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Abstract: The FeCoCrNiBx high-entropy alloy (HEA) coatings with three different boron (B) contents
were synthesized on Q245R steel (American grade: SA515 Gr60) by laser cladding deposition
technology. Effects of B content on the microstructure and wear properties of FeCoCrNiBx HEA
coating were investigated. In this study, the phase composition, microstructure, micro-hardness,
and wear resistance (rolling friction) were investigated by X-ray diffraction (XRD), a scanning
electron microscope (SEM), a micro hardness tester, and a roller friction wear tester, respectively.
The FeCoCrNiBx coatings exhibited a typical dendritic and interdendritic structure, and the
microstructure was refined with the increase of B content. Additionally, the coatings were found to
be a simple face-centered cubic (FCC) solid solution with borides. In terms of mechanical properties,
the hardness and wear resistance ability of the coating can be enhanced with the increase of the
B content, and the maximum hardness value of three HEA coatings reached around 1025 HV0.2,
which is higher than the hardness of the substrate material. It is suggested that the present fabricated
HEA coatings possess potentials in application of wear resistance structures for Q245R steel.
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1. Introduction

Recently, high-entropy alloys (HEAs), which are defined as solid solution alloys that contain more
than five principal elements in equal or near equal atomic percent (at.%) [1], have drawn rising interest
from the materials science and engineering community since the first few papers on the subject were
published in 2004 [2,3]. Due to the high-entropy effect in thermodynamics and hysteresis diffusion effect
in dynamics [4,5], HEAs are usually composed of single solid solution phases, such as face-centered
cubic (FCC) or body-centered cubic (BCC) structures, rather than complex intermetallic compounds.
These particular structures with proper composition may contribute to the advantages of HEAs in such
aspects as high mechanical strength, good ductility, high wear resistance, good resistance to oxidation
and corrosion, etc. [6–8], providing more possible engineering applications in various fields.

To date, the fabrication routes of HEAs are mainly focused on the HEA bulk ingots and the HEA
coatings [9]. The HEA bulk ingots are usually fabricated by the arc melting technique [10] or the
casting method [11]; however, these techniques have a limited size of ingot due to the formation of
the simple solid solution phase in the HEAs, which requires a high cooling rate [9]. Furthermore,
given that HEAs comprise multiple expensive elements in high content, it is costly to fabricate the
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HEA bulk ingots [12]. Thus, it is attractive to fabricate the HEA coatings with excellent properties on
the cost-effective steel substrates. The alternative laser cladding deposition technique is used to fuse
a designed alloy coating with about 1–5 mm thickness on the surface of a low cost iron substrate with
a rapid solidification rate (104–106 ◦C/s), which leads to significant effects of non-equilibrium solute
trapping, avoiding component segregation and improving solubility of the coating [13,14].

Therefore, significant efforts have been made to investigate the microstructure and mechanical
properties of HEA coating by laser cladding [15–18]. For example, Zhang et al. [15] investigated the
influences of silicon (Si) (1.2 mol.%), manganese (Mn) (1.2 mol.%), and molybdenum (Mo) (2.8 mol.%)
additions on the microstructure, properties, and coating quality of laser-clad FeCoNiCrCu high-entropy
alloy coating and found that the FeCoNiCrCu coatings with or without Si, Mn, and Mo additions are
both identified to be simple FCC solid solutions. Besides, the micro-hardness is much higher than that
of the alloy prepared by the arc melting technique with the same composition. Ye et al. [16] studied
the microstructure of the laser cladding AlxFeCoNiCuCr coating, the effects of aluminum (Al)
element content on the coating hardness, and the high-temperature micro-hardness of the coating.
Chuang et al. [17] reported that the strengthening methods for HEA coating can be performed through
substitutional solid solution strengthening, by the addition of elements with large atomic radii, such as
Al and titanium (Ti), to induce high lattice distortion. However, Yang et al. [18] indicated that the
increased lattice strain and defects often lead to high brittleness and reduce the ductility and toughness
of HEA coating. Recently, some studies [19–22] reported the addition of small elements, such as boron
(B) or carbon (C), can be used to improve the mechanical properties of HEAs. Zhang et al. [23] indicated
that it is vital to improve the solid solubility of B and control the boride morphology through the
addition of the B element in the fabrication of new HEAs. However, little research has been published
on the effects of B content on the microstructure and wear properties of the laser alloyed HEA coatings.
According to Archard’s law [24], the wear resistance of materials is proportional to the hardness.
Furthermore, the wear resistance and potential industrial application value of FeCoCrNi HEAs (B free
alloys) were reported by [25,26], and the FeCoCrNi HEAs presented low Vickers hardness and yield
strength (141 HV and 145 MPa, respectively) [26]. Thus, the main purpose of this work is to control the
B content in laser-clad FeCoCrNiBx (x: molar ratio, x = 0.5, 1, and 1.5, denoted by B0.5, B1.0, and B1.5,
respectively) HEA coatings and to explore the effects of B content on the microstructure and wear
properties of these HEA coatings.

