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Abstract: This paper targets on the design and analysis of specific types of transfer functions
obtained by the summing operation of integer-order and fractional-order two-port responses. Various
operations provided by fractional-order, two-terminal devices have been studied recently. However,
this topic needs to be further studied, and the topologies need to be analyzed in order to extend the
state of the art. The studied topology utilizes the passive solution of a constant-phase element (with
order equal to 0.5) implemented by parallel resistor–capacitor circuit (RC) sections operating as a
fractional-order two-port. The integer-order part is implemented by operational amplifier-based
lossless integrators and differentiators in branches with electronically adjustable gain, useful for time
constant tuning. Four possible cases of the fractional-order and integer-order two-port interconnections
are analyzed analytically, by PSpice simulations and also experimentally in the frequency range
between 10 Hz and 1 MHz. Standard discrete active components are used in this design for laboratory
verification. Practical recommendations for construction and also particular solutions overcoming
possible issues with instability and DC offsets are also given. Experimental and simulated results are
in good agreement with theory.

Keywords: constant phase element; differentiator; electronic adjusting; fractional-order element;
integrator; summing of responses; two-port transfer; variable gain amplifier

1. Introduction

Circuit designs using fractional-order devices require a special type of analysis and evaluation
because the resulting behavior of these systems is quite different and more complex than in cases of
standard integer-order designs. Frequency responses influenced by the fractional-order behavior of
used components are studied more frequently in recent years [1]. Many works in this field focus on
novel solutions of integral and derivative two-ports (for example [2–9]), proportional integral and
derivative controllers (for example [10–18] and so-called bilinear two ports [8,9,19–21] serving for
various purposes. Two ports, known as integrators and differentiators, have started to be interesting
for designers of fractional-order systems, and especially for proportional, integral and derivative
controllers (PIDs). However, these systems are analyzed as complete solutions, and their transfer
functions are considered in overall form (sum of all three responses).

The overview of typical examples dealing with the design of fractional-order integrators and
differentiators (from the above discussed groups) is given in Table 1.
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Table 1. Comparison of standalone fractional-order integrator/differentiator solutions and solutions included in designs of controllers and other relevant
design approaches.

Reference
Design Target

(Both = Integrator
and Differentiator)

Simple Single
Parameter Electronic

Time Constant
Tuning

Active
Devices

Solution of
Fractional-Order

Part

Topological
Circuit

Complexity

SW Support
not Required

Tested
Operational
Bandwidth

Application,
if Any

Response Based on
Combination of

Integer and
Fractional-Order

Integrators/Differentiators Only

[2] integrator No OAs passive Low Yes <1 MHz N/A -
[3] both Yes DVCCTA passive Low Yes <100 kHz N/A -

[4] both No CMOS current
mirrors active Low Yes <100 Hz

Sum of
reconfigurable

filtering
responses

No

[5] integrator No CMOS OTAs active Medium Yes <1 kHz N/A -
[6] both No CFOAs active Medium Yes <100 kHz N/A -

[7] both No Single
EX-CCII passive Low Yes <1 kHz PID No

[8] both No CMOS block active Low Yes <100 Hz high-pass/low-pass
filter No

[9] integrator Yes CCII+, VGA active High Yes <10 MHz N/A -

Integrators/Differentiators in Controllers

[10] integrator No OAs passive Low Yes <10 kHz I controller -
[11] both No OAs passive Low Yes <100 Hz PID No
[12] both N/A FPAA (OAs) active High No <100 Hz PID No
[13] both No CMOS OTAs active Medium Yes <1 kHz PID No

[14] both No CMOS
VDCCs passive Low Yes <1 MHz PID No

[15] both No MCDUs active Medium Yes <10 MHz PI/D No
[16] both N/A FPGA/DSP * active High No <tens of MHz PID No
[17] both N/A FPGA/DSP * active High No <tens of MHz N/A -

Bilinear Synthesis of Integrators/Differentiators

[8] both No CMOS block active Low Yes <1 MHz Active CPE -
[18] both No CMOS OAs active High Yes <1 kHz PI controller No
[19] integrator No CMOS OTAs active High Yes <10 MHz N/A -
[20] both No CFOAs active Medium Yes <100 kHz N/A -
[21] integrator No OTAs active Medium Yes <100 kHz N/A -
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Table 1. Cont.

Reference
Design Target

(Both = Integrator
and Differentiator)

