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Abstract: A fully differential multipath current-feedback instrumentation amplifier (CFIA) for a
resistive bridge sensor readout integrated circuit (IC) is proposed. To reduce the CFIA’s own offset
and 1/f noise, a chopper stabilization technique is implemented. To attenuate the output ripple caused
by chopper up-modulation, a ripple reduction loop (RRL) is employed. A multipath architecture is
implemented to compensate for the notch in the chopping frequency band of the transfer function.
To prevent performance degradation resulting from external offset, a 12-bit R-2R digital-to-analog
converter (DAC) is employed. The proposed CFIA has an adjustable gain of 16–44 dB with 5-bit
programmable resistors. The proposed resistive sensor readout IC is implemented in a 0.18 µm
complementary metal-oxide-semiconductor (CMOS) process. The CFIA draws 169 µA currents from
a 3.3 V supply. The simulated input-referred noise and noise efficiency factor (NEF) are 28.3 nV/

√
Hz

and 14.2, respectively. The simulated common-mode rejection ratio (CMRR) is 162 dB, and the power
supply rejection ratio (PSRR) is 112 dB.

Keywords: multipath current-feedback instrumentation amplifier (CFIA); resistive bridge sensor
readout integrated circuit (IC); chopper stabilization technique; ripple reduction loop (RRL)

1. Introduction

Recently, the Internet of Things (IoT) has played a significant role in many aspects of modern
life, such as medical care, automobiles, homes, and amenities [1]. IoT sensors that perceive and
collect information and circuits that readout these sensors with high precision are also becoming more
important [2]. Resistive micro-electro-mechanical systems (MEMS) sensors that use a piezoresistive
effect have variousways, such as strain gauges and pressure, acceleration, and force sensors [3–7].
The need for smaller, less expensive high-performance sensors has developed in a way that makes
sensors and sensing elements smaller. To readout these sensors precisely, readout circuits should
have low-noise, high input impedance, low power, and high common-mode rejection ratio (CMRR)
characteristics. Conventionally, the well-known 3-opamp instrumentation amplifier (IA) scheme
features a high input impedance. Its disadvantage is that the degree of matching resistance greatly
influences the CMRR, making it difficult to achieve a high CMRR. A current-feedback instrumentation
amplifier (CFIA) consists of an input transconductance stage and output Miller integrator stage.
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The CFIA scheme features high input impedance, high CMRR, high open-loop gain, and low power
consumption, because the input common-mode (CM) voltage is isolated by the input transconductance
stage [8]. Although the CFIA has advantages in terms of its simple structure, the input offset
and noise can cause performance degradation. To implement the low-noise characteristics of the
instrumentation amplifier (IA), auto-zeroing, correlated double sampling (CDS), and the chopper
stabilization technique are the most widely used schemes [9–12]. Unlike thermal noise with a wide
frequency band, flicker noise and DC offset overlap with the sensor output signal. For the desired
output voltage of the IA, reduction of flicker noise and DC offset are essential. The auto-zeroing and
CDS schemes sample the offsets in the input capacitor of the IA, which attenuates flicker noise and DC
offset through comparison and amplification. However, the high-frequency thermal noise folds and
appears in integrated form in the baseband because of aliasing. The chopper stabilization technique
reduces baseband noise through up-modulating the flicker noise and DC offset in the baseband; thus,
a thermal-noise-limited level can be achieved. However, up-modulated DC offset and flicker noise can
cause a ripple in the output. To solve this problem, a ripple reduction loop (RRL) is used to demodulate
the ripple and provide negative feedback to the input through the integrator [13]. The RRL attenuates
the output ripple caused by chopping, but there are disadvantages to generating notches of the transfer
function in the chopping frequency band.

In this study, a low-noise bridge resistive sensor readout circuit with dual offset reduction is
implemented. (1) The offset inside the amplifier is reduced by the multipath offset stabilization
topology. (2) The offset outside the amplifier is adjusted by the R-2R digital-to-analog converter (DAC)
in the current-feedback path. To attenuate the flicker noise and DC offset in the baseband, the chopper
stabilization technique is employed. The RRL is adopted to attenuate the output ripple. A multipath
topology is employed to compensate for the notches of the transfer function in the chopping frequency
band. This CFIA achieves a high CMRR, high input impedance, and low power consumption.