In this work, we prepared FeCoCrNiBx HEA coatings by laser cladding on a low carbon steel
substrate (Q245R steel). The phase composition, microstructure, micro-hardness, and wear resistance
(rolling friction) of the HEA coatings with different B content by laser cladding were investigated by
X-ray diffraction (XRD), a scanning electron microscope (SEM), a micro hardness tester, and a roller
friction wear tester, respectively. The significance of this research is the effects of B content on the
microstructure and wear properties of laser-clad FeCoCrNiBx HEA coatings. The results suggest that
the present fabricated HEA coatings possess potential in the application of wear resistance structures
for low carbon steels.

2. Materials and Methods

Q245R steel plates (American grade: SA515 Gr60), which were provided by Baowu Steel Company
(Wuhan, China), were used as the substrate material. Q245R steel plates were cut into rectangular
specimens of dimensions 120 mm× 60mm× 10 mm by a wire cutting machine. The sizes of the substrate
plates are shown in Figure 1. The chemical composition was measured using the PDA-5500S Shimadzu
optical emissions spectrometers (Shimadzu Corporation, Kyoto, Japan). The Q245R substrate plate
surface was treated by abrasive papers and then dried after using alcohol to remove the dirt and oil.
A comparison of measured chemical composition of the Q245R substrate plate and the standard of
GB713-2014 (national standard of the people’s republic of China for alloy structural steel) for Q245R
steel is presented in Table 1. It can be seen in Table 1 that the chemical composition of the specimen
used in this study meets the requirement of the national standard.
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moisture and enhance the liquidity of the powder. The plasma spraying technology [27] was 
adopted in the preparation of the FeCoCrNiBx HEA coatings. An appropriate amount of alcohol 
was taken as the adhesive and mixed with the aforementioned ball milling powder to obtain the 
viscous powder, which was coated on the Q245R steel matrix with a coating size of 32 mm × 10 mm 
× 1.6 mm. The coating was then put into the vacuum oven at 120 ℃ to dry for 2 h. Subsequently, 
Laser cladding was carried out using the YLS-4000-S2T-CL fiber laser system (IPG Photonics 
Corporation, Oxford, USA). After a series of optimization runs, the processing parameters were as 
follows: The laser radiation was at 980 nm wavelength, 4000 W output power, 1.5 mm × 12 mm 
rectangular beam, and 180 mm/min scanning speed velocity. High-purity argon gas was used as 
shielding gas through the coaxial nozzle to prevent oxidation. Figure 2 presents the macroscopic 
morphology of FeCoCrNiBx HEA coatings, and the three different B contents were 0.5, 1.0, and 1.5, 
respectively. 
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The crystal structures of the three different thickness HEA coatings were identified on the 
cross-section surfaces, using Bruker D8 Advance X-ray diffraction equipment AXS (Bruker AXS 
GMBH, Karlsruhe, Germany). The working voltage and current were 30 kV and 15 mA, respectively. 
The scan range was from 20° to 100°, and the scanning rate was 4°/min. For microstructural 
observation, the microstructures and chemical compositions of the HEA coatings were analyzed 
with the use of an S-4800 scanning electron microscope (Hitachi, Tokyo, Japan) and energy 
dispersive spectroscopy (EDS). The Vickers micro-hardness of the polished longitudinal-section 
surfaces of the HEA coatings was measured using an HMV-G21ST Vickers hardness tester 
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Table 1. A comparison of the measured chemical composition of the Q245R substrate plate and the
standard of GB713-2014 for Q245R steel (wt.%).

wt.% C S P Mn Si Alt

Q245R 0.18 0.012 0.022 0.65 0.022 0.031
GB/T3077-2015 ≤0.20 ≤0.015 ≤0.025 0.50–1.0 ≤0.35 ≥0.020

S: sulfur, P: phosphorus, Alt: aluminum total.

