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Abstract: Frequency response signals have been used for the non-destructive evaluation of many
different structures and for the integrity evaluation of porcelain insulators. However, it is difficult
to accurately estimate the integrity of porcelain insulators under various environmental conditions
only by using general frequency response signals. Therefore, this study used a method that extracted
several features that can be derived from the frequency response signal and reduced their dimensions
to select features suitable for the evaluation of the soundness of porcelain insulators. The latest
machine learning techniques were used to identify correlations and not for basic feature analyses.
Two machine learning models were developed using the support vector machine and ensemble
methods in MATLAB. Both models showed high reliability in distinguishing between normal and
defective porcelain insulators, and they could visualize the distribution area of the data by extracting
quantitative values and applying machine learning, rather than simply verifying the frequency
response signal.

Keywords: porcelain insulator; frequency response; feature extraction; non-destructive method;
damage evaluation; support vector machine; ensemble

1. Introduction

Owing to modern industrial development, mechanical system automation, and global warming,
power demand is increasing; high transmission voltage is required to supply a large amount of power
stably. This demands a high level of insulation for transmission lines. Porcelain insulators play an
important role in determining reliability and safety in the transmission sector, such as mechanically
fixing transmission lines and transmission towers and securing insulating gaps between transmission
lines and transmission towers through electrical insulation [1,2]. In Korea, since 2000, many efforts
have been made to apply polymer insulators, which are cheaper to manufacture and install than
porcelain insulators, and have excellent durability and pollution resistance. They are also lightweight
and easy to handle and manufacture owing to their variable design [3,4]. However, because of frequent
accidents due to the breakage of polymer insulators, porcelain insulators are used, as they have
excellent mechanical properties at very high voltage transmissions, such as 154 and 345 kV, and they
can be used for a long period of time.
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Currently, approximately 9.8 million porcelain insulators are installed in Korea, and 5.1 million are
imported from Japan’s NGK, accounting for approximately 52% of the total. Of these, approximately
1.24 million porcelain insulators with 154 kV transmission lines are used, and approximately 0.8 million
insulators have exceeded their service life (30 years), which accounts for 65% of the total [5]. The insulator
does not immediately suffer from performance deterioration or mechanical damage after it exceeds its
service life. However, depending on the usage environment, the aging of porcelain insulators due to
continuous stress and deterioration may accumulate and lead to their sudden breakage, resulting in
the cut off or falling of the power line [6]. Furthermore, power failure accidents caused by problems
related to porcelain insulators cause considerable damage, and this entails human and physical damage
leading to economic losses. Thus, it is necessary to develop inspection techniques to prevent accidents
by verifying porcelain insulators in a reliable manner and replacing them beforehand.

Most techniques for identifying insulator damage focus on evaluating the electrical insulation
performance of the insulator from an electrical standpoint. Common methods include the insulation
resistance measurement method, the electric field measurement method, the partial discharge
measurement method, and the HI-Pot test [7–10], and recently, infrared scanning, the aerial image
analysis method, and 3D-CT have been studied for measuring mechanical damage [11–13].

However, the above measurement methods are highly influenced by the results of the
measurements along with temperature, humidity, and solar flux. Given that most methods focus
only on the electrical damage and breakdown of porcelain parts, the mechanical damage of porcelain
insulators nearing the end of their life cycle is difficult to identify. In addition, the infrared camera and
imaging methods, which can measure the mechanical damage, can detect the breakage of the insulator
disc, but they are affected by ambient temperature and brightness. Using these methods, it is difficult
to detect defects such as cracks and voids shown in Figure 1. The 3D-CT method can identify internal
damage to porcelain insulators, but it is difficult and expensive.
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transformers [14–17] in the field of electricity, the setting of resonant frequency of car frames in the 
field of machinery [18], and the estimation of the location and extent of damage for monitoring 
structural conditions in the field of construction and civil engineering [19]. However, it is not 
sufficient to simply analyze the energy and natural frequencies of peaks of fast Fourier transform 
(FFT) and FRF to analyze objects that may cause errors in various usage environments and 

Figure 1. Sketch of porcelain insulator showing possible defects.

