adaptive thresholding using integral images can produce a more robust binary mask
compared to the results from previous works that make use of global thresholding techniques for
salient object segmentation. The proposed method can extract salient objects with a low-quality
saliency map, achieving a promising performance compared to existing methods. The proposed
method has advantages in extracting salient objects and generating simple, important edges from
natural scene images efficiently for delivering visually salient information to the visually impaired.

Keywords: integral images; local adaptive thresholding; salient object extraction; saliency map;
saliency cuts; visually impaired; tactile graphics

1. Introduction

Human beings have an incredible ability to visually capture relevant targets quickly and accurately,
which is called the focus of attention or saliency. Recognizing these conspicuous, or salient, ranges
in visual fields empowers one to apportion restricted perceptual resources in a proficient way [1].
This visual saliency mechanism makes some objects in a scene stand out from the surroundings,
a focus that raises plenty of research interest. In general, accurately detecting the most visually
significant foreground object in a scene, referred to as salient object detection, may be goal-driven or
stimulus-driven, corresponding to the top-down or bottom-up process in human visual perception,
respectively. Bottom-up approaches are based on low-level image attributes such as color, intensities,
gradient, edges, and boundaries, and are usually fast, involuntary, and more effective in detecting
fine details rather than the information pertaining to the overall shape. In contrast, top-down saliency
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models are based on representative features from samples while being slow, task-driven, voluntary,
and closed-loop. Recently, visual attention modeling has been extended to highlight objects uniformly
and widely used as a first step in the computer vision field for its applications in image and video
compression [2], image retargeting [3–5], image retrieval [6,7], object-of-interest image segmentation [8],
object recognition [9–11], image classification [12], and advertising evaluation [13]. The recent success
of deep learning in object recognition and classification has brought about a revolution in computer
vision [14]. Although significant progress has been made in the research area of visual attention,
it remains not only one of the most important fields but also a highly challenging issue in image
analysis, pattern recognition, and computer vision [15].

Salient object detection mainly consists of two phases: saliency map generation and saliency cuts.
Saliency map generation concentrates on producing a pixel-level or region-level map, in which each
pixel or region is assigned a value proportional to its saliency. Saliency cuts focus on providing a binary
mask of a salient object. There have been a variety of saliency cuts methods proposed [16,17], and these
methods use global thresholding techniques for calculating a threshold value by disintegrating the
pixels in a saliency map into the foreground and background regions according to their saliency values.
The results of these methods are usually undermined by incorrect saliency maps as well as low saliency
values for determining background regions in complex natural scene images. To increase the accuracy
of a saliency map, some approaches use the original input image along with the saliency map in
the binarization process [16–18]. Extracting salient objects from a scene and implementing tactile
representation can assist the visually impaired to clearly understand important information contained
in images. In general, the tactile representation of salient objects in a natural scene image should be
designed as simple as possible and easily understood by the visually impaired. Moreover, a wide range
of studies are being conducted to find optimal methods for extracting important objects from natural
scene images [15]. Generally, tactile graphic information that visually impaired people can perceive
by touching, is mainly obtained from the natural scene images through two steps: salient object
extraction and tactile graphic translation. We focused on the automatic object segmentation approach
for integrating local adaptive thresholding using integral images and the GrabCuts algorithm.

In this paper, on the basis of the fact that local adaptive thresholding estimates a different threshold
value for each pixel according to the grayscale information of neighboring pixels [19], we proposed
a novel saliency cuts method based on locally adaptive triple-thresholding using integral images,
in order to assist the image recognition process of the visually impaired. Firstly, we obtained a saliency
map using our previous saliency detection method [15]. Secondly, the binary saliency mask was
obtained as the image of a four-region seeds by using adaptively triple-thresholding. Then, the seeds
were fed to the GrabCuts [20] method and a robust binary mask was generated.

The main contribution of the proposed method was as follows:

• Salient object extraction based on locally adaptive triple thresholding using an integral image.
• We combined the GrabCuts algorithm with the generated four-region seeds to refine the

segmentation results.
• One of the applications of salient object extraction is detected outer boundary, and inner edges

of the salient object were illustrated on tactile graphics to facilitate the learning process of
visually impaired.

The proposed method cuts the salient object and detects the outer contours and inner edges
of salient objects so that the visually impaired can easily understand the content of an image scene.
Figure 1 demonstrates the proposed method: (a) input image, (b) saliency map generated using our
previous approach [15], (c) the proposed saliency cuts, and (d) salient objects extracted using the mask.
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Figure 1. Example of the proposed method: (a) input image, (b) saliency map, (c) saliency cuts,
(d) Salient objects.

The remainder of the paper is organized as follows: Section 2 reviews conventional methods
for salient object detection and saliency cuts. Section 3 presents the saliency cuts approach in detail.
The experimental results based on popular benchmark databases are shown and discussed in Section 4.
Section 5 highlights some limitations of the proposed method. Finally, Section 6 concludes the paper
by summarizing our findings.