Alloy power mixtures with a nominal composition of FeCoCrNiBx (x: molar ratio, x = 0.5, 1, and 1.5,
denoted by B0.5, B1.0, and B1.5, respectively) were prepared by mechanically mixing commercially pure
elemental powders (99.99 wt.%) with particle sizes below 400 mesh. The mixed powders were put into
a vacuum oven at 80 °C to dry for 1 h after vacuum ball milling in order to remove moisture and enhance
the liquidity of the powder. The plasma spraying technology [27] was adopted in the preparation of
the FeCoCrNiBx HEA coatings. An appropriate amount of alcohol was taken as the adhesive and
mixed with the aforementioned ball milling powder to obtain the viscous powder, which was coated
on the Q245R steel matrix with a coating size of 32 mm × 10 mm × 1.6 mm. The coating was then put
into the vacuum oven at 120 °C to dry for 2 h. Subsequently, Laser cladding was carried out using
the YLS-4000-S2T-CL fiber laser system (IPG Photonics Corporation, Oxford, USA). After a series of
optimization runs, the processing parameters were as follows: The laser radiation was at 980 nm
wavelength, 4000 W output power, 1.5 mm × 12 mm rectangular beam, and 180 mm/min scanning
speed velocity. High-purity argon gas was used as shielding gas through the coaxial nozzle to prevent
oxidation. Figure 2 presents the macroscopic morphology of FeCoCrNiBx HEA coatings, and the three
different B contents were 0.5, 1.0, and 1.5, respectively.
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Figure 2. The macroscopic morphology of FeCoCrNiBx coatings with the three different molar ratios of
B. (a) FeCoCrNiB0.5, (b) FeCoCrNiB1.0, and (c) FeCoCrNiB1.5.

The crystal structures of the three different thickness HEA coatings were identified on the
cross-section surfaces, using Bruker D8 Advance X-ray diffraction equipment AXS (Bruker AXS GMBH,
Karlsruhe, Germany). The working voltage and current were 30 kV and 15 mA, respectively. The scan
range was from 20◦ to 100◦, and the scanning rate was 4◦/min. For microstructural observation,
the microstructures and chemical compositions of the HEA coatings were analyzed with the use of
an S-4800 scanning electron microscope (Hitachi, Tokyo, Japan) and energy dispersive spectroscopy
(EDS). The Vickers micro-hardness of the polished longitudinal-section surfaces of the HEA coatings
was measured using an HMV-G21ST Vickers hardness tester (Shimadzu Corporation, Kyoto, Japan),
and the test parameter was applied for 5 s under a load of 100 g. Each longitudinal-section surface was
tested for multi points from the surface to the substrate with an equal interval. The wear tests were
carried out using the M-2000A roller friction wear tester (YNSJ Test Instrument co., LTD, Jinan China)
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at room temperature with a rotation speed of 180 r/min, a test load of 300 N, and a duration time of
20 min, and the counter body of roller was a W18Cr5V steel. The wear mass loss was measured by
a precision balance instrument through weighing the samples before and after wear tests.

3. Results and Discussions

3.1. Microstructure, Phase Formation, and Phase Composition

The composition of the FeCoCrNiBx (x = 0.5, 1.0, and 1.5, respectively) mixed powders before the
laser cladding, determined by the EDS detector, is shown in Table 2. Although it is difficult to accurately
measure the ratio of light element B by the EDS detector (5–10% error of our EDS instrument is
considered), the trend of the B ratio can be well specified by EDS. In order to improve the measurement
accuracy, the EDS result was collected from many data, and the average ratio was applied to eliminate
the error in this study. It can be seen from Table 2 that the composition uniformity was ensured
and there was no apparent macroscopic milling loss to the elements during the process of vacuum
ball milling. Figure 3 presents the interface microstructure of the polished longitudinal sections of
FeCoCrNiBx HEA coatings. As can been seen in Figure 3, most of the planar grains were concentrated
at the interface between the HEA coating and substrate, and a few of the columnar grains appeared in
the middle of the HEA coating.
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Table 2. Chemical compositions (in at.%) of FeCoCrNiBx (x = 0.5, 1.0, and 1.5, respectively)
mixed powders.