2. Circuit Implementation

Figure 1 shows the proposed resistive sensor readout analog-front-end (AFE) IC architecture.
The architecture consists of a multipath CFIA, low-pass filter (LPF), buffer, 12-bit successive
approximation register analog-to-digital converter (SAR ADC), R-2R DAC, and feedback resistor.
To drive a variety of resistive sensors, the feedback resistor R2 is designed by implementing a 5-bit
programmable resistor. Depending on the external 5-bit digital input, the proposed resistive sensor
readout AFE has an adjustable gain of 16–44 dB. Figure 2 shows the operation of the R-2R DAC
calibration. The R-2R DAC is designed to compensate for the external offset generated by sensor
element mismatches. The R-2R DAC has the ability to adjust the amplified external offset voltage
between 3.3 V and -3.3V, with 1.61 mV intervals through the 12-bit digital input. The output voltage of
the proposed CFIA without the external offset and R-2R DAC is expressed as (1).

OUTP−OUTN =
(
1 + 2 ×

R1

R2

)
× (INP− INN) (1)

Each unit of the R-2R DAC, consisting of RD and 2RD resistors, has an output resistance of RD.
The output resistance between the DACP and DACN node can be interpreted as 2RD. Therefore,
the output voltage of the proposed CFIA with R-2R DAC is expressed as (2).

OUTP−OUTN =
(
1 + 2 × R1

R2

)
× (INP− INN)

+ R1
RD
× ((INP− INN) − (DACP−DACN))

(2)
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Through the second term of (2), the amplified external offset can be calibrated. In this design, R1 can
influence offset calibration. Therefore, R2, which is independent from offset calibration, is configured
as a programmable resistor.
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Figure 2. Operation of R-2R digital-to-analog converter (DAC) calibration.

Figure 3 shows the block diagram of the proposed CFIA. The proposed fully differential CFIA
circuit consists of two main signal paths: a low-frequency and a high-frequency path. The low-frequency
path employs the chopper stabilization technique to reduce flicker noise and DC offset in the baseband.
To reduce the ripple caused by chopping, the RRL is implemented. To compensate for the notch in the
transfer function of the chopping frequency band, the high-frequency path is used.
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Figure 3. Block diagram of the proposed current-feedback instrumentation amplifier (CFIA).

2.1. Low-Frequency Path

The R-2R DAC reduces the offset caused by sensor element mismatches but does not reduce
the IA’s own internal offset. The chopper implements an internal offset reduction. The chopper is
operated by two nonoverlapping clocks. As shown in Figure 3, the sensor output signal is modulated
into the high-frequency band through a modulation chopper (CH1), and the modulated signal is
demodulated back into the baseband through the demodulation chopper (CH3). Simultaneously,
a modulation chopper (CH3) modulates flicker noise and DC offset into the high-frequency band.
Consequentially, the up-modulated flicker noise and DC offset are reduced through a Miller integrator
(Gm4) and combined with high-frequency path signals. At the output of the Miller integrator (Gm4),
the up-modulated flicker noise and DC offset generate a ripple. The ripple is negative feedback to the
input of the chopper (CH3) through an AC coupling capacitor (Cs) and the current buffer.

The overall input impedance of the CFIA is determined by the switched capacitor resistor,
and is generated by the chopping frequency and input parasitic capacitor (Cp1, Cp2, and Cp3).
Consequently, the input impedance is inversely proportional to the chopping frequency and input
parasitic capacitor. If the chopping frequency is reduced to increase the impedance, the output ripple
increases. If the parasitic capacitor is reduced to increase the impedance, flicker noise tends to prevail.
Achieving high-performance CFIA requires delicate consideration of trade-offs between noise and
input impedance.