Simple Single
Parameter Electronic

Time Constant
Tuning

Active
Devices

Solution of
Fractional-Order

Part

Topological
Circuit

Complexity

SW Support
not Required

Tested
Operational
Bandwidth

Application,
if Any

Response Based on
Combination of

Integer and
Fractional-Order

Proposed

[3,5,7,9] both Yes OAs, VGAs passive Low Yes <1 MHz

Sum of
integer- and

fractional-order
responses

Yes

* general functional blocks; N/A—information not shown, not available; CCII+—current conveyor of second generation; CFOA—current feedback operational amplifier;
DVCCTA—differential voltage current controlled current conveyor transconductance amplifier; EX-CCII—extra inputs current conveyor of second generation; FPAA—field programmable
analog array; FPGA/DSP—field programmable gate array/digital signal processing; MCDU—modified current differencing unit; OA—operational amplifier; OTA—operational
transconductance amplifier; VDCC—voltage differencing current conveyor; VGA—variable gain amplifier; low—less than 6 active devices (less than 6 passive devices, solution of CPE
excluded), medium—between 6 and 10 active devices, high—more than 10 active devices.
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D. Mondal et al. [2] brought a solution of the lossless integrator using a fractional-order passive
element (FOE), known also as constant phase element (CPE) as a part of feedback loop of operational
amplifier (OA) followed by inverter. However, adjustability and other features (two different slopes
in magnitude frequency responses, various starting and final phase shifts in observed bandwidth,
etc.) are not studied. D. Goyal et al. [3] presents integrators/differentiators implemented by complex
active CMOS circuitry with the benefit of simple electronic reconfiguration. A similar approach was
used by G. Tsirimokou et al. [4] where resulting integrators/differentiators are used for the design of
a special type of filter performing also the sum/subtraction of current outputs. The synthesis of an
active emulator of FOE based on operational transconductance amplifiers and its implementation in an
OA-based lossless integrator is shown by G. Tsirimokou et al. [5]. Special active building blocks used
in works [3–5,8] utilize approximation of the fractional-order behavior by higher-integer-order filtering
responses allowing the electronic configuration of transfer coefficients (numerator/denominator).
Similarly, G. Tsirimokou et al. [6], there is a discrete solution of this topology using passive parameters
for appropriate configuration of the transfer. Topology presented by S. Kapoulea [7] represents one from
the simplest examples of device using passive form of FOE-based on serial/parallel interconnections of
RC segments. R. Sotner et al. [9] introduces method for the electronic rescalability of the operational
bandwidth of the fractional-order integrator, by single DC voltage controlling several capacitance
multipliers. Similarly to G. Tsirimokou et al. [6], this topology uses passive parameters for the setting
of the response approximating required fractional-order behavior. Note that except R. Sotner et al. [9],
there was no attempt to obtain single a parameter electronic adjustability of time constant in the area
of fractional-order two-ports (integrators/differentiators).

Many interesting solutions of two-port interconnections have been presented as parts of various
fractional-order controllers [10–18]. Many of them are using standard topologies based on OA [10,11]
because of their simplicity. Some approaches target on extensive and complex design, based on field
programmable analog arrays (FPAAs) [12] and field programmable gate arrays (FPGAs) [16], [17]
because of their programmability. Moreover, FPGA represents a digital-only solution of the design.
It allows the integration of highly complex topologies [12,16,17], but certain latency and delay of
processing may occur in some cases. However, a significant drawback of these concepts is the
necessity of software development and also quite high costs in comparison to a simple analog
solution. Special analog active devices (with controllable internal parameters) used in the synthesis of
controllers bring certain advantages in the simplification of the design and possibility of electronic
adjustability/reconfigurability at the same time [13–15].

So-called bilinear synthesis brought significant contributions to the adjustability of the features of
fractional-order devices [8,18–21]. Electronic tuning of zero and pole frequencies allows one to form an
almost arbitrary frequency response with very simple and immediate reconfiguration [8,19–21].

Analysis of known solutions leads to the following conclusions:

(a) Many proposed circuitries (except FPAA, FPGA-based) have quite complex topology, with many
active and/or passive elements [9,12,16–19], especially circuits with fractional-order behavior and
approximations by higher-order filters [3,5,6,13] or chain of bilinear segments [8,9,14,15,18–21],

(b) some concepts require software programming [12,16,17],
(c) tested operational bandwidth is quite narrow in many cases [3–5,7,8,11–13,18],
(d) summing of fractional-order as well as integer-order two ports was not analyzed deeply in

the past,
(e) single-parameter electronic adjustment of the time constant of the resulting response of two-port

summing was not studied in the past, except R. Sotner et al. [9], but the overall circuit topology is
based upon a chain of bilinear sections, and therefore, it is not one of the simplest solutions

Despite the presence of various solutions of the above-mentioned two-ports, the effects of their
mutual interconnections are studied rarely [4,8]. The most known cases of integral and derivative
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responses used simultaneously can be found in the field of controllers [7,10–16,18]. However, a detailed
study of resulting responses is often omitted.

The first work (Tsirimokou et al. [22]), where various simple interconnections of fractional-order
devices has been studied, targets on combinations of two-ports. This work gives the evaluation of
the resulting impedance functions of serial/parallel interconnections of fractional-order capacitors
(RC approximants), where each two-terminal is actually represented by an active solution allowing
simple electronic configurability and also floating implementation. Experimental tests were performed
for very low frequencies (<1 kHz). Kartci et al. [23] introduced work dealing with more complex
interconnections of real solid-state, fractional-order two-terminals. However, despite further attempts
in the synthesis of passive [24,25] or active [26] two-terminals, there are no attempts studying both
simple and complex interconnections of fractional-order and integer-order two-ports. Moreover, the
area of theoretical knowledge of fractional-order systems significantly extends into practical industrial
applications [27].

To the best of the authors’ knowledge, a similar study targeting on interconnections of fractional and
integer order two-ports has not been presented in literature. However, there are many particular cases
that should be studied. This work focuses deeply on the behavior of the sum of two branches, including
fractional-order, two-port (differentiator or integrator) and integer-order two port (differentiator or
integrator). Features of resulting responses are studied theoretically, by PSpice simulation, and also
experimentally. The practical notes for the construction of these interconnections of two-ports are also
given. The initial work in this field was presented as conference paper [28]. However, very limited
example of test cases was presented. In the case of this paper, the setting is totally different and also
the types of active devices are not the same.

