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Abstract: This paper presents a design for a movable barrier on the revetment of the Haeundae
Marine City in Busan, the Korea. This movable barrier was developed to use as a tourist deck
in a normal state and to block wave overtopping in an abnormal state. To carry out the physical
experiment in a wave flume, the model structure was reduced to a scale of 1/36 compared to the field
structure. The discharge of the wave overtopping, the uplift pressure acting on the under surface of
a non-standing barrier, and the wave pressure acting in front of a standing barrier were measured
to analyze the hydraulic characteristics of the movable barrier. The results show that the impulsive
pressure acts on the movable barrier, although the overtopping discharge is less than the allowable
limit. When designing a movable barrier at a full scale, engineers should consider the impulsive
pressure to secure the barrier’s stability on the target site.
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1. Introduction

The ports connecting marine and land transportation are expanding to perform various functions,
such as waterfront space and eco-friendly facilities, as well as fundamental functions for commerce and
the fishery. These ports also include functions to create safer coasts and ports through the reinforcement
of existing facilities, in addition to the development of port peripheral areas linked with leisure facilities.
Thus, it is necessary to comprehensively review the planning aspects of the development and use
of port peripheral areas in harbor structures. Accordingly, the mutual influence of facilities in the
hinterland is complicated by the topographical characteristics and economic and social functions of
ports. However, in accordance with the trend of placing more emphasis on the quality of life, sensitivity
to disasters caused by climate change has increased. Hence, the needs for harbor structures to reduce
disasters has increased. In particular, in areas where serious disasters are expected, the interest for
disaster-reducing facilities is high.

As global warming due to climate change is expected to increase the intensity and frequency of
typhoons [1], storm surges must be urgently prevented because of an increase in the expected casualties
and flood damage. As typhoon intensity is expected to increase because of the rising sea levels and
temperatures due to the effects of global warming [2], the damage caused by storm surges is expected
to increase rapidly. Hence, the requirement to reinforce coastal structures has increased with increases
in wave height. Coastal and water side areas should be especially protected from inundation by wave
overtopping. To quantify wave overtopping in coastal areas, the EurOtop manual provides empirical
formulas for various coastal structures through physical experiments [3], and a numerical model was
developed to apply simple harbor geometry [4]. Various types of barriers have been constructed to
prevent such inundation. The Eider Barrier of the radial gate type was built in 1973, in Germany [5].
This barrier is part of the dike defense line of the North Friesian coast. In England, the Thames Barrier
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was built in 1982 to prevent inundation by high tides (with floods from the upstream of the Thames)
and had its official opening in 1984 [6]. Gates of the rotary segment type are normally located on a flat
face flush with the river bed when in the gate housing and then rotated 90 degree to close the barrier in
an emergency. In 1953, the south-western area of the Netherlands was threatened by a severe storm
and was flooded by sea water. After this disaster, the storm surge barrier called the Maeslant Barrier
was built in 1997, in the Netherlands [7]. This barrier consists of two sector-gates. The same type of
barrier, called the St. Petersburg Flood Protection Barrier, was built in 2011 in Russia [8]. In a normal
state, these gates are parked in docks. However, these gates are moved to the center of the waterway
to close the channel during severe storms. In 2013, the Venice Flood Barrier, which is one the first four
gates of the MOSE project, was built at the Lido inlet in Italy [9]. These gates of the flap type are raised
by compressed air pumped into each hollow gate.

Recently, a movable barrier type was proposed, such as a flap type that could be installed on the
revetment, as shown in Figure 1 [10]. This barrier is usually used as a tourist deck but stands up to
prevent wave overtopping when a storm surge occurs. Movable barriers should have an effective
operational method and the ability to adequately block against wave overtopping. A movable barrier
is composed of a double deck, with two hinges installed on the upper deck. Hinges are installed at
the end of the deck and the middle of the deck. When the upper deck on the land side is pushed by
the actuators, the barrier stands in the form of a triangle since rotation occurs at the hinge. To resist
upward forces, such as the uplift force, three-axis bearings are installed on the lower deck. The height
of the movable barrier can be adjusted to prevent inundation by wave overtopping via the designed
conditions at the target site. However, impulsive pressure can occasionally occur at a barrier such as a
vertical wall, even though the barrier properly blocks wave overtopping. Thus, it is important to carry
out physical experiments to accurately determine the designed wave force [11].
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Figure 1. Sketch of the developed movable barrier; (a) in a normal state; (b) in an abnormal state.

