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Abstract: Nonalcoholic fatty liver disease (NAFLD) is responsible for a wide range of pathological
disorders. It is characterized by the prevalence of steatosis, which results in excessive accumulation
of triglyceride in the liver tissue. At high rates, it can lead to a partial or total occlusion of the
organ. In contrast, nonalcoholic steatohepatitis (NASH) is a progressive form of NAFLD, with the
inclusion of hepatocellular injury and inflammation histological diseases. Since there is no approved
pharmacotherapeutic solution for both conditions, physicians and engineers are constantly in search for
fast and accurate diagnostic methods. The proposed work introduces a fully automated classification
approach, taking into consideration the high discrimination capability of four histological tissue
alterations. The proposed work utilizes a deep supervised learning method, with a convolutional
neural network (CNN) architecture achieving a classification accuracy of 95%. The classification
capability of the new CNN model is compared with a pre-trained AlexNet model, a visual geometry
group (VGG)-16 deep architecture and a conventional multilayer perceptron (MLP) artificial neural
network. The results show that the constructed model can achieve better classification accuracy than
VGG-16 (94%) and MLP (90.3%), while AlexNet emerges as the most efficient classifier (97%).

Keywords: liver biopsies; fatty liver; hepatocyte ballooning; deep learning; convolutional neural
networks; computer vision

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is estimated to be the most common chronic liver
disease, with one-quarter of the adult population suffering from it [1]. At the same time, nonalcoholic
steatohepatitis (NASH) refers to an aggressive form of NAFLD, which is usually the leading cause
of end-stage liver disease or liver transplantation, as it can progress to cirrhosis and hepatocellular
cancer (HCC). The diagnosed prevalence of NASH is estimated to reach 18 million subjects by
2027 worldwide, especially in the US, Japan and the EU. Clinical trials have not yet established an
effective form of pharmacotherapy for these two conditions. As disease rates tend to increase, even if
medication becomes available, it will be still difficult to identify the target population for this treatment.
Consequently, the interest of hepatologists in recent years has been in the definitive diagnosis of
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NAFLD, with histology being the gold standard in modern clinical trials. In this case, the microscopy
method on biopsy needle samples makes it possible for all anatomical liver tissue structures, including
those of NAFLD and NASH to be examined. In the context of NAFLD, steatosis is predominantly
macrovesicular with single and large lipid intracytoplasmic vacuoles pushing aside the hepatocellular
nuclei [2]. Occasionally, microvesicular steatosis with multiple small vacuoles within the cytoplasm can
be observed, as well as large areas of macrovesicular steatosis agglomeration. In contrast, ballooned
hepatocytes present enlarged round cells surrounded by a clear and vacuolar cytoplasm.

Even though liver biopsy is considered the gold standard for evaluating NAFLD and NASH
activity, it is an invasive patient procedure [3]. In recent decades, many studies have relied on
semi-quantitative predictions for chronic and end-stage liver diseases, which lack diagnostic accuracy
due to diagnostic obstacles such as “inter-observer” and “intra-observer” variability. Each case involved
subjective microscopic interpretations that came from specialized hepatologists [4]. According to
Figure 1, the visual counting of these tissue alterations suggests a difficult and time-consuming
process. To overcome this obstacle, modern studies have focused on the development of automated
examinations using digital image processing techniques, which can effectively diagnose NAFLD and
NASH [5].
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Figure 1. Representation of tissue alterations indicating NAFLD disease using a manual counting
process. Ballooned hepatocytes are marked with a green contour line, while the areas of fat accumulation
with a red one. This process is time-consuming and highly subjective among physicians, demonstrating
the need for a fully automated recognition tool.

A significant number of research efforts focus on the quantification of liver steatosis. These
approaches utilize a combination of image processing techniques (including regions of interest
segmentation) with supervised machine learning techniques, using manually annotated features. The
risk of hepatic obstruction, which refers to the blockage of the bile ducts, sinusoids, portal veins,
etc., has led researchers to develop fat detection systems [6–9], combined with trained classifiers
for the separation of fat tissue from other histological structures [10,11]. Thanks to the effectiveness
of these diagnostic systems, histopathology has focused on more complex identification problems,
including hepatocellular ballooning and tissue inflammation. These are two chronic diseases for
which no automated diagnostic solutions existed until recently [12]. The field of histopathology
needed a new generation of algorithms with more independent approaches to the segmentation and
classification problems.

In recent years, deep learning methods have introduced innovative and effective solutions to
many image analysis tasks. As a result, deep neural networks have expanded to the field of medical
imaging, with the purpose to automatically capture the anatomy and physiology of diseases and to
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quantify their prevalence. Deep learning architectures have been applied to the prognosis of hepatic
steatosis, and the monitoring of complex chronic conditions, including regions of collagen fiber [13].
A detailed description regarding the contribution of the referred research works is provided in the
results and discussion sections.

This work presents a methodology for the classification of multiple hepatic structures from biopsy
images, based on convolutional neural networks (CNNs). Particularly in medical image analysis,
CNN architectures can overcome the problems caused by the hand-crafted features used in traditional
techniques, due to their fully automated feature extraction as seen in Figure 2. The purpose of the
proposed deep network is to solve a 4-class classification problem, with (a) ballooned hepatocytes
and (b) fat droplets forming the disease classes, while (c) sinusoids and (d) veins forming the healthy
classes. In the future, the proposed method could be integrated into a complete prognostic tool for
(a) differentiating the healthy from the diseased tissue structures and (b) measuring the severity of the
two diseases in clinical trials.
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2. Materials and Methods

A two-step classification method is proposed, which can lead to the automatic characterization of
the four histological objects:

Step 1. Collection of a sufficient number of isolated training samples from digitized biopsies, pointing
to the 4-class tissue alterations.
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Step 2. Training two convolutional neural networks carrying the same architecture, but employing
different optimization algorithms, as well as estimating their classification performance in
several testing images. Also, applying transfer learning updates to well-known pre-trained
CNN models and comparing their quantitative performance with the one produced from the
new CNN topology. Finally, comparing the same performance with that of a conventional
neural network algorithm.