2.2. High-Frequency Path

Figure 4 shows a schematic of the high-frequency path. The high-frequency path consists of a
three-input transconductance stage and the Miller integrator. The input, feedback, and low-frequency
path output signals are converted to currents through Gm11, Gm12, and Gm5, respectively, and entered
into the Miller integrator. At the Gm3 stage, to achieve a fine-frequency response in the high-frequency
path, nested Miller compensation is implemented [14]. To compensate for the drawbacks of the
dead-band in the crossover area, a Monticelli class AB output stage is implemented (M17, M18, M19,
and M20). It has the advantages of linear output characteristics and distortion reduction. Figure 5
shows a schematic of the high-frequency path common-mode feedback (CMFB) circuit. The gate
voltage of transistors M13 and M14 is determined by the active CMFB circuit, which has the advantage
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of increasing bandwidth. To stabilize the output voltage, the CMFB circuit is also implemented at the
output stage.
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3. Simulation Results

Figure 6 shows the transient response of a CFIA with a 20mV amplitude input sine wave of 1 kHz.
The gain of the CFIA was set to have 11 V/V through a 5-bit programmable resistor. The graph shows
the input/output in the form of a differential signal. The output signal is simulated to have a peak
value of 220.07 mV at 0.25 ms. Figure 7 shows the simulated transfer function in differential mode,
VDD, GND, and common-mode. The simulated CMRR achieves 162 dB. The power supply rejection
ratio (PSRR+ and PSRR-) are simulated at 112 and 110 dB, respectively. Figure 8 shows the frequency
response of the CFIA. The open-loop gain is simulated at 132.5 dB at 1 mHz. The simulated unit gain
bandwidth (UGBW) is 59.2 kHz, and the phase margin is 75.1◦ at UGBW. Figure 9 shows the simulated
input-referred noise. The simulated input-referred noise is 30 nV/

√
Hz at 1 Hz and 28.3 nV/

√
Hz at

1 kHz.
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Figure 10 shows the simulated CFIA output DC operating point under R-2R DAC digital input
variation. It shows that the offset of the CFIA output can be linearly calibrated within a ±3.3 V range.
The performance summary and comparison with other papers are shown in Table 1. The efficiency of
the instrumentation amplifier can be evaluated using a noise efficiency factor (NEF), as shown in (3),
where Vrms,ni is the input-referred noise RMS value, Itot is the total current consumption, UT is thermal
voltage, and BW is bandwidth of the amplifier.
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Table 1. Performance summary of proposed current-feedback instrumentation amplifier (CFIA) and
comparison with other instrumentation amplifiers (IAs).

This Work [9] [15] [16] [17]

Process (µm) 0.18 0.5 0.7 0.7 0.32
Supply (V) 3.3 3–5.5 5 5.5 3.3

Current (µA) 169 1700 290 325 170
DC gain (dB) 132.5 1000 - - 201.2
CMRR (dB) 162 142 127 130 >120
PSRR+ (dB) 112 138 130 114 115
PSRR− (dB) 110 - - - -
BW (kHz) 59.2 800 800 640 40

Input-referred noise
(nV/
√

Hz) 28.3 27 17 42 18

NEF 14.2 43 11.2 29.2 10.6

4. Discussion and Conclusions

A fully differential multipath CFIA for a bridge resistive sensor readout IC is presented.
The proposed CFIA has the ability to reduce external and internal offsets, thereby achieving low-noise
characteristics. To attenuate the internal offset, the chopper stabilization technique is implemented.
To reduce the output ripple caused by chopper up-modulation, an RRL is used. A multipath
architecture is employed to compensate for the notch in the chopping frequency band of the transfer
function. To calibrate external offset, a 12-bit R-2R DAC is adopted. The proposed resistive sensor
readout IC is implemented using 0.18 µm CMOS technology. The current consumption of CFIA is
169 µA with a 3.3 V supply. The simulated input-referred noise and NEF are 28.3 nV/

√
Hz and 14.2,

respectively. The CFIA achieves 112 dB PSRR+ and 162 dB CMRR. The proposed CFIA, which achieves
low-noise characteristics, is expected to be employed in various resistive IoT sensor applications with
high precision.
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