2. Related Works

According to the objective and the technical component of this paper, we broadly reviewed
previous academic work related to several research areas: salient region detection, saliency cuts, and
tactile graphic generation.

Salient region detection is further extended to include objectless estimation in object recognition.
Both are important and benefit different applications in high-level scene analysis [21]. Saliency
models based on bottom-up methods convert natural scene images into saliency maps, where each
pixel/superpixel or region is assigned a saliency value or probability. These methods initially apply
image segmentation techniques (e.g., graph-based [22], mean shift [23], or superpixels [24]) to the
input image and segment homogeneous regions to extract feature statistics from each segmented
region to detect salient regions. Cheng et al. [17] demonstrated two saliency models: histogram-based
contrast (HC), which assigns a pixel-wise saliency value, as well as region-based contrast (RC), which
incorporates spatial relations at the cost of reduced computational efficiency. Zhou [25] proposed an
object-based attention model that automatically identifies a series of regions far away from the image
center as background prototypes. Zhou et al. [26] combined widely used contrast measurements,
namely, center-surround, corner-surround, and global contrast, to detect visual saliency. Han et al. [27]
developed a framework for saliency detection by first modeling the background and then separating
salient objects from the background. Color contrast and spatial distribution were used to obtain
pixel-accurate saliency maps.

Another popular approach is saliency object detection methods based on deep convolutional
neural networks (CNNs). Recently employed, these methods achieve substantially better results than
traditional approaches because CNNs are typically pre-trained on datasets for visual recognition
tasks. Gayoung Lee et al. [28] introduced the encoded low-level distance map (ELD-map), which
directly encodes the feature distance between each pair of superpixels in an image. The encoded
feature distance map has a strong discriminative power in evaluating similarities between different
parts of an image with precise boundaries among superpixels. Guanbin Li et al. [29] proposed a
neural network architecture, which has fully connected layers on top of CNNs responsible for feature
extraction at three different scales. In addition, they created a novel and challenging dataset, HKU-IS,
for saliency model research and evaluation. Nian Liu et al. [30] demonstrated an end-to-end saliency
detection model, the DNSNet, to detect salient objects with a new hierarchical refinement model, the
HRCNN, which can refine saliency maps hierarchically and progressively to recover image details
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by integrating local context information without using over-segmentation methods. Yuan et al. [31]
proposed a framework that performs both dense and sparse labeling (DSL) with multi-dimensional
features for saliency detection. DSL consists of three major steps: dense labeling (DL), sparse labeling
(SL), and deep convolutional (DC) networking. Li et al. [32] proposed a deep network, which consists
of a fully convolutional stream at the pixel level and a spatial pooling stream at the segment level.
A multi-scale fully convolutional network (MS-FCN) takes a raw image as input then directly produces
a saliency map with pixel-level accuracy.

In recent years, approaches using saliency cuts have been widely explored because these methods
focus on providing a binary mask of salient objects with the aid of a saliency map. Saliency cuts
automatically segment a salient object from the background. With a saliency map input and using the
iterative GrabCuts algorithm [20], we can extract a precise image mask [16–18,33] Chul Ko et al. [34]
proposed the object-of-interest (OOI) segmentation algorithm from natural scenes. They use a support
vector machine (SVM) to select a salient region clustered into the OOI using a region merging technique.
Jiang et al. [35] introduced an automatic salient object segmentation method, which integrates both
bottom-up salient stimuli and object-level shape prior. Fu et al. [18] modified the graph cut method
by exploring the effects of labels for graph-based segmentation. Aytekin et al. [36] proposed a link
between quantum mechanics and spectral graph clustering, referred to as Quantum Cuts, which forms
a graph among superpixels extracted from an image, then optimizes a criterion related to the image
boundary, local contrast, and area information. Winn et al. [37] introduced Learning Object Classes
with Unsupervised Segmentation (LOCUS), which uses a generative probabilistic model to combine
bottom-up cues of colors and edges with top-down cues of shape. Shi et al. [38] introduced image
segmentation as an issue associated with graph partitioning and extracting the global impression of an
image, rather than focusing on local features. Peng et al. [39] demonstrated a saliency-aware stereo
image segmentation approach using the disparity map and statistical information of stereo images to
enrich high-order potentials. Grady et al. [40] treated an image as a purely discrete object, and each
edge was assigned a real-valued weight corresponding to the likelihood that a random walker will
cross that edge. Chew et al. [41] improved normalized cuts to allow both sets of constraints to be
handled in a soft manner, enabling the user to tune the degree to which the constraints are satisfied.
Mehrani et al. [33] exploited the standard features often used in vision-based factors such as color and
texture. Properly normalized, these simple features yielded performance superior to the methods
based on hand-crafted features specifically designed for saliency detection. Han et al. [42] developed a
generic framework to automatically extract the viewer’s attention upon objects, on the basis of human
visual attention mechanisms. Without the full semantic understanding of image content, the model
formulated attention objects as a Markov random field (MRF) by integrating computational visual
attention mechanisms with attention object growing techniques. Li et al. [16] proposed a saliency cuts
approach using the Otsu thresholding technique and the GrabCuts algorithm. They improved the
Otsu algorithm to calculate three-level thresholds, and the saliency map was further split into four
regions using these three thresholds.