2.1. Histological Features Isolation

All biopsy slides involved in this study were collected at St. Mary Hospital (Imperial College
Healthcare NHS Trust of London, UK) and came both from NAFLD and NASH patients. All subjects
gave their informed consent for the inclusion of their samples in the current study, which was conducted
following the rules of the Declaration of Helsinki (revised in 2013). In recent years, various histological
dyes have been used for clinical examinations, including picro-Sirius red and Masson’s trichrome
stains, particularly for the evaluation of liver fibrosis. However, for the following experiments, the
gold standard Hematoxylin and Eosin (H&E) dye was selected to highlight the four tissue alterations.
Generally, the dataset consists of 64 images digitized with a Hamamatsu microscope (Hamamatsu
Photonics, Hamamatsu, Japan). Initially, these images exceeded 10,000 × 10,000 pixels, a size that
could not be considered ideal for training deep learning algorithms. Downsampling the images at
×20 magnification proved to be an ideal solution, as it preserved all the anatomical details that form
the four tissue structures.

Subsequently, a cropping tool was used to extract individual histological samples, in the form of
image patches, from the whole tissue images. In total, 720 healthy and disease structures are provided
to form a balanced image dataset (180 samples per class), which are stored in four categories implying
the number of individual class objects. According to this assumption, an identification label is assigned
for each microscopic structure, namely: (a) ballooning, (b) fat, (c) sinusoid and (d) vein. Furthermore,
the dataset is partitioned into training/validation/testing subsets, where 620 structures were used for
training, 60 for validation and 40 for testing.

2.2. Convolutional Neural Network Model Construction

In this stage, a CNN topology is defined to learn the most informative features from the extracted
biopsy tissue structures. The convolution layer operations are accelerated with the use of an NVIDIA
GTX1050Ti graphics processing unit (GPU). This refers to a popular computing distribution technique
that can train deep neural networks in a short time. Figure 3 displays the techniques used in each layer
of the proposed CNN architecture.
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Figure 3. The proposed CNN architecture. It consists of an input layer of 64 × 64 × 3 image size,
3 convolution layers and a fully connected layer comprising of a dense layer of 4096 units. Finally,
a softmax activation function generates the classification probabilities for each of the four hepatic
classes (ballooning, fat, sinusoid, vein).
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Initially, in the input layer, each image patch is resized to 64 × 64 × 3 pixel size (width, height,
depth), with the bicubic interpolation method. Since this generates a large number of connections
weights for modeling the image data, several dimensionality reduction techniques are used in the
subsequent convolution layers:

• In the first convolution layer, 64 convolution filters consisting of a 5-by-5 kernel size are defined
to detect “low-level” features, such as edges, from the raw image data. In each convolution
operation, zero-padding is utilized to assign 0 values around the inputs to maintain an output
size equal to the input of each kernel filter [14]. Subsequently, batch normalization is applied to
normalize the convolved values, as well as the Rectified Linear Unit (ReLU), being the nonlinear
activation function, which is considered ideal for minimizing the vanishing gradient problem [15].
Even though ReLUs are widely used in most deep learning applications, their unboundedness on
the positive side tends to cause overfitting. To circumvent this issue, max pooling filtering with a
stride of 2 is set to decrease overfitting by reducing the spatial size (width and height) of the data
representation [16].

• The second convolution layer applies 32 filters with a 3-by-3 kernel size to search for “higher-level”
features within each liver tissue object, including hepatocytes within a ballooning area, as well
as multiple occurring pixels pointing at blood cells in hepatic veins. Batch normalization, ReLU
function, and max pooling are included again, while dropout with a 0.5 probability is applied
with the purpose to prevent overfitting [17].

• In the third convolution layer, 16 filters with a 3-by-3 kernel size aim to emphasize on connected
pixels that can differentiate the textural features among the four examined histological structures.
Max pooling is no longer applied and the training process makes a transition to the fully
connected layer.

• The fully connected layer defines a dense layer with 4096 flattened neurons to gather the filtered
anatomical features from the three convolution layers. These neurons are further connected to the
final softmax layer. Dense and softmax layer connections act similar to a multilayer perceptron
(MLP) artificial neural network, with the softmax function allocating probability distributions
during the prediction of the four hepatic classes [18].

2.3. Applied Optimization Algorithms

A brief reference is made to various parameter values defined in two modern backpropagation
algorithms for optimizing the training process. The first applied optimizer is adaptive moment
estimation (Adam), which is known for its low memory requirements, as it takes into account first-order
gradients only [19]. Since this optimization method is adaptive, it tends to calculate different learning
rates from the first (mean) and second raw (uncentered variance) moment estimates of the gradients.
Therefore, the updated weights are calculated as follows:

∆θ = −ε ŝ
√

r̂+δ

θ ← θ + ∆θ,
(1)

where εdenotes the initial learning rate set equal to 0.001, ŝ the first-moment bias and r̂ the corresponding
second. δ refers to a numerical stabilization constant with a 10−8 value, assigned (by default) to reduce
the variance in weight updates [20]. In Adam, an important parameter is the decay rate of the squared
gradient moving average for penalizing large weights, which is set to a 0.99 scalar value. All the above
configurations aim at a more efficient convergence of the loss function towards the global minimum.

The second optimization solution comes from the application of the stochastic gradient descent
with momentum (SGDM) algorithm. Specifically, the momentum value is set to accumulate an
exponentially decaying average of past gradients, as it continues to move in their direction [20]. Here,
the general update rule is given by:
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m ← βm + ε∇θJ(θ)
θ ← θ − m,

(2)

where β is a hyperparameter set at 0.9 to prevent momentum m from overspeeding and θ the updated
network weights [14]. The θ values are obtained by subtracting the gradient of the loss function J(θ)
from the weights ∇θJ(θ), which are multiplied by a constant learning rate ε equal to 0.001.

3. Results

The proposed CNN model used two separate training processes utilizing a different optimizer
each time. The Adam optimizer was used for the first process while the SGDM optimizer was used for
the second process. This section focuses on (1) measuring the performance of the constructed deep
architecture on the validation samples (n = 60) as well as (2) the classification capability on the test
set (n = 40). At a later stage, the CNN network with the optimal optimization algorithm is compared
with well-known pre-trained CNN architectures, utilizing transfer learning updates. Subsequently,
the prediction capability of the same optimal model is compared to that of a conventional multilayer
perceptron (MLP) neural network.

3.1. Training and Validation Results

Having defined the CNN topology, the focus is on the training process, which is set to run for
30 epochs. Every epoch comprises of a full cycle on the entire training set, consisting of 620 samples.
Also, the option of shuffling the training data to the input layer is applied at the beginning of each epoch.