This work targets on:

(a) the derivation of analytical expressions for mixed transfers, including sum of integer and
fractional-order two-ports,

(b) a single parameter electronic adjustment of the respective time constants,
(c) the practical verification and also precautions of real implementation,
(d) an extension of the state of the art in the field of serial/parallel interconnections of fractional-order

two-terminal passive elements [22,23] to the two-port area.

The rest of this paper has the following organization: Section 2 describes the general block concept
of the tested two-port interconnections. Section 3 shows features of the CPE element (RC approximant)
used in analyzed cases. Section 4 presents four possible combinations of integrator and differentiator
(fractional- and integer-order transfer branch) when summing their output responses, and it shows their
analytical analysis. Practical issues in tested topologies, as well as possible solutions/compensations
of these effects are discussed in Section 5. Section 6 introduces experimental results, and Section 7
concludes this work.

2. General Concept of Two-Port Interconnection

This work introduces the way of analyzing behavior of the resulting response of a sum of
lossless integrator and differentiator where each of them has integer as well as fractional-order
character (Figure 1). We will also observe the impact of the gain variation (designated as A1 and A2 in
Figure 1) on the features of each path. We decided to study four particular cases: (a) integer-order
integrator + fractional-order integrator, (b) integer-order differentiator + fractional-order differentiator,
(c) integer-order integrator + fractional-order differentiator, (d) integer-order differentiator +

fractional-order integrator.
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Figure 1. General concept of all four analyzed systems (responses).

The transfer of the generalized system has form:

KC(s) = A1·H(s) + A2·G(s) (1)

where partial transfers H(s) and G(s) are as follows:

Hint_C(s) =
1
τ1s

(2)

Gint_CPE(s) =
1
τ2sα

(3)

Hdi f f _C(s) = τ1s (4)

Gdi f f _CPE(s) = τ2sα (5)

Hdi f f _C(s) = τ1s (6)

Gint_CPE(s) =
1
τ2sα

(7)

Hint_C(s) =
1
τ1s

(8)

Gdi f f _CPE(s) = τ2sα (9)

where the particular index of H(s) and G(s) indicates the character of the accumulating device used in a
particular two-port, and τ1,2 are initial values of the time constants.

Commercially-available, active devices can be used for purposes of practical verification of the
concept from Figure 1 [29]. Variable gain amplifiers (VGAs) providing control of A1 and A2 gains will
be based on VCA810 devices [30], the standard concept of the integrator and differentiator topology will
utilize the LT1364 operational amplifier [31], and the sum operation is easily achievable by an AD8130
element [32]. In order to obtain fractional-order integrator or differentiator topology, a fractional-order
element is required. The Constant Phase Element (CPE) is one of the possibilities described in the next
section. The following subsections describe each of the four considered topologies, together with the
most significant simulation and experimental results.

3. Passive Solution of Constant Phase Element

We selected CPE having order α = 0.5 with Cα = 56 µF/s1/2 for all experimentally studied cases
(presented in Section 6). Its practical implementation by RC passive topology is shown in Figure 2, as
well as its ideal and simulated magnitude and phase impedance characteristics. The phase accuracy
of this CPE reaches ∆ϕα = ±2◦ in the theoretical operational bandwidth between 1 Hz and 3 MHz.
The design was performed by the algorithm explained in several works in detail [14,33,34].
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4. Analytical Analysis of Two-Port Interconnections

We divided ideal analysis to four sections in accordance to discussion in Section 2.
Each interconnection is represented by real circuit topology, including all used active devices and values
of used passive elements, as well as compensating elements improving stability as will be explained
later. Note that compensating passive elements, drawn in the figures by dashed lines, are excluded
from analytical analysis because of simplicity. The following ideal analyses use τ1(integer) = 100 µs,
τ2(fractional/CPE) = 5.6 ms and fixed A1 = A2 = 1.

4.1. Sum of Integer and Fractional-Order Integrator Responses

Practical circuitry implementing the fractional-order integrator and integer-order integrator
derived from the general concept in Figure 1 is shown in Figure 3. Its transfer function is given by:

KI_I(s) =
A1

τ1s
+

A2

τ2sα
(10)



Appl. Sci. 2020, 10, 54 8 of 25

Its representation in complex form is quite extensive:

KI_I(ω) =
1

τ1τ2ω1+α

{
A2τ1ω sin

(
(1 + α)

π
2

)
+ j

[
A2τ1ω cos

(
(1 + α)

π
2

)
−A1τ2ω

α
]}

(11)

Magnitude and phase part can be expressed as, respectively:

∣∣∣KI_I(ω)
∣∣∣ =

1
τ1τ2ω1+α

√[
A2τ1ω sin

(
(1 + α)

π
2

)]2
+

[
A2τ1ω cos

(
(1 + α)

π
2

)
−A1τ2ωα

]2
(12)

ϕI_I(ω) = tan−1

A2τ1ω cos
(
(1 + α)π2

)
−A1τ2ωα

A2τ1ω sin
(
(1 + α)π2

)  (13)