We also surveyed relevant literature on global and local adaptive thresholding. Otsu et al. [43]
proposed an unsupervised method of automatic thresholding, which is one of the most popular global
techniques. In contrast, local adaptive thresholding used for binarization can account for variations
in illumination. Wellner [44] introduced quick adaptive thresholding, which calculates the moving
average of the last s pixels. This adaptive local thresholding technique simply compares every pixel
to the average of neighboring pixels. Sauvola et al. [45] demonstrated adaptive document image
thresholding, in which a page is considered a collection of subcomponents such as text, background,
and picture. Bradley et al. [46] proposed real-time adaptive thresholding using an integral image
of the input image. Peuwnuan et al. [47] proposed an improved version of Bradley’s method by
means of adaptive thresholding using integral images. Another extension of Bradley’s algorithm,
a new local adaptive thresholding technique, was proposed by Benny et al. [48]. They proposed a
handwritten character recognition system using a local thresholding method for binarization and a
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dynamic self-organizing feature map (DSOFM) technique for classification of extracted feature vectors
of characters. Biswas et al. [49] used a local thresholding technique to binarize degraded document
images. First, they blurred an input image using the Gaussian filter and computed a global threshold
value using the Canny edge, and each pixel with a gray value greater than the threshold was labeled as
a background pixel. Second, local threshold values classified non-labeled pixels into the background
and foreground pixels. Singh et al. [19] proposed a local thresholding technique using a local contrast
and a local arithmetic mean for grayscale images.

Visual information generation based on tactile graphics is one of the most ambitious research areas
because these techniques require important information from an input image. Chen et al. [50] presented
a method of mathematical graph recognition for extracting and classifying broken line elements from
mathematical graphs. This method is a specific part of the mathematical graph recognition technique
introduced for developing a computer-aided system to extract and classify broken lines. Jungil et al. [51]
focused on an education assistive technology system based on a graphic haptic electronic board.
This system enables authoring, automatic conversion, and real-time distribution of education materials
for low-vision and blind students. Chen et al. [52] suggested a method for automatically translating
hand-drawn maps into tactile maps using a pattern recognition technique for extracting and classifying
objects in hand-drawn maps. Takagi et al. [53] introduced a method for extracting character strings
from scene images using edge detection, a morphology operator, and a fuzzy inference technique.
This framework helps the visually impaired to walk more independently on the street.

The methods discussed above, such as salient object detection and extraction, salient region
detection for the visually impaired, and tactile graphics generation, have some limitations. Figure 2
shows our scientific methodology to clarify the purpose of research work and its results. Initially, we
broadly analyzed methods of digital image processing areas such as salient object detection, salient
object extraction, contour detection, and tactile graphics generation. Then, on the basis of the results
of the analysis, salient object extraction using adaptive triple thresholding was proposed, and edge
detection technique was used. Finally, computer vision tools and libraries were used to develop salient
object detection, extraction, and contour detection software. This developed software can be utilized
in assistive technologies and software packages for visually impaired individuals, such as tactile
graphics and displays. Generally, contrast-based salient object detection methods can be local and
global contrast-based techniques. The local contrast-based approaches detect a salient region using
local neighborhoods of the pixels. These approaches suffer from local noises when calculating complex
pattern images. The principle system of the global-contrast approach processes the object’s saliency
by the calculation of the color contrast between every one of the pixels and the mean estimation of a
whole picture. Despite the fact that the global-contrast approach is successful in identifying salient
areas of straightforward pattern pictures, these models have a restriction in a poor global-contrast and
a complex pattern picture. To overcome these limitations, we applied the global contrast enhancement
method using histogram equalization to input images [15].

Salient object extraction approaches use an input image and saliency map to provide a binary
mask of salient objects. These approaches apply threshold value to divide images into the foreground
or background. The problem of this method is to compute the best threshold values that can accurately
determine foreground and background regions in complex pattern images. We propose locally adaptive
triple thresholding using integral images by calculating three-level thresholds instead of only one level
along with other improvements.
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3. Proposed Method

This section describes the proposed method for salient object extraction. Firstly, we provide an
overview of the proposed method. Then, saliency cuts using the local adaptive thresholding method is
detailed, which is used to produce a binary image and boundary of salient objects. Lastly, outer and
inner edge detection, as well as the generation of tactile graphics process is discussed. We produced
tactile graphics of salient objects by applying the suggested approach and the assistive technology
software to help the visually impaired to better perceive and identify natural scene photographs, as
presented in the flowchart of the proposed method.