Figure 4 presents a comparison of the validation graphs, each of which is derived from the training
procedure with one of the analyzed optimizers. According to the diagram, the training process is set
to run for a maximum of 270 iterations, in which the accuracy of the validation data is calculated. It
is recalled that the validation set is not used to update the network weights, but to assess whether a
model suffers from either overfitting or underfitting. Finally, a validation patience value of 3 is set to
stop the training process, in case the same validation value is produced at least three times, indicating
that the CNNs have learned sufficiently from the image data.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 19 
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At first, the CNNAdam validation graph (Figure 4) is monitored, which shows the convergence
of the neural network’s training process during the 162nd training iteration. This was the result of
the combination of overfitting with the production of three similar validation values equal to 91.7%.
In contrast, the CNNSGDM graph shows that the SGDM optimizer performed better as it did not overfit
the training data. This led to better results, as the deep classifier not only completed the learning
process by running in all 30 epochs but also produced a higher validation value of 96.7%.

3.2. Testing Results

To test the reliability of the developed methodology, the two-trained models (CNNAdam and
CNNSGDM) are called to identify 40 unknown liver structures (10 per class). In the current task, the
softmax function is asked to assign an input image described by a vector x, to a class identified by a
class label y ∈ {ballooning, fat, sinusoid, vein}. Thus, the function outputs a probability distribution
value for the four classes within a [0,1] confidence interval. After the end of the testing process the
purpose is (a) to measure the classification accuracy for every individual liver class and (b) retrieve
further statistics from the classification report. These metrics include the mean accuracy, precision,
recall (sensitivity) and F-score (Table 1).

Table 1. Classification report from the initial conducted experiments.

Deep
Model

Classification Results (%)

Liver Class Accuracy Mean Performance Metrics 1

Ballooning Fat Sinusoid Vein Accuracy Precision Recall F-Score

CNNAdam 100 100 70 100 92.5 93.6 92.5 93
CNNSGDM 90 100 90 100 95 95 95 95

1 Mean classification values for CNNAdam and CNNSGDM models.

Examples of the image patch test results are shown in Figure 5. Each of these images is
accompanied by its estimated classification probability (%), indicating how confident the CNNs are of
their predictions. According to the figure, in most cases, an accurate discrimination result marked by a
green frame is presented for the four hepatic tissue objects. It is observed that both neural networks
have a reduced efficiency in identifying some sinusoids (red frames = misclassifications), which are
among the most complex histological features to classify. However, the success lies in the fact that all
ballooned cells and fat droplets, which characterize two of the most widespread liver diseases, have
been identified with high confidence levels. Based on the exported percentages in Table 1, it is clear
that the classifiers are more stable in detecting ballooned hepatocytes, as these consist of multiple
changes in the values of their adjacent pixels. They also successfully achieve a visual discrimination of
circular structures not always referred to as steatotic fat cells, but as hepatic veins, because they tend to
contain several red blood cells.

Proceeding to Table 1, additional information is provided for the two classifiers, with the mean
precision and recall (sensitivity) values. First, the performance of CNNAdam shows a lower recall value
(92.5%) compared to higher precision (93.6%). This indicates that CNNAdam failed in some true positive
(TP) samples. Consequently, it produced more false negative (FN) diagnostics and less false positive
(FP) ones, respectively. Examples of CNNAdam misclassifications are shown in Figure 5 below, in which
two incorrect sinusoid characterizations are displayed. In contrast, CNNSGDM delivered balanced
precision and recall rates (95%), by producing more true positives (TP). For verification purposes, the
two measures are combined into a single F-score (F1-score) value, representing their harmonic mean.
Thus, if one metric carries a lower value, the F-score converges closer to the small number than the
large one, which gives the classification models a more appropriate score than a common arithmetic
mean. CNNAdam then receives a 93% F-score, whereas CNNSGDM a higher 95% F-score due to its fully
balanced performance.
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Figure 5. Display of various liver structure predictions. The figure includes random image
patch classifications accompanied by their estimated probability distribution value (%). All of
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that should be excluded as disease findings in future object detection methodologies.

3.3. Performance Comparison with Pre-Trained CNN Models

In the next step, the performance of the optimal CNNSGDM classifier is compared with two of the
most widely used CNN pre-trained models. These refer to the 8-layer AlexNet [21] and the deeper
16-layer VGG-16 [22] neural networks, two architectures that have yielded high classification results in
recent years. In both pre-trained models, transfer learning updates have been applied to adapt them to
the current classification problem of the four liver tissue alterations. Initially, to apply transfer learning
to the AlexNet network, the biopsy image patches were resized to 227 × 227 × 3 pixels, a necessary
step to fit as input samples. The output layers of the original AlexNet-CNN network were replaced
accordingly to generate probabilities for the four histological structures. In the case of VGG-16, the
samples were converted to 224 × 224 × 3 pixel size and the output layers were modified as before.

In both classifiers, the training process was set for a maximum of 10 epochs, while the SGDM
algorithm was used to optimize the training process. The validation patience number was set again
equal to 3, with the networks completing their training in less than 10 epochs. According to Table 2,
a comparison of the accuracy, precision (positive predictive value—PPV), recall (sensitivity) and
specificity (true negative rate—TNR) rates, generated by the AlexNet, VGG-16 and the previously built
CNNSGDM architecture, is done. According to the percentages in Table 2, the constructed CNNSGDM

architecture achieves better classification performances (accuracy: 95%, precision: 95%, recall: 95%,
specificity: 98.3%) than VGG-16 (accuracy: 94%, precision: 94.1%, recall: 94%, specificity: 98%), while
AlexNet emerges as the most optimal classifier (accuracy: 97%, precision: 97%, recall: 97%, specificity:
99%). All performance differences are presented in Figure 6.

Table 2. Comparison of CNNSGDM performance with (a) pre-trained CNN models and (b) a conventional
MLP neural network classifier.

Deep Model
Classification Results (%)

Accuracy Precision
(PPV)

Recall
(Sensitivity)

Specificity
(TNR)

CNNSGDM 95 95 95 98.3
AlexNet 97 97 97 99
VGG-16 94 94.1 94 98

Conventional
Model Accuracy Precision

(PPV)
Recall

(Sensitivity)
Specificity

(TNR)

MLP-ANN 90.3 90.3 90.3 96.8
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3.4. Performance Comparison with a Conventional Neural Network

The performance of a conventional artificial neural network algorithm is then investigated. In more
detail, a Multilayer Perceptron (MLP) with 2 hidden layers consisting of 6 nodes each was called upon
to perform training and testing on selected features (area, eccentricity, mean intensity, StD intensity,
etc.) extracted from pre-processed images of the same biopsy data set. Once again, the output consisted
of 4 nodes pointing to the 4-tissue structures prediction problem. According to the results of Table 2,
the MLP produced lower classification rates than the CNNSGDM model (accuracy: 90.3%, precision:
90.3%, recall: 90.3%, specificity: 96.8%). Details of the produced measurements can be found again in
Figure 6.