In this study, a movable barrier is considered on the revetment of Haeundae Marine City in Busan,
Republic of Korea. The design of the movable barrier is carried out for the target site, unlike the
developed movable barrier [10]. However, the operation method and the purpose are the same as
those of the developed movable barrier, as shown in Figure 1. A physical experiment was conducted
to quantitatively analyze the discharge of wave overtopping in a wave flume, and the wave pressures
acting on the movable barrier are later measured to determine the occurrences of impulsive wave
pressure to reflect the working design stage. The model structure was designed simply to measure
data for a standing barrier and a non-standing barrier. In Section 2, the experimental setup and
test conditions of this study are summarized. In Section 3, the results are presented for the wave
overtopping and wave pressure of the physical experiment. Finally, the conclusion is given in Section 4.
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2. Physical Experiment

2.1. Experimental Setup

The experiment was conducted in a wave flume located at the Korea Institute of Ocean Science
and Technology (KIOST) in Busan, Republic of Korea. The dimensions of the wave flume are 50 m
in length, 1.2 m in width, and 1.6 m in depth [12]. The wave flume is equipped with a piston-type
wave maker developed by VTI (Vazquezy Torres Ingenieria, Spain) Corporation. The wave maker
can generate a regular wave, an irregular wave, and a solitary wave. The wave paddle is made of
stainless steel and glass fiber reinforced plastic. To reduce re-reflected waves at the wave paddle,
an active absorption system was applied to the wave generation software (AwaSys 7), based on the
digital filtering of signals from the wave gauges in the nearfield [13,14]. Passive wave absorbers were
placed to absorb wave energy at both ends of the wave flume. As shown in Figure 2a, 11 wave gauges
(Equations (1)–(11)) were placed, and the model structure made of acrylic plates was placed 32.13 m
from the left end of the wave flume. Without the model structure, the wave gauges from Equations
(9) to (11) are used to analyze the incident wave heights of the target waves. The distance between
Equations (9) and (10) is 0.3 m, and the distance between Equations (10) and (11) is 0.5 m.
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Figure 2. Schematic sketch of the wave flume with the location of the model structure, with the wave
gauges and pictures of the experimental equipment; (a) side view (unit: m); (b) wave flume; (c) wave
maker; (d) passive absorbers.

Figure 3 shows a conceptual design for the movable barrier on the revetment of Haeundae
Marine City in Busan, Republic of Korea. The height of the movable barrier was designed to be
6.5 m. In a normal state, during which the movable barrier does not stand, the designed sea level
is the approximate highest high water (Approx. H.H.W.). Under an abnormal state activating the
movable barrier, the designed sea level is considered to be the storm surge height and the sea level rise
(SLR). In this study, a 1/36 scale model was adopted to consider the bathymetry in the wave flume.
The similitude ratio for the Froude similarity was then scaled down. At this scale, the weight of the
tetrapod (T.T.P) was 3.051 N per each. T.T.Ps were randomly placed (considering those placed on the
target site) for all experiments.
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The first purpose of the experiments was to measure the discharge of the wave overtopping.
Thus, a waterway was placed on top of the movable barrier, as shown in Figure 4. A water trap was
installed behind the model to capture the overtopped waters during the experiment. In the water trap,
a flowmeter (Manufacturer: NTON INTERNATIONAL, China; Model: K24 turbine digital oil fuel flow
meter gauge for chemicals liquid water) was installed to detect the discharge of the wave overtopping.
The measurement range was 0.01 to 0.12 m3/min, and the measurement accuracy was less than 1%.
The discharge was measured and calculated during the full test time to be 30 min, corresponding to a
full-scale time of 3 h. Figure 4 also shows the installed model structure in the wave flume. The model
structure has been reproduced as similar as possible the design of the target site. The second purpose
of this experiment was to measure the wave pressure and to determine the occurrences of impulsive
wave pressures acting on the movable barrier, as shown in Figure 5. In order to characterize the wave
pressure acting on the movable barrier, pressure measurements were taken at four points (p1 to p4) in a
normal state and at eight points (p1 to p8) in an abnormal state. The pressure gauges use disk-type
pressure transducers with 10 mm diameters. Table 1 shows the specification of the disk-type pressure
transducer [15]. All pressure gauges were mounted at the digging holes in the desired locations of
the model structure. To protect the pressure gauges from the impact of the armor unit, a safe guard
was installed in front of the mounted pressure gauges. This safe guard is made of a thin perforated
plate, which has large perforations to minimize the influence of the measured pressures. In Figure 5a,
the locations of the 4 points, p1 to p4, from 0 m of the datum level (DL) are 1.03, 2.32, 3.61, and 4.70 m,
respectively. Here, p4 was placed to measure the uplift pressure acting on the movable barrier in a
normal state. In Figure 5b, the locations of the 8 points, p1 to p8, from 0 m of the datum level are 1.03,
2.32, 3.61, 4.70, 5.67, 6.62, 7.89, 9.20, and 10.46 m, respectively. Here, we placed p4 to p8 to measure the
wave pressure acting on the movable barrier surface facing the outer sea in an abnormal state.