Alloy Type/Element Fe Co Cr Ni B

FeCoCrNiB0.5 22.64 21.92 21.95 22.36 11.13
FeCoCrNiB1.0 19.62 19.88 20.35 19.63 20.52
FeCoCrNiB1.5 18.37 17.95 18.13 18.32 27.23

It can be seen from Figure 3a that the coating and substrate were poorly connected and a local
loosening phenomenon was observed. As shown in Figure 3b,c, a better metallurgical bonding between
the coating and substrate was observed with the increase of B content. This phenomenon was ascribed
to the constant increase in B content, which resulted in the increased degree of segregation of the
elements in the HEA coating, thereby reducing the solidification temperature of frontier liquids and
resulting in easier crystallization. Rapid cooling of alloy elements during the cladding process can
increase the nucleation rate markedly and can eventually refine the microstructure of the HEA coating.

Figure 4 presents the XRD patterns of the laser-clad FeCoCrNiBx (x = 0.5, 1.0, 1.5) HEA coatings.
It was noticed that, in Figure 4a, all coatings displayed a mixture of the major face-centered cubic
structure (FCC) solid solution matrix and the secondary boride precipitations. The main boride was
the M2B phase (M refers to Fe, Co, Cr, and Ni). According to Figure 4a, the phases in the FeCoCrNiB0.5

coating could be identified as a simple FCC solid solution with diffraction peaks at about 2θ = 35.5◦,
51.0◦, 65.5◦, 81.0◦, and 96.0◦ and a very small quantity of the M2B phase with a diffraction peak at
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about 57.5◦. It also can be seen that the diffraction peaks corresponding to the FCC solid solution of
FeCoCrNiB1.0 were slightly weaker than that of FeCoCrNiB0.5, whereas the peak at 57.5◦ was slightly
enhanced, and a new diffraction peak corresponding to the M2B phase was observed. For FeCoCrNiB1.5

coating, some new phases have been identified as the boride precipitations at about 2θ = 28.5◦, 48.5◦,
and 87◦. This demonstrates that the constituent phase of coating changed from the FCC solid solution
to a combination of the FCC solid solution and the M2B phase with the increase of B content.
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high-entropy alloy (HEA) coatings. (a) 2θ from 20◦ to 100◦, (b) 2θ from 64.5◦ to 66.5◦.

Figure 4b shows an enlarged view of the diffraction peak of the FCC solid solution (211) in the
FeCoCrNiBx HEA coating. Increasing the content of B from 0.5 to 1.5 can decrease the intensity of the
diffraction peak corresponding to the FCC solid solution (211) and the shift of the diffraction peak
to the higher angle. This phenomenon was due to the increasing B content, which can increase the
number of soluble atoms of B in the crystal structure. However, the B atom was greatly different in
terms of size, from the other atoms, thereby increasing lattice distortion. Thus, the diffuse reflection
effect was strong, and the intensity of the diffraction peak was reduced. Moreover, the radius of the
B atom was smaller than that of the other atoms, and its displacement ability to other elements was
strong. With increasing displacement of the B atom to the other atoms in the crystal structure, the lattice
constant decreased, thereby shifting the diffraction peak to the higher angle.

SEM images of the microstructures of the laser-clad FeCoCrNiBx HEA coatings with three different
B contents are shown in Figure 5. The coatings exhibited a typical dendritic and interdendritic structure,
and the microstructure was refined with the increase of B content. XRD analysis and the microstructure
of FeCoCrNiB0.5 coating in Figure 5a shows that the dendrites were identified to belong to the primary
FCC solid solution and interdendrites were identified to belong to the FCC solid solution phase
and a small quantity of the M2B phase. According to Figure 5a–c, the volume fraction of the M2B
phase increased and dendrites decreased gradually with the increase of the molar ratio of B content.
The FeCoCrNiB1.0 coating was composed of the eutectic structure of the FCC solid solution and the
M2B phase. When the molar ratio of B content increased from 1.0 to 1.5, the coating was composed of
the eutectics of willow-like primary M2B phase, M2B phase, and FCC solid solution phase, and the
microstructure tended to blocky.
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For mapping the compositional distribution, EDS map analysis of the alloy elements are presented in
Figure 6. The qualitative segregation characteristics can be visualized, and the EDS results of FeCoCrNiBx