3.5. Visualization of Filtered Anatomical Features

This subsection focuses on investigating the feature activations of ballooned cells and fat droplets
in all convolution layers for the CNNSGDM and AlexNet models (Figure 7). This visualization tool
could help physicians determine the most critical anatomical patterns that characterize the two liver
diseases examined in this study. A key characteristic of each convolution filter is that it converts each
image patch into multiple feature maps that are more similar to the filter itself [14]. These feature maps
are then rectified by the ReLU function, ensuring that they always carry positive activation values.
In the ReLU function, since any positive value can be assigned to the activated pixels, a division of
the gradient tensor by its l2-norm is proposed, making the magnitude of the output normalized to a
closed [0,1] interval [23]. This ensures that the magnitude of all activations is always within the same
range of each previously convolved image, making the final representations more visually intense.
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Therefore, bright white pixels represent strong positive activations, while pure black pixels represent
strong negative ones, respectively.
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Figure 7. Visualization of ReLU activations on CNNSGDM and AlexNet models. The CNNSGDM

architecture consists of 3 convolution layers, while AlexNet of 5, respectively. The visualization focuses
on the same ballooning and fat structures to determine the behavior of the two employed models
during the filtering of image samples. In all cases, the brightest pixels denote the strongest activations
indicating the most informative anatomical features.

As shown in Figure 7, it is found that in the two CNNs, the interest in the first ReLU1 activations
lies at identified edges, which can synthesize the basic structure of the balloon cell and fat droplet.
It is recalled that both the CNNSGDM and AlexNet models apply the max pooling operation to their
convolution layers (CNNSGDM: layers 1, 2, AlexNet: layers 1, 2, 5). Unlike CNNSGDM, AlexNet applies
a 3 × 3 max pooling in all cases, which causes more blur in the two liver samples as it aims to reduce
overfitting of the convolved pixel data. Based on the ReLU2 activations, this technique is demonstrated
to be efficient as it forces both neural networks to filter “higher-level” features that are less co-adapted
and can lead to better generalization. Also in ReLU2, it turns out that CNNSGDM executes an earlier
activation of pixels that indicate swollen hepatocytes, while AlexNet chooses to perform additional
filtering on the detected edges. Moving onto ReLU3 activations, it is noted that non-informative pixel
activations have been significantly reduced in both deep models, with AlexNet performing a more
ideal filtering of the necessary curves that form the perimeter of the ballooned hepatocyte and the lipid
droplet. The same model achieves also better performance within the ballooning area, as only the most
important pixels of the two hepatocytes are activated.

It is known that the AlexNet architecture consists of two additional convolution layers [21] which,
according to the above figure, can lead to the activation of individual small patterns that could improve
the overall classification performance. However, it seems that the first three convolution layers of
CNNSGDM are sufficient for the necessary histological features to be filtered. On the other hand, a key
prerequisite for CNNSGDM is to determine more optimal parameters which could further reduce the
overfitting effect on the training data.
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4. Discussion

Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disorder worldwide.
Many studies investigating the natural history of NAFLD have verified its progression from chronic
non-alcoholic steatohepatitis (NASH) to end-stage cirrhosis and hepatocellular carcinoma (HCC) [24].
Because a multitude of complications impede their accurate identification and treatment, their
prevalence has been evaluated with a variety of diagnostic methods. Quantitative assessment through
digital histological imaging has been established as the gold standard in clinical trials, with liver
biopsies being the mean for the detection and staging of NASH and NAFLD. However, it is an invasive
patient procedure and for this reason, it can be applied in cases that do not allow subjective evaluations.

The current study is an extension of an earlier project [25], the results of which were presented at
42nd International Conference on Telecommunications and Signal Processing (TSP) held in Budapest
in July 2019. It focuses on resolving the aforementioned diagnostic barrier by fully automating the
supervised classification process using deep learning systems. In particular, a CNN architecture is
defined for fast training and accurate classifications on four liver tissue structures from biopsy images.
Objects of interest relate to two liver disease structures including, (a) ballooned hepatocytes and (b) fat
droplets, as well as two non-disease related objects including, (c) sinusoids and (d) veins. Then, the
performance of this new deep topology is compared with that produced by well-known pre-trained
CNN models, as well as with a conventional MLP-ANN.

The forthcoming subsections aim to comment on techniques previously applied to a 4-class
recognition problem, eventually producing a 95% classification accuracy. The following steps include
an overview of research efforts on histopathological liver specimens. The main goal is the obtained
results to be qualitative compared with those coming from different diagnostic applications and different
liver tissue examinations in recent years. Then, a brief description of the possibilities of extending the
present methodology is given, continuing on the motif of fully automated object recognition and how
they can offer effective solutions to medical diagnostic centers.

4.1. Discussion of Research Findings

4.1.1. Training and Validation Results

Figure 4 illustrates a dashboard showing the validation values, during the training phase, in the
corresponding subset of validation images (n = 60). In the first validation step, CNNAdam performs
better than CNNSGDM (CNNAdam: 85%, CNNSGDM: 78%), but in future validations, its performance is
inferior to that of CNNSGDM, as it tended to overfit the training data. These results are in line with
other published conclusions [26,27], claiming that adaptive-based algorithms can boost the CNN
computations, by using a vector of changing learning rates, one for each parameter, which is adapted
as the training algorithm progresses. This is in contrast to stochastic gradient descent (SGD) optimizers,
which use a constant learning rate during the training process [27]. These publications emphasize that
even with a small number of mini-batches (64 image patches in the current study), Adam finds no
solutions whose performance matches state-of-the-art. It has been constantly shown to be related to
non-generalized results and especially in this case to non-convergence. In conclusion, it is usually
noted that in systems with large computational resources, the use of SGD-type optimization techniques
remains the ideal solution.