Table 1. Technical specification of the disk-type pressure transducer.
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2.2. Wave Conditions

The physical experiment was conducted for irregular waves based on the JONSWAP spectrum [16]
in the wave flume. The JONSWAP spectrum is defined as:

S( f ) = βJH2
1/3T−4

p f−5exp
[
−1.25

(
Tp f

)−4
]
γexp[−(Tp f−1)2/2σ2] (1)

where
βJ =

0.0624

0.230 + 0.0336γ− 0.185(1.9 + γ)−1
[1.094− 0.01915 lnγ] (2)

Tp � T1/3/
[
1− 0.132(γ+ 0.2)−0.559

]
(3)

σ =

{
σa : f ≤ fp
σb : f > fp

(4)

γ = 1 ∼ 7, σa � 0.07, σb � 0.09 (5)

where the peak enhancement factor γ controls the sharpness of the spectral peak, and 3.3 is the mean
value. H1/3 is the significant wave height, T1/3 is the significant wave period, Tp is the wave period
corresponding to the frequency fp at the spectral peak, and σ is the narrowness of the peak parameter.
A method for separating the incident and reflected waves was used to estimate the test waves using
three wave gauges (Equations (9)–(11)), as shown in Figure 2 [17]. The wave generation time is set to
30 min (assuming that the typhoon duration is 3 h for a full-scale time) for each test case. The number
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of component waves is about 630 to 830, depending on the wave period. For example, when the wave
period is 2.18 s in Table 2, the number of component waves is about 826, which is 30 min divided
by 2.18 s. When test waves are estimated without the model structure, the sampling frequency is
50 Hz. In the test with the model structure, the sampling frequency is set to 600 Hz to measure the
wave pressure acting on the movable barrier. If the impulsive wave pressure occurs in the test, 600 Hz
is too low to measure the quantitative impulsive pressures. However, the sampling frequency is
600 Hz because the purpose of this experiment is to confirm the occurrence of impulsive pressures.
As presented in Section 2.1, two different designed sea levels were selected based on the data of the
Korea Hydrographic and Oceanographic Administration and some other reports [18–20]. On the target
site, the significant wave heights and periods for the “10- and 50-year return period” were 4.35 m/13.10
s and 4.58 m/17.22 s, respectively [21]. The target site, which is geographically a cape, was opened to
the seaside, and the sea bottom slope was too steep, at about 1/10. Therefore, the incident wave close
to the breaking limit propagated to the target site with a large amount of energy. Hence, the target
wave was difficult to generate in the laboratory experiment. To solve this problem, the sea bottom of
the real site was reproduced up to 12.2 m (440 m for the full-scale distance) toward the wave paddle
from the model structure in the wave flume. At the model scale, the significant wave height Hs and
significant wave period Ts were expressed as the target wave in the Table 2.

Table 2. Wave conditions.

No. Designed Sea Level Return Period (year)
Target Wave Estimated Test Wave

Hs (cm) Ts (s) Hs (cm) Ts (s) Hr (cm)

1 Approx. H.H.W. 10 12.08 2.18 12.00 2.17 3.29
2 Approx. H.H.W. 50 12.72 2.87 12.80 3.00 3.92
3 Sea level during storm surge + SLR 10 12.08 2.18 12.10 2.23 3.05
4 Sea level during storm surge + SLR 50 12.72 2.87 12.80 3.00 3.36