3.1. Overview

In this sub-section, we give an overview of the proposed method. Figure 3 illustrates the main
stages of the proposed saliency cuts. We first generated a saliency map from an input natural scene
image, which we used in our previous work [15], as shown in the first and second parts of Figure 3.
Next, as seen in the third part of Figure 3, we calculated an integral image in the first move through the
saliency map grayscale image. In a second move, we identified the local window (S × S), which was
the image’s width W/2, using an integral image for every pixel in constant time, and further obtained
local adaptive three-level threshold values on the basis of the comparison. These three thresholds
marked the saliency map with four different regions, demonstrating four types of seeds for the next
step. The seeds were assigned an iterative variant of the GrabCuts method, alluded to as Saliency
cuts, and a high-quality binary mask of a full resolution was produced. We were able to improve local
adaptive thresholding using the integral images method by calculating three threshold levels instead of
one [46]. The purpose of the improvement was to use local adaptive thresholding for computing three
threshold levels and classifying each pixel into one of four categories: certain background, probable
background, probable foreground, and certain foreground. Finally, we detected the boundary and the
inner edges of salient objects to refine the recognition of visually salient information for the visually
impaired and converted it to tactile graphics, as shown in the last part of Figure 3. We describe the
proposed saliency cuts approach in the following sub-sections.
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3.2. Saliency Cuts Using Local Adaptive Thresholding

This sub-section details salient object extraction using local adaptive thresholding. First, we provide
a brief description of choosing the local thresholding method over a global one. Then, an integral
image is calculated using the given saliency map image. Third, local adaptive triple thresholds are
obtained, and afterwards these thresholds separate the saliency map image into four regions. Last,
we acquire a binary image using the GrabCuts algorithm and detect a boundary of extracted objects.
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3.2.1. Local Adaptive and Global Thresholding

A number of thresholding techniques have been proposed using global and local techniques.
Global techniques assign one threshold to the entire image, whereas local adaptive thresholding
techniques assign a varying threshold value to each pixel/region determined by neighboring pixels.

Global thresholding techniques are very fast and yield reliable results for typical images.
Many popular global thresholding techniques use different approaches, such as the fixed thresholding
technique, to perform binarization with respect to a specified threshold value. Cheng et al. [17]
used global fixed thresholding to binarize saliency map images. This approach works well when
the background and foreground intensities are clearly distinct and uniform throughout the image.
Li et al. [16] proposed a saliency map binarization technique using the Otsu algorithm to calculate
adaptive triple thresholding. The Otsu algorithm is an outstanding automatic thresholding algorithm
for image segmentation, thanks to its simplicity and good performance. On the basis of clustering,
the Otsu algorithm automatically obtains an optimal threshold from the gray histogram of an original
gray image and separates it into the foreground and background. For many years, binarization of
natural images has been performed on the basis of global thresholding approaches, which are more
appropriate for uniformly illuminated images than diversely illuminated images. Global binarization
approaches are more adequate for images with uniform contrast distribution of background and
foreground, such as single-object or bi-modal histogram images. However, in complex natural images
that contain considerable background noise or variations in contrast and illumination, many pixels
cannot be easily classified as foreground or background. In such cases, binarization with global
thresholding is not a suitable option.

Local thresholding techniques apply a unique threshold value to a single-pixel or a certain region.
The local threshold value can be calculated using different information contained in the given image.
This is also known as dynamic thresholding and can be divided into different approaches, such as the
water flow model, background subtraction, mean and standard deviation of pixel values, illumination
model, and local image contrast. Although local adaptive thresholding approaches generally achieve
better results, they often rely on individual parameters and require a substantially higher computational
cost than global thresholding. In this paper, to reduce the computational cost, we used adaptive
thresholding based on integral images, which is explained in the next sub-section. Wellner [44]
proposed fast-adaptive thresholding, which calculates the moving average of the pixels last seen to be
the local threshold. D. Bradley simply extended Wellner’s method by using integral images to provide
a better representation of the surrounding pixels than the moving average by sacrificing one additional
iteration through an image [46]. This method is clear and straightforward. Both Derek’s and Wellner’s
methods focus on the application of document images. These methods can also be applied to natural
scene images with some improvements.

3.2.2. Integral Images

An integral image (also known as a summed-area table) is a fast and effective means for computing
the sum of values (pixel intensity values) in a given image, or a rectangular subset of a grid (the given
image). Mathematically, it can be expressed as