In this study, the frequency response function (FRF) method was applied, which was simple to
measure, was less affected by the surrounding environment, and could identify mechanical damage.
The frequency response analysis (FRA) using the FRF is utilized in various fields: continued research
is being conducted to assess the soundness of the target in various areas, including the diagnosis of
transformers [14–17] in the field of electricity, the setting of resonant frequency of car frames in the field
of machinery [18], and the estimation of the location and extent of damage for monitoring structural
conditions in the field of construction and civil engineering [19]. However, it is not sufficient to
simply analyze the energy and natural frequencies of peaks of fast Fourier transform (FFT) and FRF to
analyze objects that may cause errors in various usage environments and manufacturing processes [20].
Therefore, it is necessary to apply additional methods for improving the convenience and reliability.
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To improve the reliability of the FRF analysis, quantitative values can be extracted by considering
various features such as area and moment. In this case, because the dataset may grow depending
on the number of extracted features, it is necessary to apply a method for reducing the amount
of data, while maintaining the principal characteristics. Principal component analysis (PCA) and
neighborhood component analysis (NCA) can be used to reduce dimensions while maintaining key
features. They have been found to be effective in classifying and reducing dimensions by identifying
trends in analyses that contain large amounts of data [21–23]. The PCA identifies the attribute
combinations that account for the largest difference in data, and the NCA finds feature spaces so that
the proximate nearest neighbor algorithm provides the best accuracy. The main difference between
PCA and NCA is whether known classes are used to separate data. In this study, because the class of
the data is known, we used PCA for a more accurate analysis.

Previously, PCA was only used to identify and classify data trends. However, the application of
machine learning methods, which is presently being actively researched, improves the accuracy of data
classification and makes it easier to determine additional data through model development. Among
the many machine learning methods, support vector machine (SVM) and ensemble methods are widely
used for improving the classification accuracy and visualization of data. SVM classifies datasets linearly
or nonlinearly by creating a maximum margin classifier between them. It is used for data classification
in various fields besides the field of remote sensing and image analysis [24,25]. The ensemble method
is used in many fields such as cancer diagnosis, computer intelligence, statistics, and machine learning.
It is a meta-algorithm that combines a single predictive model using several single machine learning
algorithms and returns a learning model optimized for complex data classification. [26,27]. Recently,
it proved to be the best machine learning method for classifying data in kaggle, which provides a
solution for managing big data.

In this study, an artificial intelligence-based approach for SVM and ensemble models for the
damage assessment of porcelain insulators with 154 kV transmission lines is proposed. Many varied
porcelain insulator samples were used to increase the reliability of the analysis. Most previous studies
have used fewer than 50 samples; the present study used 117 samples collected from transmission
towers under various environmental conditions. Based on the FRF data with PCA, SVM and ensemble
models were developed using MATLAB software.

2. Materials and Methods

2.1. Porcelain Insulator Specimen

In this study, porcelain insulator samples manufactured by NGK of Japan were measured.
The quantities of specimens according to the material and condition are listed in Table 1. The number
of normal cristobalite samples is 74, 4 with porcelain damages and 2 with artificial internal damages,
and the number of normal alumina samples is 37.

Table 1. Categorization of specimens according to type of material and defects.

Categorization Cristobalite Alumina Sum

Total 80 37 117
Normal 74 37 111

Defect type
Sub total 6 - 6
Porcelain 4 - 4
Internal 2 - 2

Various types of porcelain defects that could occur in transmission lines were considered. For the
outside damage of porcelain, the defects of porcelain breakage and cracks caused by lightning strikes
were considered. For internal damage, it was shown that cracks and voids may occur inside the
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porcelain owing to errors during the insulation manufacturing process or high stress applied to the
insulation under overvoltage conditions, and the damage cannot be identified externally [28].

2.2. Frequency Response Function (FRF)

The test specimen was manufactured by NGK Ltd. in Japan, and there is a limitation for obtaining
a theoretical FRF because accurate physical information is not disclosed for various variables of
porcelain and cement. Therefore, FRF(H(f )) was calculated by Equation (1) using the data measured
during the experiment. Equation (1) is the relationship between X(f ), the power spectral density of the
signal measured by an impact hammer, and Y(f ), the signal cross power spectral density measured by
an accelerometer.