Test waves were generated several times to find values close to the target wave. Figure 6 shows
two cases of the spectrum of test waves, since the other two cases had similar results. The solid line is
the analytical solution, and the histogram shows the results of the experiment applying the method for
separating the incident and reflected waves [17]. The peak enhancement factor γ is 3.3, and Tp is the
wave period corresponding to the frequency fp at the spectral peak. The results of the experiment have
a similar tendency with those of the analytical solution. For all cases, the maximum relative error of
the significant wave height is about 0.66%, and the maximum relative error of the significant wave
period is about 4.53%. In Figure 6, the green bar is the incident wave, and the blue bar is the reflected
wave. The coefficient of wave reflection KR is in the range of 0.25 to 0.31. In the Harbor and fishery
design criteria [22], the coefficient of the wave reflection for the natural beach is suggested to be in the
range of 0.05 to 0.2. Thus, the results of the experiment are slightly higher than those of the natural
beach. This implies that wave absorbers in the wave flume correctly absorb the wave energy. Table 2
shows a detailed test of the wave conditions.
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(H.H.W.) and a 10-year return period; (b) sea level during a storm surge with sea level rise (SLR) and a
50-year return period.

3. Results and Discussion of the Physical Experiment

3.1. Wave Overtopping

The target area is densely populated with skyscrapers just 20 m from the shoreline. In addition,
this area is a place that many tourists visit. For this reason, it is necessary to not only secure the right
view at normal times but also to prevent wave overtopping caused by storm surges. In order to cope
with wave overtopping, a movable barrier was designed for the target site. As shown in Figure 5 and
Table 2, experiments were conducted for eight cases by changing the water depths and the test waves
with standing or non-standing barriers.

Figure 7 shows photographs taken when the water surface elevation was at its maximum,
and Table 3 shows the results of the measured overtopping discharge. Figure 7a shows that a large
amount of water is overtopped, even though the return period is 10 years. The allowable overtopping
discharge is 0.01 m3/(m s) for areas crowded by private houses and public facilities in the hinterland,
where serious disasters are expected because of the inflow of overtopped water and sprays [22].
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The overtopping discharge at a full scale is 0.03 m3/(m s), as shown in Table 2. The result of this case is
greater than the allowable limit, despite the minimum value among the test cases for the non-standing
barrier. Thus, for this case, the movable barrier must stand to prevent wave overtopping. As shown
in Figure 7b, two bullnoses on the movable barrier were designed to efficiently reflect the incident
waves to the seaside. Although stairs perform this role well, the overtopped water can still be seen
because of the large incident wave condition. However, the overtopping discharge at a full scale
is 0.0099 m3/(m s), which is less than the allowable limit. The developed movable barrier properly
prevents wave overtopping for the designed wave with a 50-year return period.
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Figure 7. Photographs of the overtopping water for the maximum water surface elevation; (a)
non-standing barrier for the 10-year return period and the approx. H.H.W. (No. 1, Table 2); (b) standing
barrier for the 50-year return period and the sea level during the storm surge with the SLR (No. 4,
Table 2).

Table 3. Results of the measured overtopping discharge.

State of
Movable Barrier

Designed Sea
Level

Return Period
(year)

Overtopping Discharge (q, m3/(m s))

Model Scale Full Scale

Non-standing

Approx. H.H.W. 10 1.366 × 10−4 0.0295
Approx. H.H.W. 50 5.043 × 10−4 0.1089
Sea level during

storm surge + SLR 10 5.572 × 10−4 0.1204

Sea level during
storm surge + SLR 50 1.598 × 10−3 0.3453

Standing

Approx. H.H.W. 10 0 0
Approx. H.H.W. 50 1.749 × 10−5 0.0038
Sea level during

storm surge + SLR 10 1.106 × 10−5 0.0024

Sea level during
storm surge + SLR 50 4.602 × 10−5 0.0099

The wave energy for the 50-year return period is higher than that for the 10-year return period.
As shown Table 3, for the approx. H.H.W., the relative overtopping discharges (i.e., qstanding/qnon-standing)
for the 10-year return period and the 50-year return period are zero and 0.0349, respectively. This implies
that the overtopping discharge increases when the wave energy increases. This result is also the same
for the sea level during the storm surge with the SLR. All overtopping discharges are less than the
allowable limit for the standing barrier. In order to cope with wave overtopping more efficiently, it is
necessary to properly design energy dissipators on the movable barrier, such as wave return walls [23]
or stepped revetments [24], to reduce the height of the barrier. Reducing the height of the barrier
would be excellent in terms of utilizing the surrounding space and view.