I(x, y) =
∑

x′ ≤ x
y′ ≤ y

i(x′, y′) (1)

where I is the integral value at point (x, y) and i is the intensity at point (x, y) in a grayscale image
(saliency maps). We computed integral images and locally adaptive triple-thresholding as shown in
Figures A1 and A2 (Appendix A section). Figure 4 shows an example of a 4× 3 image that demonstrates
the calculation process of the integral image. As shown in Figure 5, I (2, 3) is the sum of the intensity
values of the saliency maps in the upper-left area. The integral image or summed-area table I(x, y) can
be quickly calculated using Equation (2) [46].
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I(x, y) = i(x, y) + I(x− 1, y) + I(x, y− 1) − I(x− 1, y− 1) (2)

where i(x, y) is the original pixel value from the image, I(x− 1, y) values are directly above this pixel,
and I(x, y− 1) values are directly left to this pixel from the Integral image. Finally, we subtracted the
value directly top-left of i(x, y) from the Integral image, that is, I(x− 1, y− 1). We gave a value of 0 to
I(x− 1, y), I(x, y− 1), and I(x− 1, y− 1) if x − 1 and y − 1 were outside of the image bounds.
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3.2.3. Local Adaptive Triple Thresholding

This step involves a fast approach for computing local thresholds without compromising the
performance of local thresholding using the integral sum image as a prior process for finding the local
mean of neighboring pixels in a window, irrespective of window size. Using this technique, we can
accomplish a binarization speed close to those of global binarization methods. Next, we categorize
each pixel as follows:

(1) Sum of pixel values Rs over a rectangle R within a moving window with a size S × S was
defined so that the window size depended on the image’s width W. The window size is very important
in local adaptive thresholding methods. D. Bradley and Wellner used a window size one-eighth of the
image width to calculate the average value. We used one-half of the image width for the window size
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S due to the saliency object size in natural scene images. As shown in Figure 6, shadow area R is on the
grayscale image.

RS = I(x2, y2) − I(x2, y1 − 1) − I(x1 − 1, y2) + I(x1 − 1, y1 − 1) (3)

where x1, x2 = x± S/2 and y1, y2 = y± S/2.
(2) The number of pixels in R can be calculated as

N = (x2 − x1) × (y2 − y1) (4)Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 25 
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Figure 6. Sum over rectangle R in grayscale image.

Wellner and D. Bradley calculated the optimal threshold value on the basis of comparison [44,46]—if
the value of the current pixel was 15 percent less than the average, it was set to black; otherwise, it was
set to white for document images. In the proposed method, we improved this threshold value by
assigning it to the local arithmetic mean value using Equations (5) and (6). Because a saliency map of
natural scene images mainly consists of black (certain background) with some variety of grayscale
values (unknown), we experimentally found that the local arithmetic mean value as a first-level
threshold value yielded the best results for a variety of images.

Let us assume that the scale of a saliency map is [0; L], and that the pixel number of each bin
in its histogram is B = {b0, . . . bi, . . . bL}, where i represents the saliency value. We can improve the
Derek Bradley algorithm to obtain three-level thresholds, including tl, tm, and th 0 < tl < tl < tl < L,
and decompose the histogram of a saliency map into four parts: certain background Tcb = [0; tl],
probable background Tpb= [tl + 1; tm], probable foreground Tp f = [tm + 1; th], and certain foreground
Tc f = [th + 1; L]. We first calculated tl, then divided the saliency histogram into Tb= [0, tl] (certain
background) and Tu = [tm +1, L] (unknown). The unknown regions were initially used to train
foreground color models, thus helping the algorithm to identify foreground pixels. We then calculated
tm and th, and further divided the saliency histogram into Tcb, Tpb, Tp f , and Tc f . The numbers of pixels
with saliency values in Tb and Tu were pb and pu, respectively, and the number of pixels in the entire
image was P = pb + pu. We could then calculate threshold tl by averaging the pixels within the window
of size S× S.

(3) The local arithmetic mean m (x, y) at (x, y) is the average of the pixels within the window of
size S× S, and could be calculated as

m(x, y) = Rs/N (5)

tl = m(x, y) (6)

(4) Finally, tm and th could be calculated as follows:

th = tl + (L− tl)/2 (7)
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where L is maximum pixel value in the image and

tm = tl + (th − tl)/2 (8)

Given a saliency map, initially found tl maximized the difference between the object region and
the background region. We then performed the calculation for tm and th. According to the triple
thresholding saliency histogram, a saliency map could also be decomposed into four regions: certain
background (pixels belong to Tcb), probable background (pixels belong to Tpb), probable foreground
(pixels belong to Tp f ), and certain foreground (pixels belong to Tc f ). Certain background regions were
retained, whereas other regions may have been changed during GrabCuts optimization.

3.2.4. GrabCuts with Auto-Generated Seeds

For image binarization, we used a four-region seeds image. With adaptive three-level threshold
values, we already acquired the seeds of four kinds for the masking requirement of the GrabCuts
method [20]. For an image pixel value greater than tm in Equation (8), the largest connected region
was considered the initial candidate region of the most dominant salient object. This candidate region
was marked as probable foreground and certain foreground, whereas other regions were marked as
probable background and certain background.