4.1.2. Testing Performance

The boxplot has become an ideal technique for presenting a 5-number summary (minimum and
maximum range values, upper and lower quartiles, and median value), offering a quick analysis of
the models’ classification performance [28]. Both CNNAdam and CNNSGDM neural networks show
a comparatively longer inter-quartile range (IQR) in the sinusoid class, yielding ultimately higher
larger error values, resulting from Q3 + 1.5 * IQR, than the rest hepatic tissue structures. Based on
Figure 8, two false positive sinusoid classifications in CNNAdam as liver veins have yielded a greater
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error variability for the corresponding vein class. The same is true for the CNNSGDM model diagram,
where one incorrect classification of a balloon cell as sinusoid (false positive) and another, including
a sinusoid misclassified as a ballooning area (false negative), have increased the inter-quartile error
range for both class labels. All these performances, along with the error rates, ultimately produce a
classification accuracy of up to 95%. It is noted that they show an improvement compared to the results
of previous classification approaches [29] and is expected that they will further reduce the overall
fat and ballooning prevalence ratio error compared to human visual interpretations [30]. It is also
important, that current outcomes suggest a steady improvement in automated detection techniques
and emphasize their diagnostic capabilities with respect to semi-quantitative methods.
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4.1.3. Methodology Performance Compared to Other Classification Models

According to Table 2 and the accompanying Figure 6 diagram, CNNSGDM performs better than
VGG-16, demonstrating that it can significantly contribute to fully automated disease assessments.
On the other hand, the AlexNet model achieves better performance. However, the proposed deep
CNN classifier is focused on short training processes from scratch as well as on minimizing the number
of layers (4 layers in total compared to 8 layers of AlexNet and 16 layers of VGG-16). On the contrary,
the poor, compared to the CNN architectures, performance of conventional MLP-ANN is one of the
main reasons that have led the research community to make the transition to deep learning algorithms.

Table 3 summarizes all the deep neural networks used in the liver biopsy dataset classification
process along with their training times. It is emphasized that these training times cannot be directly
compared since transfer learning updates have been applied to AlexNet [21] and VGG-16 [22] networks,
which have been trained from scratch with the ImageNet dataset. Specifically, AlexNet was trained
for 6 days on two NVIDIA Geforce GTX 580 GPUs and VGG-16 on four NVIDIA Titan Black GPUs
for 2–3 weeks. Although these architectures are two of the most preferred options for extracting
image features, they consist of a huge number of trainable parameters (AlexNet: 60 million, VGG-16:
138 million), leading to a very demanding processing procedure for the average hardware systems. It is
shown that the AlexNet transfer learning process lasted 45 seconds, while for the much deeper VGG-16
model, it took 5 min and 13, which is longer than the CNNSGDM training from scratch process, which
was completed in 2 min thanks to its 16,825,876 trainable parameters. All these conclusions justify
the effort of novel research works to develop new deep models that could achieve new and shorter
training performances on specific classification problems, without the employment of high-budget
hardware equipment.
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Table 3. Indirect comparison of training times for the three deep models in the current liver biopsy
dataset. The term indirect is emphasized since only the CNNSGDM model is trained from scratch with
the liver biopsy dataset. Transfer learning is used to train the other two models (AlexNet and VGG-16).

Deep Model Trainable Parameters Training “from Scratch”
(Minutes)

Transfer Learning
(Minutes)

CNNSGDM 16,825,876 2 -
AlexNet 60,000,000 - 0.45
VGG-16 138,000,000 - 5.13

4.2. Visualization of Learned Features

A characteristic of a convolution filter is that it decomposes each histological sample into multiple
feature maps [23]. Figure 7 includes a commonly used technique for visualizing these maps into
independent 2D images.

In most computer vision problems there is a constant change in the background scene, with
trained models being called upon to achieve a more rational separation of common objects of interest.
Unlike the present identification problem, where there is a recurring background consisting of pixels
that usually carry an H&E histological stain, along with objects of non-interest, such as healthy tissue
and hepatocytes. As a positive observation in Figure 7, background pixel activations are significantly
minimized in the ReLU functions in both CNNSGDM and AlexNet models, with tissue structures
being successfully recognized. Thanks to the classifiers’ deep architecture, a distinction is made
between critical features, such as the change in adjacent pixels intensities that point to different
edge types (e.g. straight or curved lines), but also to more detailed structures including ballooned
hepatocytes. However, carrying even a small proportion of background pixel activations remains a
cause of overfitting, and future applications aim to limit this issue with solutions proposed in the
last section.

4.3. Qualitative Performance Comparison with Prior Methodologies

The number of digitally scanned microscopic specimens (64), along with the extracted image
patches (720), form a sufficient image dataset for the implemented deep CNN architecture. A step that
allows a qualitative comparison of the present work with recent innovative efforts aimed at locating
diverse anatomical structures and chronic conditions, exclusively on liver biopsy images.

Unfortunately, a direct quantitative comparison with other relative works, presented in the
literature, is not feasible. The current study employs a unique liver biopsy dataset, while the cited
papers do not in all cases analyze the same histological areas of interest. Also, the cited methods do
not rely on similar evaluation metrics when measuring their classification capability. Therefore, Table 4
intends to make a qualitative comparison of the referred methodologies, derived from a combination
of digital image processing techniques with conventional machine learning algorithms and fully
automated deep learning architectures. The table below initially shows that image preprocessing to
H&E stained samples remains an essential step for image segmentation purposes. Also, unsupervised
machine learning algorithms, such as K-means, refer to popular clustering techniques for separating
biopsy samples from their background as well as tissue structures of interest. Subsequently, these
methods lead well-known classifiers such as k-nearest neighbors (k-NN), decision tree (DT) and
support vector machines (SVM) to high object recognition performances.
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Table 4. Qualitative comparison with recent years image analysis methods from the literature.

Author/Year Dataset Image Analysis
Method

Histological
Structures

Classification
Results (%)

Nativ et al., 2014 [6] 54
histological images

Image
preprocessing.

K-means clustering.
Decision Tree (DT)

classification

Fat droplets
(ld-MaS, sd-MaS)

Sensitivity: 99.3.
Specificity: 93.7

R2: 97

Sumitpaibul et al.,
2014 [7]

16
histological images

(×400)

Image
preprocessing.

k-NN classification
Fat droplets

Accuracy: 97.52.
TPR: 77.59.
FPR: 1.19

Hall et al., 2017 [8]
21

histological images
(×20)

Digital image
analysis (DIA) Fat droplets

5%, 20% mFPA
ALT (p < 0.001).
10% mFPA LR

(p < 0.001)

Roy et al., 2018 [9]
11

histological images
(30,000 × 20,000)

Image
preprocessing.
PCA analysis.

Supervised
classification

Isolated steatosis.
Overlapped

steatosis
Accuracy ≤ 100

Vanderbeck et al.,
2014 [10]

59
histological images

(×20)

Image
preprocessing.