The overtopping discharge of the movable barrier is now compared with the prediction equation
for the overtopping discharge of the composite vertical wall proposed by EurOtop [3]. The composite
vertical wall is the most similar comparison target in the EurOtop manual, even though T.T.Ps are
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not placed in front of the vertical wall. When the mound influence is significant (i.e., d < 0.6 h), the
prediction equations are suggested to be

q√
gH3

m0

= 1.3
(

d
h

)0.5

0.0014
(

Hm0

h · sm−1,0

)0.5( Rc

Hm0

)−3

Valid for Rc/Hm0 ≥ 1.35 (6)

q√
gH3

m0

= 1.3
(

d
h

)0.5

0.011
(

Hm0

h · sm−1,0

)0.5

exp
(
−2.2

Rc

Hm0

)
Valid for Rc/Hm0 < 1.35 (7)

where q is the overtopping discharge per meter of the structure’s width, g is the acceleration of gravity,
Hm0 is the significant wave height from the spectral analysis, d is the water depth above the toe mound
or the berm in front of the vertical wall, h is the water depth in front of the toe of the structure, Rc is the
crest freeboard of the structure, and sm−1,0 is the wave steepness with Lm−1,0. The wave steepness is
given by

sm−1,0 =
Hm0

Lm−1,0
=

2πHm0

gT2
m−1,0

(8)

where Lm−1,0 is the spectral wave length in deep water, and Tm−1,0 is the spectral wave period.
Equations (6) and (7) can predict overtopping discharge under conditions where impulsive overtopping
is expected. An occurrence of impulsive overtopping is determined as

d
Hm0

·
h

Lm−1,0
≤ 0.65. (9)

Figure 8 shows the definitions of the parameters related to Equations (6) and (7). The parameters
for the movable barrier are defined similar to EurOtop’s definitions, even though armor units (i.e.,
T.T.Ps) are placed in front of the vertical wall and the revetment. Table 4 shows detailed parameters at
the model scale. The case where the overtopping discharge is zero in Table 3 is excluded. As shown
in Table 4, for all cases, the mound has a significant influence (i.e., d < 0.6 h), and the impulsive
overtopping conditions are less than 0.65. Thus, Equations (6) and (7) can be used to compare the
overtopping discharge in this study.

Table 4. Parameters to compare overtopping discharge at the model scale.

State of
Movable Barrier Designed Sea Level Return Period

(year)
Hm0
(m)

Tm−1,0
(sec)

d (m) h (m) Rc/Hm0
Lm−1,0

(m) Sm−1,0
d

Hm0
·

h
Lm−1,0

Non-standing

Approx. H.H.W. 10 0.120 2.17 0.0388 0.254 1.127 7.352 0.0163 0.0112

Approx. H.H.W. 50 0.128 3.00 0.0388 0.254 1.106 14.052 0.0091 0.0055

Sea level during storm
surge + SLR 10 0.121 2.23 0.0746 0.290 0.822 7.764 0.0155 0.0230

Sea level during storm
surge + SLR 50 0.128 3.00 0.0746 0.290 0.777 14.052 0.0091 0.0120

Standing

Approx. H.H.W. 50 0.128 3.00 0.0388 0.254 2.272 14.052 0.0091 0.0055

Sea level during storm
surge + SLR 10 0.121 2.23 0.0746 0.290 2.107 7.764 0.0155 0.0230

Sea level during storm
surge + SLR 50 0.128 3.00 0.0746 0.290 1.992 14.052 0.0091 0.0120

Figure 9 shows the relative overtopping discharge with respect to the relative free board. Based on
the relative free board, the standing barrier is compared with Equation (6), and the non-standing barrier
is compared with Equation (7). For the non-standing barrier, overtopping discharges are less than the
results of the EurOtop, except for the minimum relative free board (which is the case for the 50-year
return period and the sea level during the storm surge with the SLR in Table 4) because the wave energy
is reduced by armor units, and the vertical wall has a short overhang that minimally blocks wave
overtopping. However, the overtopping discharge is about 1.2 times greater than the predicted results
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at the minimum relative free board, presumably because the wave energy is not reduced by the armor
units because of high incident wave conditions. For the standing barrier, the overtopping discharges
are less than those of EurOtop, since incident waves are returned to the seaside by two bullnoses. To
secure the right view, the height of the standing movable barrier should be decreased. Thus, the height
of the bullnose should be increased and the number of the bullnose should be increased to reduce
wave overtopping.
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3.2. Uplift Pressure and Wave Pressure

In this section, the uplift pressure and the wave pressure acting on the movable barrier are
analyzed to confirm the occurrence of impulsive pressures. Barriers should be in the “standing state”
for all cases, considering the results of the wave overtopping in Table 3. However, the uplift pressure is
measured on the assumption that the designed sea level is the approx. H.H.W. and that the barrier
will not stand during the 10-year return period in this section. A non-standing barrier is important to
analyze the uplift pressure acting on the bottom of the barrier. An impact on the bottom of the barrier
occurs when a large incident wave propagates to the barrier. For this reason, the movable barrier can
be broken, making the hinterland more dangerous.