The Mathcad analysis of ideal transfer function (10) is shown in Figure 4 as three dimensional (3D)
plots. Variation of order α between 0 and 1 indicates a clear point of break where the slope divides
into two parts (integer-order low-frequency zone and fractional-order high-frequency zone), and the
movement of position of this intentional zero from high frequencies to low frequencies, as well as
increasing the character of the corner phase shift at the end of the operational band (from −90◦ up to 0◦).
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4.2. Sum of Integer and Fractional-Order Differentiator Responses

Figure 5 shows interconnection resulting from the summing operation of integer and
fractional-order differentiator responses. The transfer function can be expressed as:

KD_D(s) = A1τ1s + A2τ2sα (14)

The rearrangement into complex form leads to:

KD_D(ω) = A2τ2ω
α cos

(
απ
2

)
+ j

[
A1τ1ω+ A2τ2ω

α sin
(
απ
2

)]
(15)

and after separation to magnitude and phase response we obtain:

∣∣∣KD_D(ω)
∣∣∣ =

√[
A2τ2ωα cos

(
απ
2

)]2
+

[
A1τ1ω+ A2τ2ωα sin

(
απ
2

)]2
(16)

ϕD_D(ω) = tan−1

A1τ1ω+ A2τ2ωα sin
(
απ
2

)
A2τ2ωα cos

(
απ
2

)  (17)

The Mathcad analysis of the transfer function (14) is shown in Figure 6. It shows that order
variation (the same as in the previous case) causes a very similar point of break on the magnitude
slope and occurrence of zero at low frequencies (especially for orders near to 1), and the cut of the
plane projection of the phase response confirms that this starting phase value (low frequencies) clearly
depends upon the value of the α order.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 9 of 25 

Figure 4. The three dimensional (3D) plot of studied ideal transfer response (10) in dependence on the 

value of the α variable: (a) magnitude vs. order vs. frequency dependence, (b) phase vs. order vs. 

frequency dependence. 

4.2. Sum of Integer and Fractional-Order Differentiator Responses 

Figure 5 shows interconnection resulting from the summing operation of integer and fractional-

order differentiator responses. The transfer function can be expressed as: 

  
_ 1 1 2 2

( )
D D

K s A s A s  (14) 

The rearrangement into complex form leads to: 

  
      

    
      

    
_ 2 2 1 1 2 2

( ) cos sin
2 2D D

K A j A A  (15) 

and after separation to magnitude and phase response we obtain: 

  
      

      
        

      

2 2

_ 2 2 1 1 2 2
( ) cos sin

2 2D D
K A A A  (16) 






   

 


 



  
  

  
  
  

  

1 1 2 2
1

_

2 2

sin
2

( ) tan

cos
2

D D

A A

A

 (17) 

The Mathcad analysis of the transfer function (14) is shown in Figure 6. It shows that order 

variation (the same as in the previous case) causes a very similar point of break on the magnitude 

slope and occurrence of zero at low frequencies (especially for orders near to 1), and the cut of the 

plane projection of the phase response confirms that this starting phase value (low frequencies) 

clearly depends upon the value of the α order.  

ZCPE

DDA

1

p1

n2

n1

p2

C1

C 

VoutVin

AD8130

VCA810

A1

VGA1

Vset_A1

opamp

opampVCA810

A2

VGA2

Vset_A2

OA2

OA1

LT1364

LT1364

R1

R2

1 kW

100 W

100 nF

Rc1

220 kW

Cc1

2.5 nF

sum

integer-order 

differentiator

fractional-order 

differentiator

gain stage 

(scaling)
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4.3. Sum of Integer-Order Integrator and Fractional-Order Differentiator Responses

This topology has behavior indicating a significant global minimum of the ideal transfer magnitude
because the decreasing and increasing magnitude in frequency response is given by the interconnection
of the integrator and differentiator (Figure 7). The response has this form:

KI_D1(s) =
A1

τ1s
+ A2τ2sα (18)

that can be easily modified to the complex expression:

KI_D1(ω) =
1
ωτ1

{
ω1+ατ1τ2A2 sin

(
(1 + α)

π
2

)
− j

[
ω1+ατ1τ2A2 cos

(
(1 + α)

π
2

)
+ A1

]}
(19)

and the resulting magnitude and phase responses of the two-port are:

∣∣∣KI_D1(ω)
∣∣∣ =

1
ωτ1

√[
ω1+ατ1τ2A2 sin

(
(1 + α)

π
2

)]2
+

[
ω1+ατ1τ2A2 cos

(
(1 + α)

π
2

)
+ A1

]2
(20)

ϕI_D1(ω) = tan−1

ω1+ατ1τ2A2 cos
(
(1 + α)π2

)
+ A1

ω1+ατ1τ2A2 sin
(
(1 + α)π2

)  (21)
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Figure 7. Practical solution of the summing response of fractional-order differentiator and integer
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The ideal analysis of (18) shown in Figure 8 indicates two-sides of the magnitude response with
different slopes and significant local minimum. The phase plot confirms the impact of the order on the
phase value in high-frequency corner (between 0◦ and 90◦).
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Figure 8. The 3D plot of studied ideal transfer response (18) in dependence on value of the α variable:
(a) magnitude vs order vs frequency dependence, (b) phase vs order vs frequency dependence.