K-means clustering.
SVM classification

Bile ducts. Central
veins.

Macrosteatosis.
Portal arteries.
Portal veins.

Sinusoids

Accuracy: 89.3.
Precision ≥ 82.

Recall ≥ 82

Segovia-Miranda et
al., 2019 [11]

High-resolution
multi-photon

microscopy images

3D Tissue
morphology.
Cholestatic
biomarkers

Bile canaliculi.
Cell borders.

Lipid droplets.
Nuclei.

Sinusoids

ALP (p = 0.473).
Total BAs
(p = 0.505).

Primary BA
(p = 0.518).

GGT (p = 0.680)

Vanderbeck et al.,
2015 [12]

59
histological images

(×20)

Image
preprocessing.

Supervised
classification

Ballooned
hepatocytes.

Lobular
inflammation

AUC ≤ 98.
ROC ≤ 98.3.

Precision ≤ 91.
Recall ≤ 54

Vicas et al., 2017
[13]

107
histological images

Image
preprocessing.

Gradient Boosted
Tree (GBT),

SVM, LR, RF, CNN
classification.

U-Net
Segmentation

Fat droplets.
Tissue fibrosis R2

≤ 89.3 2

Proposed
methodology

64
histological images

(×20)

MLP-ANN, CNN
classifications

Ballooned
hepatocytes.

Fat droplets. Veins.
Sinusoids

Accuracy ≤ 95 3.
Precision ≤ 95 3.

Recall ≤ 95 3.
F-score ≤ 95 3.

Specificity ≤ 98.3 3

1 Confidence intervals (with 95% confidence). 2 Correlation coefficient with human expert quantification.
3 Performance from the constructed CNN model employing the Adam and SGDM optimizers.

Nativ et al. [6] presented an image analysis method that could distinguish the main differences
between small-droplet macrovesicular steatosis (sd-Mas) and large-droplet macrovesicular steatosis
(ld-MaS). The methodology was based on an automated active contour modeling (ACM) technique
for lipid droplet segmentation, the unsupervised K-means algorithm for clustering the two objects
of interest and a decision tree classifier to improve the separation between the two categories. After
the classification stage, specificity and sensitivity values were 93.7% and 99.3%, respectively. The
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linear regression coefficient of determination was equal to 0.97, as the correlation method with
semi-quantitative pathologists’ assessments.

Sumitpaibul et al. [7] proposed an image processing-based method for estimating the fat ratio in
liver biopsy images. This study adopted classic image processing techniques to extract the areas of
candidate fat blobs, including grayscale and binary image conversion, background segmentation and
average noise filtering. Next, the k-NN classifier was called to identify fat blobs that could lead to an
accurate calculation of the fat prevalence ratio.

Hall et al. [8] investigated the relationships between liver fat, aminotransferases, and hepatic
architecture in steatotic liver sample examinations. Binary segmentation of the red, green and blue
(RGB) channels resulted in the distinction of fat vacuoles and the measurement of the fat proportionate
area (mFPA). The results showed that there were significant increases in alanine aminotransferase (ALT),
and aspartate aminotransferase (AST) when the fat content increased. Other data also indicated both
5% and 20% of mFPA as a cut-off for raised ALT. Moreover, significant growth in hepatic architecture
(HA) and lobule radius (LR) were observed when fat accumulation increased (mFPA = 10%).

Roy et al. [9] proposed a segmentation method for extracting histological regions of interest from
high-resolution biopsy images. This was followed by the application of image enhancement and
morphological operation techniques to enhance and smooth the boundaries of steatosis components,
as well as to remove small undesired objects. Furthermore, a sophisticated technique for assigning
curvature points to differentiate overlapped fat droplets was presented. Finally, a supervised
classification step was used and resulted in discrimination rates for both isolated and overlapped
steatosis, where in most cases they were equal to 100%.

Following Vanderbeck et al. [10], they focused on a multiple liver class recognition problem.
The method relied on both image preprocessing and supervised classification techniques. The SVM
algorithm performed 89% classification accuracy and identified macrosteatosis, bile ducts, portal veins
and sinusoids with precision and recall values ≥ 82%. The same team in a subsequent study [12]
focused on the automatic detection and quantification of lobular inflammation and hepatocellular
ballooning. As before, image preprocessing and supervised classification resulted in 70% and 49%
precision and recall values for lobular inflammation and 91% and 54% for hepatocellular ballooning.
In addition, the classifier had a 95% area under the curve (AUC) for lobular inflammation and 98%
for hepatocellular ballooning. The Spearman’s correlation coefficient was applied to compare the
method’s performance with that of expert pathologists and was 45.2% for lobular inflammation and
46% for hepatocyte ballooning.

Segovia-Miranda et al. [11] applied a three-dimensional imaging technique, to generate
spatially-resolved geometrical and functional models for the diagnosis of liver tissue specimens
at different NAFLD stages. The methodological approach identified a set of morphological changes
associated with NAFLD progression. These morphological changes included the size of lipid droplets
distribution, nuclear texture homogeneity, and feature values which were used as tissue biomarkers
to distinguish the different stages of NAFLD progression. Correlations between various diagnosed
findings and NAFLD progression in individual patients were analyzed. The results indicated that
gamma-glutamyl transpeptidase (GGT) had the strongest Pearson correlation coefficient (GGT = 0.680).
The same coefficient was 0.473 for alkaline phosphatase (ALP), 0.505 for total bile acid (BA) and 0.518
for the corresponding primary BA.

More recently, there has been an increase in the selection of deep convolutional neural networks for
the classification and monitoring of microscopic structures. Vicas et al. [13] aimed at fully-automating
the liver fibrosis detection process. The same group also focused on the objective quantification of
steatosis, with classical computer vision techniques (image processing, conventional machine learning)
and CNNs being the two diagnostic approaches. In the case of deep neural networks, the U-net
proved to be the optimal approach for performing pixel-wise region segmentations. The validation of
the automated quantitative analysis was performed using the R2 correlation coefficient based on a
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physician’s qualitative scores. Specifically, the R2 was 0.748 for the classical computer vision approach
and 0.893 for the CNN, respectively.

The above qualitative comparison shows in total that the full capabilities and strengths of the
digital image processing field remain to be explored. Nonetheless, it becomes clear that deep learning
algorithms can achieve high classification rates, by fully automating the image analysis process without
the extensive need for image enhancement and object segmentation techniques. In the next subsection,
new techniques, which have been implemented by many experts in the field of deep learning, are
discussed and could lead to an improvement of the current methodology.