H( f ) =
Y( f )
X( f )

. (1)

2.3. Test Methods

To calculate the FRF experimentally, the impact energy and response energy must be measured.
The experimental equipment was constructed as shown in Figure 2: (a) the impact hammer (PCB
086C03) was used to measure the impact energy of the specimen, (b) the accelerometer (PCB 208C05)
was used to measure the response according to impact, and (c) the signal conditioner (PCB 482C16) and
(d) DAQ (NI PXIe 6366) were used for data collection by the experimental equipment. The measurement
program used an (e) NI Labview signal express to store the data at a sampling rate of 500 ks/s, and
because the stored data were values in the time domain, they were converted to the frequency
domain using the FFT using the MATLAB signal process toolbox. Next, the FRF was calculated using
Equation (1).
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Figure 2. The frequency response function (FRF) test method.

The FRF graph according to the specimen sample is shown in Figure 3. Figure 3a is the FRF
result of the normal specimens for cristobalite and alumina materials. In the graph, C1 is the result for
cristobalite and A1 for alumina. Depending on the material of the porcelain insulator, the shift of the
natural mode frequency was confirmed, and the alumina material had a higher natural mode than the
cristobalite material. The same materials of porcelain insulators have similar FRF results, but there
may be differences due to the years of use and exposure conditions. Figure 3b shows the FRF results of
the normal and cracked and broken specimens. In the graph, D1 is the result for a porcelain cracked
specimen and D2 for a broken disc specimen. According to the type of breakdown of the porcelain
insulator, it has been confirmed that the natural mode is completely different and may vary depending
on the degree of breakage. Figure 3c shows the FRF results for normal and internal defect specimens.
In the graph, D3 and D4 indicate the FRF results for the specimen with internal defects. For the internal
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defect, a new natural mode was created at low frequencies, and some natural modes were switched to
low frequencies. Additionally, porcelain insulators are used externally, so even though they are normal
insulators, they show various differences in the waveform of FRF. Determination of normality and
defects can be difficult because new peaks may be generated around the main peak, or other features
may occur that shift some eigenmode frequencies. Through the basic FRF analysis, the characteristics
of the materials and defects were identified, and based on this, the obtained data were used as basic
data for feature extraction for machine learning applications.
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2.4. Feature Extration

It is not appropriate to use FRF experimental data directly as the basic data for machine learning.
This is because the experimental data are the energies for frequencies in the FRF graph, and although
they can be compared in the natural mode as a graph when all the data are connected, not every data
point with manufacturing or environmental error is significant. Therefore, feature extraction was
performed to derive quantitative values from the FRF graph. The feature extraction process is shown
in Figure 4, and a total of 12 features were derived using area, RMS, moment, centroid, kurtosis, and
skewness; these were used as the basic dataset for machine learning. The meanings of the feature
values extracted from the FRF curves are as follows: the area is the lower area of the FRF curve, root
mean square (RMS) is the effective output of the FRF data, moment is the geometrical moment of area
based on the origin, center is the median of the FRF curve, kurtosis is the sharpness of the FRF curve,
and skewness is the degree of non-symmetry of the FRF curve.
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3. Machine Learning Technique

3.1. Support Vector Machine (SVM)

In general, an SVM comprises a hyperplane or set of hyperplanes that can be used for classification
or regression analysis. Intuitively, if the hyperplane has a large difference from the closest training
data point, the classifier error is small; thus, a good classification requires finding the hyperplane that
is farthest from the closest training data for any classified point. In general, the initial problem is dealt
with in a finite dimensional space, which often results in the data not being linearly separated. To solve
this problem, a method has been proposed to facilitate the separation by matching from the finite level
to the higher level of the initial problem [25,29].