4.4. Sum of Fractional-Order Integrator and Integer-Order Differentiator Responses

The last considered combination of integer-order and fractional-order response is shown in
Figure 9. The resulting frequency response is quite similar to the previous case:

KI_D2(s) = A1τ1s +
A2

τ2sα
(22)

again, we can modify it to the complex form:

KI_D2(ω) =
1

ωατ2

{
A2 cos

(
απ
2

)
+ j

[
ω1+ατ1τ2A1 −A2 cos

(
απ
2

)]}
(23)

and we can express the corresponding magnitude and phase responses:

∣∣∣KI_D2(ω)
∣∣∣ =

1
ωατ2

√[
A2 cos

(
απ
2

)]2
+

[
ω1+ατ1τ2A1 −A2 cos

(
απ
2

)]2
(24)

ϕI_D2(ω) = tan−1

ω1+ατ1τ2A1 −A2 cos
(
απ
2

)
A2 cos

(
απ
2

)  (25)

The 3D plot in Figure 10 also reports the significant global minimum of transfer (as expected).
However, the sides of both slopes are opposite with respect to the previous case. The cut in phase
projection shows the initial phase value (low-frequency corner) dependence on the order (start between
−90◦ and 0◦).
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5. Solving Non-Ideal Issues during the Tests

Note that the bridging resistor Rc1, being part of each of the presented summing solutions,
intentionally limits the direct current (DC) gain of OA1 to a finite value (�200) in order to minimize
the impacts of the saturation of the output because of nonzero DC offset caused by real asymmetry
of the active elements. Moreover, effects of high-gain blocks, as well as remaining DC offsets,
require manual compensations by DC voltage applied against real DC offset, as shown in Figure 11.
These compensations are required in both paths of the studied topology. In our case, the input
DC offsets reach values of tens of mV, approximately. However, it was sufficiently high to cause
saturation (Vout = VDD or VSS) of the OA output. Therefore, the compensation was provided really
carefully. Note that the output DC shift above ±50 mV causes a significant effect on the frequency
response accuracy.
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Figure 11. Principle of intentional DC gain limitation and compensation of DC offset and asymmetry
of inputs in the case of integer-order branch given as an example.

Moreover, also damping of unintentional oscillations should be done by a parallel connection of
the capacitor to the feedback resistor in the OA network, as shown in Figure 12. Note that gain caused
by the derivative character of the branch increases with frequency (more than 40 dB above 100 kHz).
The compensation of instability by additional CC1 and CC2 elements was prepared to suppress the
resonant peak approximately between 200 and 300 kHz, as shown in Figures 5, 7 and 9. Despite
quite high values of CC-s, the value of this intentional frequency zero is quite high because of parallel
resistors having low value (100 Ω and 1 kΩ). The approximate value of compensating zero frequency
can be calculated as f zC = 1/(2·π·R1CC1). For values included in Figure 12 it is 63 kHz. It indicates that
influences causing possible instability and oscillations above 100 kHz are sufficiently suppressed.
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Figure 12. An example of frequency compensation of instability in integer-order branch given as
an example.

6. Experimental Analysis

Two-ports discussed above were analyzed in PSpice software and also experimentally with real
devices. We used oscilloscope Keysight DSOX3022T with the Frequency Response Analysis (FRA)
option [35] for time domain as well the as frequency domain testing. The input signal level used in
tests was approximately 30 mVP-P because of the significant change of gain, and it was constant in
the whole observed band (20 Hz–1 MHz). The simultaneous time-domain and frequency-domain



Appl. Sci. 2020, 10, 54 14 of 25

measurements, enabled by this oscilloscope during the point-to-point FRA analysis, were necessary
due to clear visibility of the correct setting of DC offset error compensation.

We can calculate initial time constants of the OA-based integrator/differentiator directly from
values shown in Figures 3, 5, 7 and 9: τ1(integer) = 100 s (R1 × C1 = 1 kΩ × 100 nF), τ2(fractional/CPE) = 5.6
ms (R2 × Cα = 100 Ω × 56 µF/s1/2). The driving voltages Vset_A1 and Vset_A2 for the time constant
adjustment by gains A1 and A2 are considered between 0.85 and 1.35 V (A1,2 between 0.5 and 5 because
A1,2 = 10(2·(Vset_A1,2 − 1)) [30]) in order to observe a one-decade change of gain. However, increased gain
requires compensation of instability as well as DC offset (VGA output offset depends on actual gain),
as discussed above. Particular values of gains A1,2 are noted directly in presented graphs. Note that
our design targets are on the low-frequency band of operation (application field between 100 Hz and
100 kHz) because of expected limits (DC offset impacts for high gain scale, instability) of active devices
as well as simpler design for our exemplary purposes.