4.4. Future Thoughts and Ideas

As a future work, many improvements could be included such as (a) digitizing new biopsy
samples and increasing the dataset in more than 1000 liver structures, (b) enhancing the neural
network discrimination experience by applying transfer learning updates and (c) parameterizing the
CNN architecture to adapt to the imminent amount of data. The first step can be done in parallel
with data augmentation techniques, which refer to classic 2D image transformations, including
random rotations, random shearing-zooming, horizontal and vertical flips, etc. Applying more
optimizers, including RMSprop and Adadelta, could also prove to be a good alternative to the proposed
backpropagation algorithms.

Thereafter, autoencoder neural networks could make a significant contribution to the data
preprocessing stage, further limiting the overfitting effect in the training set. Autoencoders (ex. stacked,
variational) refer to a sophisticated technique for learning efficient representations of input data,
without any supervision [14]. Typically, the autoencoders’ output is a reconstruction of the input
data in its most efficient form [16]. The current unsupervised model will be employed to reduce the
dataset’s dimensionality, by preserving the most informative elements that compose a liver disease
structure and eliminating the background pixels activations as much as possible.

Future projects will include an accurate method that could involve real-time histological
classifications through a digital microscope. All current study implementations, as well as future
improvements, will also be included for disease quantification purposes. During the scan of biopsy
specimens, the learned feature weights will lead detection windows (as bounding boxes with active
contour lines) to structures identified with the four liver classes (Figure 9). Typical examples of such
detectors are (a) region-based convolutional neural networks (R-CNNs) [31,32], (b) you only look
once (YOLO) [33,34] and (c) single shot detector (SSD) [35]. An interesting choice is also the U-Net
architecture [36], which includes a variant of CNNs, for pixel-wise segmentation.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 19 
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Following the extraction of the histological sample area (e.g. with K-means) and the discrimination
of structures of interest, the exclusion of anatomic features not related to pathological findings will be
executed, performing an objective assessment of the liver diseases. As a result, clinicians will have at
their disposal a quick and accurate diagnostic tool for support, which will compute the percentages of
ballooning degeneration and fat accumulation ratio. The quantification of the two conditions will be
carried out using the following formula:

PLD =
1
nt

n∑
i=1

(bi|| fi)×100, (3)

where bi and fi are the total count of pixels that form multiple classified balloon cells or fat droplets,
respectively, eventually divided by the total area of tissue pixels nt.

5. Conclusions

The current work focuses on building a deep convolutional neural network architecture, aiming
at short training time combined with the precise classification of four liver biopsy tissue alterations.
The new CNN model was trained on two different occasions with the SGDM and Adam optimization
algorithms, with SGDM producing the optimal classification accuracy (95%). The performance of the
new CNNSGDM topology was then compared with that of the pre-trained AlexNet and VGG-16 models,
in which transfer learning updates were applied, as well as with a conventional MLP artificial neural
network. The results showed that the constructed CNNSGDM model can achieve better classification
accuracy than VGG-16, while AlexNet emerged as the most optimal classifier. Also, the constructed
model was superior to the conventional MLP-ANN, indicating the need to apply deep learning
architectures to modern computer vision methodologies. In conclusion, CNN architectures are based
on fully automated image analysis steps, without the extensive need for manual annotations. This
is a decisive step in the objective distinction of hepatocyte ballooning and fat droplets, two tissue
structures responsible for the increasing prevalence of NAFLD and NASH in recent years.

Author Contributions: A.T.T., N.G. and C.T.A. conceived of the idea and methodology, A.A. developed the CNN
architecture and extracted the results for the current dataset, M.G.T. and V.C. employs transfer learning and
classical ANNs to produce comparative results in the same dataset, R.F. and P.M. provided the annotated set
of biopsies and support the pathological point of view of the methodology and the results, A.A. and all other
authors prepared the manuscript, E.G. and A.T.T. organized the research team, and N.G. supervised the project.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is partly funded by the project entitled xBalloon, co-financed by the European Union and
Greek national funds through the Operational Program for Research and Innovation Smart Specialization Strategy
(RIS3) of Ipeiros (Project Code: 5033187).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol.
2018, 53, 362–376. [CrossRef]

2. Germani, G.; Laryea, M.; Rubbia-Brandt, L.; Egawa, H.; Burra, P.; O’Grady, J.; Watt, K.D. Management
of Recurrent and De Novo NAFLD/NASH After Liver Transplantation. Transplantation 2019, 103, 57–67.
[CrossRef] [PubMed]

3. Fujimori, N.; Umemura, T.; Kimura, T.; Tanaka, N.; Sugiura, A.; Yamazaki, T.; Joshita, S.; Komatsu, M.;
Usami, Y.; Sano, K.; et al. Serum autotaxin levels are correlated with hepatic fibrosis and ballooning in patients
with non-alcoholic fatty liver disease. World J. Gastroenterol. 2018, 24, 1239–1249. [CrossRef] [PubMed]

4. Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.;
Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the
American association for the study of liver diseases. Hepatology 2018, 67, 328–357. [CrossRef]

http://dx.doi.org/10.1007/s00535-017-1415-1
http://dx.doi.org/10.1097/TP.0000000000002485
http://www.ncbi.nlm.nih.gov/pubmed/30335694
http://dx.doi.org/10.3748/wjg.v24.i11.1239
http://www.ncbi.nlm.nih.gov/pubmed/29568204
http://dx.doi.org/10.1002/hep.29367


Appl. Sci. 2020, 10, 42 18 of 19

5. Goceri, E.; Shah, Z.K.; Layman, R.; Jiang, X.; Gurcan, M.N. Quantification of liver fat: A comprehensive
review. Comput. Biol. Med. 2016, 71, 174–189. [CrossRef]

6. Nativ, N.I.; Chen, A.I.; Yarmush, G.; Henry, S.D.; Lefkowitch, J.H.; Klein, K.M.; Maguire, T.J.; Schloss, R.;
Guarrera, J.V.; Berthiaume, F.; et al. Automated image analysis method for detecting and quantifying
macrovesicular steatosis in hematoxylin and eosin-stained histology images of human livers. Liver Transplant.
2014, 20, 228–236. [CrossRef] [PubMed]

7. Sumitpaibul, P.; Damrongphithakkul, A.; Watchareeruetai, U. Fat detection algorithm for liver biopsy images.
In Proceedings of the International Electrical Engineering Congress (iEECON), Chonburi, Thailand, 19–21
March 2014; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2014. [CrossRef]