The linear classification using SVM is shown in Figure 5, and it is calculated as follows:
First, the given training dataset D (the set of n points) is defined as follows:

D = {

(
(xi, yi)

xi

)
∈ Rp, yi ∈ {−1, 1}}ni=1. (2)
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Each xi is a p-dimensional real vector, and yi is 1 or −1, indicating which class xi belongs to.
The linear separation of the above training dataset according to the value of yi is called the

hyperplane and can be represented as a set of points X satisfying the following conditions:

w·x− b = 0 (3)

where is the dot product, w is the normal vector of the hyperplane, and b is the deflection constant
that fixes the hyperplane off-set in the p-dimensional space. The support vector (X+, X−) of a given
hyperplane is defined as follows:

X+: the data closest to the hyperplane among the data of yi = +1;
X−: the data closest to the hyperplane among the data of yi = −1.

A hyperplane passing through X+ with a legal vector equal to a given plane can be represented as
w·x− b = +1, and a hyperplane passing through X− in a similar manner is represented as w·x− b = −1.

The margin of the hyperplane is the distance between the hyperplane passing through each
support vector. Geometrically, the distance between two hyperplanes, or margin, is 2

‖w‖ . The SVM is
an algorithm that maximizes the margin.

Because there should be no data points between the hyperplanes passing through the support
vector, the following equation is established:{

w·x− b ≥ +1, i f yi = +1
w·x− b ≤ −1, i f yi = −1

. (4)

The above two expressions can be expressed as follows:

yi(w·xi− b) ≥ 1, for all 1 ≤ i ≤ n. (5)

The SVM problem that follows the condition of the hyperplane and attempts to find the maximum
value of the margin can be expressed as the following optimization problem:

argmin‖w‖ (6)

Vapnik proposed a nonlinear classification by applying kernel tricks to the maximum margin
hyperplane problem [29]. The form of the nonlinear classification algorithm is similar to the
existing linear classification algorithm; however, the dot product is replaced by the nonlinear kernel
function. This solves the maximum margin hyperplane problem of the transformed feature space.
The transformation here may be nonlinear or may raise the dimension. That is, the classifier is a
linear hyperplane in a high dimensional feature space but a nonlinear hyperplane in a conventional
dimensional space. The kernel functions used for nonlinear classification are as follows [30]:
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Homogeneous polynomial:
k(xi, xj) = (xi·xj)d (7)

Polynomial kernel:
k(xi, xj) = (xi·xj + 1)d (8)

Gaussian radial basis function:
For γ > 0, sometimes parametrized using γ > 1/(2σ2),

k(xi, xj) = exp(−γ‖xi− xj‖2) (9)

Hyperbolic tangent:
k(xi, xj) = tanh(xi·xj + c)d (10)

where σ is the standard deviation, γ is a constant, and d is the degree of the polynomial.
Among the SVM methods, there is an L1 regularized SVM that ignores noise features and weights

only the most important features to automatically select and classify them. However, the L1 regularized
SVM method can be less efficient in data analysis as the number of features that are automatically
selected increases. Therefore, in this study, the PCA-SVM method, which can easily manage key factors
by filtering a high amount of data in advance and has low computational effort and cost, was used [31].

The SVM model was implemented in MATLAB environment using “fitcsvm,” which trains the
SVM classification model with moderate predictors. The SVM model supports the classification of
predictor data using kernel functions.

3.2. Ensemble Method

An ensemble classifier was proposed to improve the classification performance of a single
classifier. It combines several weak models of a single classifier to improve the machine learning
results. This method was designed to solve the instability of the learning method by a single classifier,
which provides better prediction performance than the single model [32,33]. The combination of a
single model used in an ensemble classifier has the following methods, as shown in Figure 6.
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The bagging method can generate multiple bootstraps and combine the results of each bootstrap’s
prediction model to predict the results. Bagging also considers the training data as a population and
obtains an average prediction model, which can reduce the variance and improve the predictive power.

The boosting method of learning ensembles can reduce the training errors rapidly and easily by
combining slightly lower predictive weak classifiers, creating a single strong classifier that performs
slightly better, and showing better predictive power than the bagging method by improving the
predictive error.