Figure 10 shows the result of the uplift pressure at p4 in Figure 5a for the 10-year return period
and the approx. H.H.W. (No. 1, Table 2). The y-axis is the uplift pressure nondimensionalized by
the hydrostatic wave pressure for the maximum wave height, Hmax. The maximum wave height
is 19.5 cm. The total generation time is 30 min. This figure shows results in the range around the
maximum pressure. Relative uplift pressures greater than 1 occur about 20 times during the total
generation time. The maximum relative uplift pressure is 2.12, as shown in Figure 10. This means that
the impulsive pressure acts on the bottom of the movable barrier. The impulsive pressure is inversely
proportional to its duration. The impulsive pressure becomes especially higher when the incident
wave height increases, and the distance between the water surface and the horizontal structure (i.e.,
non-standing barrier) decreases. If the weight of the movable barrier is increased to secure the barrier’s
stability, additional ground reinforcements on the target site may be needed. However, adding such
reinforcements is difficult and costly work. To ensure stability, three options are possible: (1) The
movable barrier could be installed closer to the landside to avoid impulsive pressure from acting on the
bottom of the non-standing barrier; (2) the distance between the water surface and the non-standing
barrier could be increased; (3) the number of armor units could be increased at the seaside to reduce
the wave’s energy.

The movable barrier stands by the rise of the sea level and the wave overtopping during storms,
which is needed to determine the wave pressure acting on the movable barrier facing the outer sea
in an abnormal state. Figure 11 shows the results of the wave pressure at p4 and p5 in Figure 5b for
the 50-year return period and the sea level during the storm surge with the SLR (No. 4, Table 2),
because the maximum wave pressure acting on the movable barrier is important in terms of a design
perspective. The maximum wave height of the y-axis is 23.4 cm. Relative wave pressures greater than
2 occur four times during the total generation time. The maximum relative wave pressures at p4 and
p5 are 3.84 and 3.50, respectively. Furthermore, it can be seen that the maximum impulsive pressures
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continuously occur from p4 to p5, with a time difference of 0.01 s. As the result of this experiment,
the movable barrier should be designed while considering impulsive wave pressure. To avoid the
impulsive pressure for the standing movable barrier, a slit structure needs to be installed under the
movable barrier, and the number of armor units should be increased to the seaside to reduce the
wave energy.
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An impulsive wave can be of a Wagner type or a Bagnold type [25–27]. The impulsive pressure
of the Wagner type shows a momentary peak and is caused by the direct impact of the water mass.
The impulsive pressure of the Bagnold type has two characteristics: (1) A vibration occurs after the
peak; (2) air pockets are created by being entrapped by the breaking wave. For the similitude ratio,
the Froude similarity can be applied to the Wagner type and the compression law can be applied to the
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Bagnold type. In this experiment, the results of the impulsive wave are almost a Wagner type. Thus, to
apply these results in the design of the target site, it would be useful to apply the Froude similarity.

4. Conclusions

In this study, a movable barrier was preliminarily designed for the target site, and the discharge
of the wave overtopping and the wave pressure acting on the movable barrier was measured through
physical experiments in the wave flume. The results obtained through the physical experiment are
summarized as follows.

The discharge of the wave overtopping is less than 0.01 m3/(m s) of the allowable limit for all
cases when the movable barrier stands up.

For the standing movable barrier, all cases of overtopping discharge are less than the composite
vertical wall suggested by the EurOtop, since two bullnoses on the movable barrier are reflected in the
incident wave well.

Impulsive wave pressure acting on the movable barrier was frequently detected. Notably, the
maximum relative wave pressure (p4 and p5) is greater than 3 in Figure 11 when the movable barrier
stands up.

The movable barrier is well designed to block wave overtopping. However, to avoid impulsive
pressure, engineers should design a slit structure under the movable barrier to reduce the wave energy.

In the future, a physical experiment will be carried out for the newly designed movable barrier,
reflecting the results of this study on this target site, and numerical simulations will also be carried out
to determine the mechanism of the movable barrier for various cases.
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