8. Hall, A.; Covelli, C.; Manuguerra, R.; Luong, T.V.; Buzzetti, E.; Tsochatzis, E.; Pinzani, M.; Dhillon, A.P.
Transaminase abnormalities and adaptations of the liver lobule manifest at specific cut-offs of steatosis. Sci.
Rep. 2017, 7. [CrossRef]

9. Roy, M.; Wang, F.; Teodoro, G.; Vos, M.B.; Farris, A.B.; Kong, J. Segmentation of overlapped steatosis in
whole-slide liver histopathology microscopy images. In Proceedings of the 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–31
July 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 810–813.
[CrossRef]

10. Vanderbeck, S.; Bockhorst, J.; Komorowski, R.; Kleiner, D.E.; Gawrieh, S. Automatic classification of white
regions in liver biopsies by supervised machine learning. Hum. Pathol. 2014, 45, 785–792. [CrossRef]

11. Segovia-Miranda, F.; Morales-Navarrete, H.; Kucken, M.; Moser, V.; Seifert, S.; Repnik, U.; Rost, F.;
Hendriks, A.; Hinz, S.; Rocken, C.; et al. 3D spatially-resolved geometrical and functional models of human
liver tissue reveal new aspects of NAFLD progression. bioRxiv 2019. [CrossRef]

12. Vanderbeck, S.; Bockhorst, J.; Kleiner, D.; Komorowski, R.; Chalasani, N.; Gawrieh, S. Automatic quantification
of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies. Hum.
Pathol. 2015, 46, 767–775. [CrossRef]

13. Vicas, C.; Rusu, I.; Al Hajjar, N.; Lupsor-Platon, M. Deep convolutional neural nets for objective steatosis
detection from liver samples. In Proceedings of the 13th IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 7–9 September 2017; Institute of
Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 385–390. [CrossRef]

14. Geron, A. Hands-On Machine Learning with Scikit-Learn and Tensorflow: Concepts, Tools, and Techniques to Build
Intelligent Systems; Tache, N., Ed.; O’Reilly Media: Sebastopol, CA, USA, 2017.

15. Zhou, S.K.; Greenspan, H.; Shen, D. Deep Learning for Medical Image Analysis; Pitts, T., Ed.; Academic Press:
Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017.

16. Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach; Loukides, M., McGovern, T., Eds.; O’Reilly
Media: Sebastopol, CA, USA, 2017.

17. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

18. Hernandez, M.V.; Gonzalez-Castro, V. Medical image understanding and analysis (MIUA). In Proceedings of
the Communications in Computer and Information Science, 21st Annual Conference, Edinburgh, UK, 11–13
July 2017; Springer: Berlin/Heidelberg, Germany, 2017.

19. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

20. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Dietterich, T., Bishop, C., Heckerman, D., Jordan, M.,
Kearns, M., Eds.; The MIT Press: Cambridge, MA, USA, 2016.

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]

22. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In
Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA,
7–9 May 2015.

23. Chollet, F. Deep Learning with Python; Arritola, T., Gaines, J., Dragosavljevic, A., Taylor, T., Eds.; Manning
Publications Co.: Shelter Island, NY, USA, 2018.

http://dx.doi.org/10.1016/j.compbiomed.2016.02.013
http://dx.doi.org/10.1002/lt.23782
http://www.ncbi.nlm.nih.gov/pubmed/24339411
http://dx.doi.org/10.1109/iEECON.2014.6925850
http://dx.doi.org/10.1038/srep40977
http://dx.doi.org/10.1109/EMBC.2018.8512289
http://dx.doi.org/10.1016/j.humpath.2013.11.011
http://dx.doi.org/10.1101/572073
http://dx.doi.org/10.1016/j.humpath.2015.01.019
http://dx.doi.org/10.1109/ICCP.2017.8117035
http://dx.doi.org/10.1145/3065386


Appl. Sci. 2020, 10, 42 19 of 19

24. Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of
non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011,
34, 274–285. [CrossRef] [PubMed]

25. Arjmand, A.; Angelis, C.T.; Tzallas, A.T.; Tsipouras, M.G.; Glavas, E.; Forlano, R.; Manousou, P.; Giannakeas, N.
Deep learning in liver biopsies using convolutional neural networks. In Proceedings of the 42nd International
Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; Institute
of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019. [CrossRef]

26. Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of adaptive gradient methods in
machine learning. arXiv 2017, arXiv:1705.08292.

27. Keskar, N.S.; Socher, R. Improving generalization performance by switching from Adam to SGD. arXiv 2017,
arXiv:1712.07628.

28. Potter, C. Methods for presenting statistical information: The box plot. Gi-Ed. Lect. Notes Inform. 2006, 4,
97–106.

29. Arjmand, A.; Tzallas, A.T.; Tsipouras, M.G.; Forlano, R.; Manousou, P.; Katertsidis, N.; Giannakeas, N. Fat
droplet identification in liver biopsies using supervised learning techniques. In Proceedings of the 11th
Pervasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 26–29 June 2018.

30. Arjmand, A.; Giannakeas, N. Fat quantitation in liver biopsies using a pretrained classification based system.
Eng. Technol. Appl. Sci. Res. 2018, 8, 3550–3555.

31. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Colombus, OH, USA, 24–27 June 2014; Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, USA, 2014. [CrossRef]

32. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [CrossRef]

33. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016.
[CrossRef]

34. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
35. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox

Detector. arXiv 2016, arXiv:1512.02325v5.
36. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation.

arXiv 2015, arXiv:1505.04597.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1365-2036.2011.04724.x
http://www.ncbi.nlm.nih.gov/pubmed/21623852
http://dx.doi.org/10.1109/TSP.2019.8768837
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/CVPR.2016.91
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Histological Features Isolation 
	Convolutional Neural Network Model Construction 
	Applied Optimization Algorithms 

	Results 
	Training and Validation Results 
	Testing Results 
	Performance Comparison with Pre-Trained CNN Models 
	Performance Comparison with a Conventional Neural Network 
	Visualization of Filtered Anatomical Features 

	Discussion 
	Discussion of Research Findings 
	Training and Validation Results 
	Testing Performance 
	Methodology Performance Compared to Other Classification Models 

	Visualization of Learned Features 
	Qualitative Performance Comparison with Prior Methodologies 
	Future Thoughts and Ideas 

	Conclusions 
	References