The model joining method used in this study is a boosting method, which makes it easier and
faster to build a model than other joining methods. In addition, the adaptive boosting method was
used to supplement the boosting method step by step and combine them to amplify the performance
of the strong classifier, and this is referred to as the Adaboost method. The Adaboost method is
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a sequential ensemble method in which the basic learners are created sequentially. Simple weak
classifiers complement each other. In addition, the higher weighting of previously misclassified
samples improves the overall performance and allows for better learning and classification by focusing
on the misclassified data.

3.3. Principal Component Analysis (PCA)

Principal component analysis (PCA) reduces high-dimensional data to low-dimensional data.
Orthogonal transformations are used to transform samples of a high-dimensional space that are likely
to be related to each other into samples of a low-dimensional space (principal components) that have
no linear correlation. The number of dimensions of the principal component is less than or equal to the
number of dimensions of the original sample. PCA linearly transforms data into a new coordinate
system in a manner that, when the data are mapped onto one axis, the axis with the largest variance
is placed as the first principal component and that with the second largest component as the second
principal component. As such, PCA is a classification method that divides the sample difference into
the components that best represent the difference.

4. Analysis and Result

Twelve features extracted from the FRF graph in Figure 3 were used to construct a basic data set
using PCA. As a result of the PCA, the feature value of the largest variance was the moment of real
value (PC1), and the feature value of the second largest variance was the moment of imaginary value
(PC2). Figure 7 shows two-dimensional scatter plots with PCs on the x-axis (PC1) and y-axis (PC2).
The PCA result revealed that the normal data were distributed over a fairly wide range. This is judged
to be an error that occurs because the porcelain insulators are used under various environmental
conditions. Data of the broken discs were found to be outside the distribution range of the normal data,
but some internal defect data were located close to the distribution range of normal data. Therefore, it
is necessary to set the distribution range between normal data and porcelain damage data for these
distribution results.
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4.1. Binary Linear Separation with SVM

First, the PCA data in Figure 7 were used as the basic data for the analysis using the hyperplane,
which is a linear binary classification method, among various SVM classification methods. Figure 8
shows the results divided into hyperplanes. The analysis allowed the crack and damage data of
ceramics to be distinguished from the normal data, but the internal damage data and most of the
normal data were distributed within the maximum margin of the hyperplane as the support vector.
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These results could be due to the large difference in variance between the two classes. Therefore, it is
clear that linear hyperplane classification is not suitable to analyze this data.
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4.2. Nonlinear Separation with a Single SVM

The results of a nonlinear analysis of the normal and defective specimens using the radial basis
function of the kernel function as a single SVM are shown in Figure 9.
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As a result, 94 out of 111 normal data were classified as normal, but all the defect data were
classified as support vectors. This indicates that they are distributed in the margin range of the
boundary dividing normal and defect data. Thus, they can be defective or normal for the defect in
each analysis, and it is difficult to accurately determine the data because they are separated by the
boundary. Therefore, because the data classification is ambiguous, additional analysis was conducted
to increase its reliability.

4.3. Nonlinear Separation with Multiple SVMs

Given that linear hyperplane analysis and nonlinear single SVMs are not suitable for the distribution
of basic data, a nonlinear analysis was performed using multiple SVMs with the kernel function.
The kernel function used was the radial basis function. When using a hyperplanar analysis and a
single SVM, the classes were classified into normal and defect classes; however, in this analysis, the
classes were classified into three categories: cristobalite, alumina, and defect. The SVM essentially
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involves binary classification; therefore, we created an individual SVM model for three classes and
analyzed them through a parallel operation. Ten data points were randomly extracted and evaluated
using the developed SVM model. The results are presented in Table 2. According to the criterion to
classify cristobalite into cristobalite, the value of the SVM1 prediction model should be close to 1 in
the three prediction models and close to 0 in the SVM2 and SMV3 models. According to the criterion
for judging alumina as alumina, the value should be close to 1 in the SVM2 model and close to 0 in
the SVM1 and SVM3 models. According to the criterion for determining defects as defects, the value
should be close to 1 in the SVM3 model and close to 0 in the SVM1 and SVM3 models.

Table 2. Prediction values by nonlinear separation with multiple SVMs.