6.1. Analysis of Integer-and Fractional-Order Integrators and Differentiators

The frequency responses of key parts of the system (integrators/differentiators using integer- or
fractional-order capacitor) are studied before analysis of the response of the whole system (Figure 1).
Results are shown in Figure 13 for the integral branch and in Figure 14 for the derivative branch. Above
discussed parameters of time constants are valid also for this case. The operational bandwidth of the
integrators (considering phase changes) is limited into the range approximately between 50 Hz and
200 kHz. The operational band of differentiators is significantly lower (only 50 Hz–10 kHz) due to
high-frequency limitations and parasitic poles (and their intentional compensation) in case of a real
transfer function.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 14 of 25 

option [35] for time domain as well the as frequency domain testing. The input signal level used in 

tests was approximately 30 mVP-P because of the significant change of gain, and it was constant in the 

whole observed band (20 Hz–1 MHz). The simultaneous time-domain and frequency-domain 

measurements, enabled by this oscilloscope during the point-to-point FRA analysis, were necessary 

due to clear visibility of the correct setting of DC offset error compensation. 

We can calculate initial time constants of the OA-based integrator/differentiator directly from 

values shown in Figures 3, 5, 7 and 9: τ1(integer) = 100  (R1  C1 = 1 kW × 100 nF), τ2(fractional/CPE) = 5.6 ms 

(R2  Cα = 100 W 56 F/s1/2). The driving voltages Vset_A1 and Vset_A2 for the time constant adjustment 

by gains A1 and A2 are considered between 0.85 and 1.35 V (A1,2 between 0.5 and 5 because A1,2 = 

10(2∙(Vset_A1,2 – 1)) [30]) in order to observe a one-decade change of gain. However, increased gain requires 

compensation of instability as well as DC offset (VGA output offset depends on actual gain), as 

discussed above. Particular values of gains A1,2 are noted directly in presented graphs. Note that our 

design targets are on the low-frequency band of operation (application field between 100 Hz and 100 

kHz) because of expected limits (DC offset impacts for high gain scale, instability) of active devices 

as well as simpler design for our exemplary purposes. 

6.1. Analysis of Integer-and Fractional-Order Integrators and Differentiators  

The frequency responses of key parts of the system (integrators/differentiators using integer- or 

fractional-order capacitor) are studied before analysis of the response of the whole system (Figure 1). 

Results are shown in Figure 13 for the integral branch and in Figure 14 for the derivative branch. 

Above discussed parameters of time constants are valid also for this case. The operational bandwidth 

of the integrators (considering phase changes) is limited into the range approximately between 50 Hz 

and 200 kHz. The operational band of differentiators is significantly lower (only 50 Hz–10 kHz) due 

to high-frequency limitations and parasitic poles (and their intentional compensation) in case of a 

real transfer function. 

  
(a) (b) 

Figure 13. Frequency response of integer-order and fractional-order integrator: (a) magnitude 

responses; (b) phase responses. 

 

Figure 13. Frequency response of integer-order and fractional-order integrator: (a) magnitude responses;
(b) phase responses.Appl. Sci. 2019, 12, x FOR PEER REVIEW 15 of 25 

  
(a) (b) 

Figure 14. Frequency response of integer-order and fractional-order differentiator: (a) magnitude 

responses; (b) phase responses. 

6.2. Analysis of Sum of Integer and Fractional-Order Integrator Responses 

The experimental setup for this system shown in Figure 3 (both branches are integrators) is 

analyzed in this subsection. We separated results for the variation of individual scaling gains A1 and 

A2 (0.5→5) to Figures 15 and 16. While one gain was changed, the other one was set to a constant 

value of 1. 

  
(a) (b) 

Figure 15. Frequency response of the system shown in Figure 3 (sum of integer- and fractional-order 

integrator responses) when A1 (integer-order branch) is varying between 0.5 and 5: (a) magnitude 

responses; (b) phase responses. 

  
(a) (b) 

Figure 16. Frequency response of system in Figure 3 (sum of integer- and fractional-order integrator 

responses) when A2 (fractional-order branch) is varying between 0.5 and 5: (a) magnitude responses; 

(b) phase responses. 

Figure 14. Frequency response of integer-order and fractional-order differentiator: (a) magnitude
responses; (b) phase responses.



Appl. Sci. 2020, 10, 54 15 of 25

6.2. Analysis of Sum of Integer and Fractional-Order Integrator Responses

The experimental setup for this system shown in Figure 3 (both branches are integrators) is
analyzed in this subsection. We separated results for the variation of individual scaling gains A1 and
A2 (0.5→5) to Figures 15 and 16. While one gain was changed, the other one was set to a constant value
of 1.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 15 of 25 

  
(a) (b) 

Figure 14. Frequency response of integer-order and fractional-order differentiator: (a) magnitude 

responses; (b) phase responses. 

6.2. Analysis of Sum of Integer and Fractional-Order Integrator Responses 

The experimental setup for this system shown in Figure 3 (both branches are integrators) is 

analyzed in this subsection. We separated results for the variation of individual scaling gains A1 and 

A2 (0.5→5) to Figures 15 and 16. While one gain was changed, the other one was set to a constant 

value of 1. 

  
(a) (b) 

Figure 15. Frequency response of the system shown in Figure 3 (sum of integer- and fractional-order 

integrator responses) when A1 (integer-order branch) is varying between 0.5 and 5: (a) magnitude 

responses; (b) phase responses. 

  
(a) (b) 

Figure 16. Frequency response of system in Figure 3 (sum of integer- and fractional-order integrator 

responses) when A2 (fractional-order branch) is varying between 0.5 and 5: (a) magnitude responses; 

(b) phase responses. 