We could obtain the contour of the salient object using the binary mask. Figure 7 shows that
the boundary of a salient object was detected using binary images and Canny’s edge detection
technique [54]. These outer boundaries can translate into tactile graphics to provide information about
a natural scene image to the visually impaired. In some cases, however, the visually impaired may
not be confident about an object just by touching its boundary. Therefore, we also demonstrated a
technique for detecting the inner edges of an object from the results of the proposed saliency cuts in
natural scene images using our previous technique [15].
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3.2.5. Boundary and Inner Edge Detection

It is very important that visually impaired individuals fully identify a salient object in a natural
scene. Therefore, we obtained the internal edges of a salient object using the binary mask, which was
the result of the proposed saliency cuts approach. In the first step of post-processing, we produced a
salient object using its binary mask by creating a matrix with a size and type identical to those of the
input image to achieve the desired output image. After that, we copied the non-zero elements of the
binary mask that indicated the elements of the original input image matrix.

S0 = Bm(x, y) ∗ Ii(x, y) (9)

where S0 is the salient object, Bm(x, y) is the binary mask, and Ii(x, y) is the input image. Thus,
we procured a full-color space salient object. Figure 8 shows an example of the masking method using
the proposed binary mask.
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In the end, we were able to produce the boundary and the inner edges of a salient object with
valuable visual information for the visually impaired to identify the content of a natural scene.
Furthermore, we could translate these contours and key visual information into tactile graphics for
assistive technology systems.

4. Experiment Results and Analysis

In order to evaluate the performance of the proposed saliency cuts method, we conducted
experiments using the C++ language and a PC with 3.60 GHz CPU and 4 GB of RAM. We used an
MSRA 10k dataset [17], which included 10,000 natural scene images and human manually labelled
ground truth, which is exact and full salient object(s) in the given image. To the best of our knowledge,
the database is the largest of its kind, and has pixel-level ground truth in the form of accurate
human-marked labels for salient regions. We selected 6000 natural scene images with its corresponding
ground truth images that have various types of single and multiple objects from MSRA 10K dataset for
efficient evaluation. We performed qualitative and quantitative comparisons between the proposed
method and other techniques, and also subjectively evaluated the proposed algorithm.

4.1. Qualitative Evaluation

We visually compared the proposed saliency cuts method with two other state-of-the-art saliency
cuts methods: adaptive triple thresholding for saliency cuts using Otsu automatic thresholding
(ATT_Cuts) [16] and saliency cuts using fixed thresholding (RC_Cuts) [17]. In Figure 9, the first row
displays typical input images such as people and objects. Ground truth images are shown in the
second row. The third row shows the saliency maps of the natural scene images of the first row.
The fourth and fifth rows are saliency cuts using the Otsu algorithm and global fixed thresholding,
respectively. The last row shows the results of the proposed saliency cuts method. As shown in
Figure 9, the results of the proposed method for saliency map binarization were close to ground truth
images. The proposed saliency cuts technique extracted salient objects even when the background
and foreground regions had very similar information. In comparison, the fixed thresholding method
can extract only a single salient object from a given image and may fail to segment salient objects
when pixels in the image had low saliency values. Saliency cuts using the Otsu method has a similar
drawback of misclassifying a salient object as a background region when the saliency values of a given
image are low. However, it can detect multiple objects if the saliency values of pixels are sufficiently
high. Comparatively speaking, the proposed approach can reduce these drawbacks; it can extract
salient objects with a lower amount of data about the saliency map without misclassifying them as
background regions, as well as even being able to detect multiple salient objects.
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Figure 9. Visual comparison between saliency cuts methods. From top to bottom: (1) input images,
(2) ground truth, (3) saliency maps, (4) ATT_Cuts [16], (5) RC_Cuts [17], (6) the proposed method.

The results of boundary detection together with a comparison between the proposed method
and other well-known methods are shown in Figure 10. The first row displays given images, such as
people, birds, and different kinds of objects. The second and third rows show the saliency maps and
ground truth generated from the images in the first row, respectively. The other saliency cuts methods
such as RC_Cuts and ATT_Cuts are illustrated in the fourth and fifth rows. The results of saliency cuts
using the proposed method are shown in the sixth row, and the last row displays the boundaries of
salient objects. Experimental results show that in many cases the proposed method extracted objects
more accurately than other methods. Moreover, our approach worked effectively, even when there
were multiple objects in natural scene images, as illustrated in Figure 10.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 25 
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Figure 10. Experimental results of outer contour generation. From top to bottom rows: (1) input images,
(2) saliency maps (grayscale images), (3) ground truth images, (4) ATT_Cuts results, (5) RC_Cuts results,
(6) results of the proposed method, (7) boundary detection using the Canny edge technique.

However, the proposed method may fail to segment a salient object that has a very low saliency
value and contains very similar foreground and background regions, as shown in Figure 11.
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Figure 11. Failure cases: (1) input images, (2) ground truth, (3) saliency map, (4) saliency object
segmentation using the proposed method.