coatings are shown in Table 3. According to Figure 6a–f, when the molar ratio of B content was 0.5, Fe, Co,
and Ni were increased in terms of the amount in the gray dendritic regions, while Cr and B were reduced
in the dendritic structure. XRD analysis showed that the main gray dendrite structure was the FCC solid
solution. The Fe content in the white interdendritic structure was the highest, followed by Cr and B,
thereby indicating slight component segregation. A small number of borides was also observed in the
structure. According to the XRD results, the gray dendritic and white interdendritic structures were the
FCC solid solution. Increasing the molar ratio of B content to 1.0 resulted in a complex coating structure.
The EDS results in Figure 6g–l show that the contents of Cr and B in the dendritic structure were the lowest,
whereas those of Fe, Co, and Ni were higher. The XRD analysis showed that the gray dendritic structure
was composed of the FCC solid solution, whereas the white interdendritic structure was composed of the
FCC solid solution and a small amount of the M2B phase. As shown by the EDS results in Figure 6m–r,
when the molar ratio of B content was increased to 1.5, large amounts of Fe, Co, and Ni were enriched in
the gray dendritic structure. The XRD results showed that the gray dendritic structure was composed of
the FCC solid solution, whereas the white interdendritic structure was composed of the eutectic structure
of the FCC solid solution and the M2B phase. In the long strip structure of the M2B phase, a large amount
of B was enriched, followed by Cr and F. Moreover, the atomic ratio of Cr to B was about 2:1. With the
increase of the content of B, the M2B phase separated from the intergranular structure. The M2B phase
was mainly composed of Fe and Cr borides, and the Cr from the interdendritic structure was segregated
gradually to the M2B phase.
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Table 3. EDS results of FeCoCrNiBx HEA coatings (in at.%).

Coating Type Zone Fe Co Cr Ni B

FeCoCrNiB0.5

Nominal 22 22 22 22 12
FCC 26 24 19 21 10
M2B 27 16 30 11 16

FeCoCrNiB1.0

Nominal 20 20 20 20 20
FCC 22 19 10 24 25
M2B 22 18 22 8 30

FeCoCrNiB1.5

Nominal 18 18 18 18 28
FCC 21 18 11 35 15
M2B 22 9 26 6 37

Yeh et al. [3] proposed that HEAs should contain at least five elements and that the entropy of mixing is
the main factor that promotes the formation of a multi-component solid. The largest atomic radius difference
among the Fe, Co, Cr, Ni, and B elements could be calculated by the following formula [28]:

∆Rmax = max(Ri −Ra)/Ra, (1)

where Ra is the average atomic radius and Ri represents the atomic radius of any element. According
to the formula of the Gibbs free energy [29]:

∆Gmin = ∆Hmix − T∆Smix, (2)

where ∆Gmix is the change in Gibbs free energy before and after the phase change, ∆Hmix is the mixing
enthalpy, ∆Smix is the mixing entropy, and T is the absolute temperature. The mixing entropy ∆Smix
can be calculated by the following formula:

∆Smix = −R
∑n

i=1
CilnCi (3)

where R is constant gases and R = 8.31J·K−1
·mol−1 and Ci is the molar fraction of each element [29].

According to Equation (2), the high ∆Smix can significantly lower the free energy of solid solution
with multi principal elements, thus lowering the tendency to order and segregate, which consequently
allows the solid solution to more easily form and be more stable than intermetallics or other ordered
phases during the solidification of alloys [15]. However, the kinetic effects by laser rapid solidification
also play a more important role on the phase formation in the coating. Lin et al. [30] indicated that not
all HEAs only form solid solution phases during solidification, and small amount of compound phases
are also separated from some HEA precipitates. Based on Equation (2), whether the alloy solidifies
into a simple solid solution or into a compound is determined commonly by the ∆Hmix and the ∆Smix.
It is noted that Hsu et al. [31] reported that the FeCoCrNiBx may form the ∆Hmix of binary boride.
As shown in Table 4, Fe and Cr borides had large ∆Hmix, whereas Co and Ni borides had small ∆Hmix.
Therefore, the contents of Fe and Cr in the produced borides (M2B) were high, whereas those of Co and
Ni were relatively low. These results are consistent with those of the energy spectrum measurement.

Table 4. Enthalpies of binary borides that might be formed in the alloy.