True Label Predict Label
Posterior

SVM1 SVM2 SVM3

Alumina ‘Alumina’ 0.1043 0.8955 0.0002
Cristobalite ‘Cristobalite’ 0.9990 0.0001 0.0009
Cristobalite ‘Cristobalite’ 0.9990 0.0001 0.0009
Cristobalite ‘Cristobalite’ 0.9993 0.0006 0.0001
Cristobalite ‘Cristobalite’ 0.9993 0.0002 0.0005

Alumina ‘Alumina’ 0.0000 0.9899 0.0101
Cristobalite ‘Cristobalite’ 0.9992 0.0000 0.0008

Alumina ‘Alumina’ 0.0000 0.9936 0.0063
Defect ‘Defect’ 0.0589 0.0116 0.9295

Cristobalite ‘Cristobalite’ 0.9986 0.0003 0.0011

The post-distribution range for the entire data was calculated using the multi-SVM model, and the
results are shown in Figure 10. The prediction results for these three classes are presented in Table 3.
The results confirmed that most cristobalite data were distributed in the negative range based on the
zero value of PC1 and that the alumina data were distributed in the positive range. Based on this, the
boundary between the cristobalite and alumina data was separated with high accuracy. In addition,
it was possible to set the range to accurately classify defect data and general data. However, when
there is a boundary (margin) region owing to the SVM analysis characteristics, it may be difficult to
determine the correct class when some data are distributed at the boundary.
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The results of classifying the normal and damaged porcelain insulators using the three SVM
classification methods showed that the linear hyperplane classification and the nonlinear single SVM
method are not suitable for data classification in this study. In contrast, the nonlinear multiple SVM
method is considered suitable for data classification. However, data exist in the boundary region owing
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to various errors depending on the use environment of the porcelain insulator, and it is necessary to
apply another machine learning method to distinguish these data.

Table 3. Prediction ratio by nonlinear separation with multiple SVMs.

Type Cristobalite Alumina Defect Boundary

Cristobalite 72 (97.3%) - - 2 (2.7%)
Alumina - 36 (97.3%) - 1 (2.7%)

Defect - - 6 (100%) -

Therefore, an analysis was performed by applying the ensemble technique, which is used for
creating a suitable model by sequentially selecting the appropriate model and assigning weights to
errors in each training step.

4.4. Ensemble Analysis Using Adaboost

The ensemble analysis was performed using the AdaBoost method, a type of boosting method.
The ensemble analysis is a method for creating an ensemble model suitable for data classification using
various weak learners. The Adaboost is a method that increases the reliability of classification through
the next learner by weighting misclassification. Therefore, the optimal number of learners and the
accuracy of classification were verified by increasing the number of learners. The region images for
distribution of the range of data according to the ensemble analysis are shown in Figure 11. As the
number of learning increased, it was possible to classify the area more accurately and precisely and
predict with high accuracy. The prediction accuracy was 100% and the learning time was 0.28 s when
seven learners were used. However, in the future, if a larger dataset is used, inefficiencies may occur,
for example, with respect to model development time. Therefore, using the training count ratio instead
of the entire dataset would increase the efficiency of prediction time and prediction degree.
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5. Conclusions

A machine learning model for damage assessment of porcelain insulators using the FRF is
proposed with multiple SVMs and the Adaboost ensemble method. The machine learning model
for damage assessment was developed by analyzing the correlation between the extracted features,
materials, and defects using the frequency response data of 117 porcelain insulators collected from
154 kV transmission towers in four regions.

• A nonlinear classification prediction SVM model was more accurate than a linear classification
one, and a combination of three nonlinear SVM models resulted in the development of the most
reliable model.

• The ensemble model could obtain more accurate prediction results than the SVM model by
combining multiple single classifiers, weighting the classification result errors, and increasing the
number of learners. Moreover, when seven learners were used, the prediction accuracy was the
highest and the data distribution area could be finely divided.

• The classification of porcelain damage specimens was correct; however, it could be difficult to
set the division area because certain data of some internal damage specimens are close to the
distribution range of normal data. Therefore, it is necessary to establish a dataset by measuring
several types of defects that may occur, in order to more accurately set a damage distribution area
and develop a predictive model.
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