4.2. Quantitative Evaluation

We performed quantitative analysis by averaging precision (P) and recall (R) rates along with
F-measures (Fβ). Precision and recall rates could be obtained by comparing pixel-level ground truth
images with the results of the proposed method and calculated as follows:

P =
Tp

Tp + Fp
(10)

R =
Tp

Tp + Fn
(11)

where Tp denotes the number of true positives pixels that were obtained as salient by the proposed
method and also labelled as salient in the ground truth image, Fp denotes the number of false-positive
pixels that were obtained as salient by the proposed method but were not labelled as salient in the
ground truth image, and Fn denotes the number of false-negative pixels that were not obtained as
salient by the proposed method but were labelled as salient in the ground truth image. P is defined
as the number of true-positive pixels over the number of true-positive pixels plus the number of
false-positive pixels. R is defined as the number of true-positive pixels over the number of true-positive
pixels plus the number of false-negative pixels. In other words, P is the fraction of salient pixels
among all the obtained pixels by the proposed method, whereas R is the fraction of the total number of
salient pixels that were actually obtained as salient by the proposed method. Worth noting are perfect
precision (no false positive pixels) and perfect recall (no false negative pixels), as seen in Equations (10)
and (11). The results showed that the proposed saliency cuts accomplished the highest precision rate of
0.94. RC_Cuts [17] and ATT_Cuts [16] yielded precision rates of 0.93 and 0.90, respectively. In addition,
we computed the F-measure value, which balanced measurements between the mean of precision and
recall rates. A higher F-measure meant higher performance and it was defined as follows:

Fβ =
(1 + β2)P×R
β2 × P + R

. (12)

where β2 = 0.3 to weigh precision more than recall as in most of the existing methods [16,17,30–32],
and others. The proposed approach achieved the highest F-measure value of 0.90, whereas the other
two methods RC_Cuts and ATT_Cuts showed 0.89 and 0.88, recpectively. The results of quantitative
comparison among the three algorithms are shown in Figure 12 and Table 1. The proposed method
produced saliency objects with the highest pricision rate, whereas ATT_Cuts showed the highest
recall rate. Although all three methods produced similar results, the proposed method proved to be
most robust in complex images that contain foreground and background with similar appearances, as
demonstrated in Figures 9 and 10.
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Table 1. Quantitative analysis of three saliency cuts methods performed using MSRA 10k dataset.

Methods RC_Cuts [17] ATT_Cuts [16] Proposed Method

Precision 0.93 0.90 0.94

Recall 0.77 0.82 0.80

F-measure 0.89 0.88 0.90

4.3. Subjective Evaluation

We conducted this experiment with 10 subjects (8 males, 2 females) with normal vision without
visual disabilities. The goal of this subjective evaluation was to compare the visual inspection of the
results of the three saliency cuts methods because every person has a unique visual system. It is a
very important experiment in terms of generating tactile graphics for visually impaired because tactile
graphics must be simple and understandable. We provided 100 various types of images that had single
and multiple objects to 10 subjects. Each image file consisted of the result of the three saliency cuts
methods and ground truth image. The subjects were asked to assess the results of the three saliency cuts
methods with respect to ground truth images by providing scores on “foreground extraction accuracy”,
“clear edges of objects”, “multiple object detection”, “amount of noise introduced”, and “false object
detection”. The subjects scored each item on a scale from 1 to 5—1 (very bad), 2 (bad), 3 (average),
4 (good), and 5 (very good) in 15 s overall, with 5 s per each of the saliency cuts methods. We informed
the subjects that the answer to the “amount of noise introduced” and “false object detection” should be
“very good” for only the best results. Furthermore, we prevented any help or discussion with each
other by experimenting with the individuals one by one. As the results of subjective evaluation, Table 2
shows that foreground extraction accuracy of the proposed approach was very high. This was because
locally adaptive triple-thresholding produced a reliable binary mask by assigning a different threshold
value to each pixel. The proposed method and ATT_Cuts were able to detect multiple objects in a scene,
whereas RC_Cuts failed to do so. In summary, the proposed method achieved the best overall results.
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Table 2. Subjective evaluation of the proposed and other methods.

Methods
Foreground
Extraction
Accuracy

Clear
Edge of
Objects

Multiple
Objects

Detection

Noise
Introduced

False Object
Detection Average

RC_Cuts 4 5 3 3 3 3.6

ATT_Cuts 4 5 4 4 4 4.2

Proposed method 5 5 5 4 4 4.6

4.4. Runtime Analysis

The runtime of RC_Cuts, ATT_Cuts, and the proposed method are shown in Table 3 over images
of MSRA10K (typical image resolution of 400 × 300) using a PC with 3.60 GHz CPU and 4 GB of RAM.
The RC_Cuts method here was the fastest (about 1.24 s per image), followed by the proposed method
(about 1.33 s) and ATT_Cuts (about 1.86 s) method.

Table 3. The comparison of processing time obtained by each method.

The Comparison of Processing Time

Method RC_Cuts [17] ATT_Cuts [16] Proposed Method

Times (s) 1.24 1.86 1.33

Code Type C++ C++ C++

4.5. Implementation at the School for Visually Impaired

The work done within the study can be used for a variety of practical purposes. In many areas
today, the problem of object detection and extraction in images remains relevant. In recent years,
one of the most important works has been to create convenient conditions to meet the cultural needs of
persons with disabilities using modern, highly effective information and communication technologies,
assisting them in regular and independent education, along with improving their social support.