Figure 15. Frequency response of the system shown in Figure 3 (sum of integer- and fractional-order
integrator responses) when A1 (integer-order branch) is varying between 0.5 and 5: (a) magnitude
responses; (b) phase responses.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 15 of 25 

  
(a) (b) 

Figure 14. Frequency response of integer-order and fractional-order differentiator: (a) magnitude 

responses; (b) phase responses. 

6.2. Analysis of Sum of Integer and Fractional-Order Integrator Responses 

The experimental setup for this system shown in Figure 3 (both branches are integrators) is 

analyzed in this subsection. We separated results for the variation of individual scaling gains A1 and 

A2 (0.5→5) to Figures 15 and 16. While one gain was changed, the other one was set to a constant 

value of 1. 

  
(a) (b) 

Figure 15. Frequency response of the system shown in Figure 3 (sum of integer- and fractional-order 

integrator responses) when A1 (integer-order branch) is varying between 0.5 and 5: (a) magnitude 

responses; (b) phase responses. 

  
(a) (b) 

Figure 16. Frequency response of system in Figure 3 (sum of integer- and fractional-order integrator 

responses) when A2 (fractional-order branch) is varying between 0.5 and 5: (a) magnitude responses; 

(b) phase responses. 

Figure 16. Frequency response of system in Figure 3 (sum of integer- and fractional-order integrator
responses) when A2 (fractional-order branch) is varying between 0.5 and 5: (a) magnitude responses;
(b) phase responses.

The measured time domain responses were studied in more detail at frequency in the middle of
the considered band (10 kHz). Output responses on square-wave as well as triangular input voltage
are shown in Figure 17 for A1 = A2 = 1.

The change of gains A1, A2 allows one to set time constants of both paths independently
(theoretically: τ1 ∈ (200 µs, 20 µs) and τ2 ∈ (11 ms, 1.1 ms) for A1,2 ∈ (0.5, 5.0)) and therefore also the
frequency position of the point of break can be electronically controlled. It can be useful for controllers
requiring immediate change on their response.
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6.3. Analysis of Sum of Integer and Fractional-Order Differentiator Responses

This system shown in Figure 5 consists of differentiators in both branches. The achieved behavior
is indicated in Figures 18 and 19 (again for the same values of A1,2 gains). Example of time domain
analysis of the output response is shown in Figure 20.
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6.4. Analysis of Sum of Integer-Order Integrator and Fractional-Order Differentiator Responses

This specific case shown in Figure 7 implements the sum of integer-order integrator and
fractional-order differentiator. Figures 21 and 22 indicate expected minimum of transfer (magnitude)
given by intentional zero frequencies. Figures 23–25 show particular time-domain wave forms at
frequencies in area with dominance of integration (800 Hz), differentiation (100 kHz), as well as a
frequency of 7 kHz being close to the gain minimum (selected example for A1 = 5, A2 = 1).
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6.5. Analysis of Sum of Fractional-Order Integrator and Integer-Order Differentiator Responses

The last combination of interconnection shown in Figure 9 (sum of fractional-order integrator and
integer-order differentiator) was also analyzed, and frequency responses are provided in Figures 26
and 27. Time domain analysis focuses on results obtained at three different frequencies similarly to
the previous case (at 600 Hz in the range influenced by fractional-order behavior, at 2.15 kHz at the
minimal gain visible for the selected gain setting A1 = A2 = 1, and for 50 kHz in the derivative area).
Results are shown in Figures 28–30.
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Results presented in this section (Section 6) indicate quite good correspondence of theoretical
expectations and experiments. However, high-frequency limitations of active devices as well as other
small-signal parasitics influence the high-frequency band significantly. The substantial resonant peak
occurs at a frequency around 200–300 kHz. Generally, the frequency limits also depend upon the
accuracy of CPE, and therefore, also on used approximation. However, in our case, active devices
and real circuitry has significantly higher impact. The resulting operational bandwidth of discussed
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systems can be determined between 50 Hz and 100 kHz for both branches, using integrators (fractional
and integer-order), between 50 Hz and 10 kHz for both branches, including differentiators, between 50
Hz and 10 kHz for the sum of integer-order integrator and fractional-order differentiator, and finally
between 50 Hz and 10 kHz for the sum of fractional-order integrator and integer-order differentiator.
The signal dynamics overcomes 40 dB in all presented tests. Therefore, large gain variation occurs,
and signals reach very low (tens of mV), as well as very high values (hundreds of mV). It should be
considered carefully in the design.

We evaluated selected results of magnitude and phase frequency response (Figure 22) for
interconnection in Figure 7 (Section 4.3). The evaluation of simulated and measured frequency
responses in the selected case (integer-order integrator and fractional-order differentiator) yields a
maximal difference of magnitude of 7 dB in the tested band (10 Hz–1 MHz) and 1.1 dB in the expected
(precise) operational range (50 Hz–10 kHz). The deviation 7 dB means the largest magnitude error is
about 40% (at high frequencies above 500 kHz) between measured and simulated traces. However, the
error is below 12% in the operational band (up to 10 kHz). Note that the relative error (%) seems to
be large (tens of %) for small values of gain in units of dB, but the absolute error is acceptable. The
phase difference reaches 11◦ maximally (10 Hz–1 MHz) and 4◦ (around 10% error) in the suggested
operational band (50 Hz–10 kHz). The very similar behavior of all responses indicates that very similar
differences are valid also for other cases (magnitude differences between 1–2 dB and phase differences
up to 10–15◦ in the range between 50 Hz and 10 kHz, and higher phase differences especially for
integer-order differentiator, as shown in Figure 14).