M2B Fe2B Co2B Cr2B Ni2B

∆Hmix (KJ/mol) 30 28 34 27

3.2. Microhardness and Wear Properties

The Vickers micro-hardness of the different B mole HEAs was measured from the substrate to
the metallurgical bonding surface and then the cladding layer. Each cross section was tested for
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multi points from the substrate to the surface with an equal interval of 0.2 mm. Figure 7 shows the
micro-hardness distribution ranging from the Q245R substrate to the surface of the coatings with
various B additions. The average thickness of the coating was about 1.6 mm.
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It can be seen that the micro-hardness value of coating is much higher than that of the Q245R
substrate material, and the maximum hardness value in three HEA coatings reached around 1025
HV0.2 when the molar ratio of B was 1.5. With the increase of the cladding height, no obviously
regular change was found in the micro-hardness. Moreover, with the increase of the content of B,
the hardness showed an increasing tendency. The reasons for this can be attributed to the grain
refinement, Nano-precipitates, and increased crystal packing density in the coating due to the rapid
cooling rate in the laser cladding process. Meanwhile, based on the changes in the contents of borides
in all coatings with the addition of B, the gradual increase in hardness was related to the increase of
the hard phase of boride. The lattice distortion was caused by the solid solution of elements in the
matrix, which increased the resistance of the dislocation motion and made the gliding of the dislocation
difficult, thus improving the strength and hardness of the alloy [32]. Since the gap formed by the solid
solution of the HEA is small, it is generally believed that the form of the atomic solid solution belongs
to the displacement solid solution, so the lattice distortion is mainly caused by the difference of atomic
size. In order to quantitatively analyze the influence of atomic size on lattice distortion, the standard
deviation of atomic size between dendrites was calculated as follows:

aavg =
∑n

i=0
aici (4)

s =

√∑n

i=0

(
ai − aavg

)2
ci (5)

where ai is the atomic size, Ci refers to the molar fraction of each element, aavg is the average atomic size,
and s is the standard deviation. The values of the atomic radius of Fe, Co, Cr, and Ni were very similar,
which were 1.27, 1.26, 1.27, and 1.24, respectively. The standard deviation of Fe, Co, Cr, and Ni was very
small. However, the value of the atomic radius of B was 0.95, which was much smaller than the other
four principal components. As a result, the standard deviation was larger than FeCoCrNi. During the
laser cladding process, a part of the B atom formed the hardness phase of borides with other metal
atoms, and the other part of the B atom, as an interstitial atom, was dissolved in the FCC solid solution,
i.e., dissolved in the matrix of the FCC solid solution. The rapid solidification conditions during laser
cladding increased the limit of solid solubility of the atoms in the solid solution. Thus, more B atoms
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were solidified in the solid solution. According to the XRD results, the addition of the element B can
increase the lattice constant of the FCC solid solution. Thus, the increase of micro-hardness was caused
by the increasing crystal packing density and lattice distortion of the FCC crystalline.

Figure 8 shows the wear morphology of FeCoCrNiBx HEA coating. It can be seen from Figure 8
that the wear volume of the coating decreased with the increase of the B ratio. Figure 9 shows
the relationship between the wear volume and the average hardness of FeCoCrNiBx HEA coatings.
The wear volume of the coating increased gradually with decreasing average hardness. The wear
resistance of FeCoCrNiBx HEA coatings was positively correlated with the hardness. The wear
resistance of FeCoCrNiB1.5 HEA coating was the highest and the maximum hardness value of three
HEA coatings was the FeCoCrNiBx HEA coating, and the hardness was around 1025 HV0.2, whereas
that of the FeCoCrNiB0.5 HEA coating was the lowest. In this work, the wear resistance and hardness
of the coating conformed to the classic Archard law [24], which states that the wear resistance of
materials is proportional to the hardness.
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4. Conclusions

In brief, the FeCoCrNiBx HEA coatings with three different boron contents were successfully
synthesized on Q245R steel through the preset paving method by using laser cladding deposition
technology. The microstructure of the FeCoCrNiBx HEA coatings exhibited a typical dendritic and
interdendritic structure, and the coating was found to be a simple FCC solid solution with borides.
After studying the effect of the content of B on the performance of FeCoCrNiBx coatings, we found
that the microstructure of coatings could be refined with the increase of B content. Furthermore,
the increase of B element facilitated the formation of the M2B phase from the FCC matrix for the
FeCoCrNiBx alloys and the formation of the M2B phase could effectively enhance the wear properties
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of the alloys. The relationship between the wear volume and the average hardness of FeCoCrNiBx

HEA coatings is also reported. Additionally, the maximum hardness coating of three HEA coatings
was the FeCoCrNiBx HEA coating, and the hardness value reached around 1025 HV0.2, which was
higher than the hardness of the substrate material. This work indicates that the present fabricated
HEA coatings possess the potentials in the application of wear resistance structures for Q245R steel.
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