The proposed methods and algorithms of salient object extraction based on locally adaptive
triple-thresholding have been implemented in the production and education processes in the training
laboratory of the specialized boarding school for visually impaired No. 77 under the Ministry of Public
Education of the Republic of Uzbekistan. Furthermore, it can be used to create tactile graphics from
natural scene images and to organize other types of assistive technologies and software.

Implementation in practice involves proposed methods and software, uploading images on the
computer, extracting salient objects, preparing and printing tactile graphics or tactile display from
an object’s contours. Figure 13 illustrates the experimental process of perceiving tactile graphics.
The contour of the extracted salient object was printed as tactile graphics using Index Braille EVEREST-D
V4 braille embosser. Fourteen visually impaired students of the boarding school were tested for their
level of familiarity with produced tactile graphics by braille embosser. Tactile graphics were given
to 14 blind students and the content of the objects on a tactile graphic was recognized in 60 s. In the
experiment, 20 tactile graphics (the same objects for all) were used for each blind student. To assess
whether the tactile graphics were understandable, blind students were given a time limit of 60 s and
then asked their answers. Blind students were assessed on the basis of 5% (1 image) for each blind
student to identify correctly in 60 s without any help, 2.5% (0.5 image) for correct identification in
120 s with little help, or 0% (0 image) for incorrect identification of complex cases. The results of the
experimental process of perceiving tactile graphics are presented in Table 4. Experimental results
showed that in some cases such as complex or multiple objects, visually impaired students faced
some problems in perceiving and classifying objects. In complex cases, teachers gave some additional
information to blind students for correct identification. In contrast, they did not fail and misclassify
when the objects were single and simple. As a result, visually impaired students were able to clearly
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identify 74% (73.93% rounded up) of the tactile graphics that were presented to them. The remaining
26% (26.07% rounded up) of the tactile graphics showed that students did not have an idea of the
object in their life, or that the edges of the object were complex.
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Table 4. The results of the experimental process of perceiving tactile graphics.

Blind Students Correct Identification Incorrect Identification

Percentage % Number of Images Percentage % Number of Images

Student 1 72.5% 14.5/20 27.5% 5.5/20

Student 2 75% 15/20 25% 5/20

Student 3 67.5% 13.5/20 32.5% 6.5/20

Student 4 77.5% 15.5/20 22.5% 4.5/20

Student 5 72.5% 14.5/20 27.5% 5.5/20

Student 6 75% 15/20 25% 5/20

Student 7 80% 16/20 20% 4/20

Student 8 77.5% 15.5/20 22.5% 4.5/20

Student 9 75% 15/20 25% 5/20

Student 10 70% 14/20 30% 6/20

Student 11 77.5% 15.5/20 22.5% 4.5/20

Student 12 70% 14/20 30% 6/20

Student 13 75% 15/20 25% 5/20

Student 14 70% 14/20 30% 6/20

Overall 74% 26%

As a result of implementation of the research work in the specialized boarding school for the
visually impaired, using salient object extraction method to access visual information, not only did
blind people recognize geometric shapes that are included in the education process, but they also
perceived the surrounding visual information using a tactile graphic and display, which can help them
to adapt quickly to learning, independent movement, and social life.

5. Limitations

The proposed method may have made some errors in extracting the regions where the image
pixels’ values were very close to each other. Figure 11 shows these kinds of drawbacks. In addition,
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the expert’s or teacher’s instructions and comments played an important role in improving the natural
image recognition process of the visually impaired individuals and in explaining the complex tactile
graphics, causing discomfort to the visually impaired individuals when walking alone on the street.

6. Conclusions and Future Work

We presented a saliency cuts method based on local adaptive thresholding using integral images.
The proposed method is fully automatic and requires no manual interaction, generating three-level
thresholds to divide a saliency map into four regions. The four kinds of seeds are fed into the GrabCuts
algorithm to obtain high-quality binary masks of salient objects. On the basis of the proposed saliency
cuts method, we performed full-color space salient object extraction. We then applied bilateral filtering
and Canny edge detection to produce outer boundaries and internal edges. The experimental results
showed that the proposed method was robust and performed better than other methods. In other
words, on the basis of this study that extracted a salient object from a natural scene image, the final
goal was to create a tactile graphic so that the visually impaired could perceive and understand the
natural scene image well. The proposed methods and algorithms of salient object extraction were
implemented in a specialized boarding school for visually impaired students who were able to clearly
identify 74% of the tactile graphics that were presented to them. We intend to conduct further research
on computer vision integrated with deep learning applications for detecting and recognizing multiple
salient objects, as well as text information from natural scene images to generate a Text-to-Speech
synthesizer for the visually impaired.
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