The results indicate that the specific position of the fractional-order device, as well as the
particular combination of two-ports influences slope (point of break in the case of two integrators or
two differentiators in resulting topology), or creates a global minimum (combination of integrator
and differentiator in resulting topology) and an initial or final phase value in the operational band.
Electronic adjustment of transfer responses (gains A1, A2) in both paths may be useful for special
control applications where the position of global minimum (or point of break) should be impacted
immediately in order to optimize effectiveness of regulation during the operation.

Table 2 summarizes the results of maximally achievable magnitude slopes and phase shifts for a
theoretical variation of the α parameter and typical experimental results for our case α = 0.5 tested
in detail. Presented solutions divide the frequency characteristic to two sub-bands (low-frequency
and high-frequency—below and above the point of break or global minimum). The fractional-order
two-port has a capability to set the initial or final phase shift as well as the slope of magnitude in
a specified sub-band arbitrarily in dependence on the α value. The best accuracy with theory was
obtained for solutions in Figures 7 and 9. Solutions in Figures 3 and 5 reflect the imperfections and
effects of real active devices at high frequencies and the initial behavior of RC approximant at low
frequencies, all due to very high processed dynamics in the observed bandwidth.
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Table 2. Summarization of theoretical features and experimentally obtained results for studied case (α = 0.5).

Theoretically Achievable Behavior for
Variation of α Tested for α = 0.5 (A1 = A2 = 1)

Solution

Magnitude
Slope/Phase Shift

(low Frequency
Sub-Band)

Magnitude
Slope/Phase Shift
(High Frequency

Sub-Band)

ExperimentallyEstimated
Operational Range

(Frequency
Bandwidth)

Magnitude
Slope/Phase Shift
(High Frequency

Sub-Band)

Magnitude
Slope/Phase Shift
(High Frequency

Sub-Band)

Experimentally
Estimated Dynamics
Dependent on A1,2

Setting

Instability
Compensation

Figure 3 −20 dB/dec
−90◦

−20·α dB/dec
−α·90◦ 50 Hz–100 kHz −17 dB/dec

−78◦
−10 dB/dec

-49◦ >50 dB No

Figure 5 20·α dB/dec
α·90◦

20 dB/dec
90◦ 50 Hz–10 kHz 16 dB/dec

45◦
19 dB/dec

80◦ >60 dB Integer-order
integrator

Figure 7 −20 dB/dec
−90◦

20·α dB/dec
α·90◦ 50 Hz–10 kHz −20 dB/dec

−88◦
10 dB/dec

+42◦ >45 dB Fractional-order
differentiator

Figure 9 −20·α dB/dec
−α·90◦

20 dB/dec
90◦ 50 Hz – 10 kHz −10 dB/dec

−45◦
21 dB/dec

85◦ >45 dB Integer-order
differentiator
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7. Conclusions

Four experimentally tested cases of interconnections summing the fractional- and integer-order
differentiators and integrators brought interesting results. General operationability of the concepts
is limited by the real features of active devices used. The most significant impact has DC accuracy
and variable DC offset dependent on the actual setting of gain in the frame of the VGA as well as
high-frequency parasitic poles occurring for high gains (differentiator operation). We can state that the
proposed concept is approximately operable from 50 Hz up to 10 kHz in all cases.

The gain changes reached more than 45 dB in the observed frequency band
(amplification/attenuation of more than 170 times). Therefore, very careful selection of testing
input voltage levels is required. The input excitation should be selected in dependence on a particular
type of interconnection, but still in range of low tens of mV (30 mVP-P used in tests). However, in
specific cases, the input level can reach higher values (hundreds of mV) when operation with low
dynamics in limited bandwidths of specific transfer responses (and configurations) is supposed. The
expected slopes of experimentally obtained magnitude responses have differences between 1–4 dB/dec
from an ideal case in the observed operational bandwidth (50 Hz–10 kHz). The phase responses
achieves good results for lower corner phase shifts (45◦), where differences from this ideal case are
about 3–4◦ maximally. However, larger phase values at a high-frequency corner for integer-order
differentiator are significantly influenced (differences of 10–12◦ from ideal value) by the frequency
limitations of real circuitry (parasitic poles and zeros). The expected maximal differences of measured
and simulated traces of frequency responses (in suggested operational bandwidth: 50 Hz–10 kHz)
reaches 1–2 dB in magnitude and up to 10–15◦ (especially at high frequencies due to parasitic behavior
of real circuitry). Adjustability of gains in both paths allows influence on the shape of the resulting
response in dependence on the specific character of each path (integrator/differentiator) because of
their impact on a local minimum or breakpoint. The initial and final phase response can be influenced
by the selected α order. Experimental verifications confirmed the expected behavior of the systems
quite precisely and obtained results have good correspondence with both simulations and theory.
Presented analyses are useful for further applications of studied systems, for example in the design of
proportional, integral and derivative controllers or special cases of signal processing requiring these
types of transfers (decreasing and increasing gains with different slopes).
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