
applied
sciences

Article

An Automated Refactoring Approach to Improve IoT
Software Quality

Yang Zhang 1 , Shuai Shao 1, Minghan Ji 1, Jing Qiu 2,* , Zhihong Tian 2 and Xiaojiang Du 3

and Mohsen Guizani 4

1 School of Information Science and Engineering, Hebei University of Science and Technology,
Shijiazhuang 050000, China; zhangyang@hebust.edu.cn (Y.Z.); shao724854691@163.com (S.S.);
jiminghan123@163.com (M.J.)

2 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China;
tianzhihong@gzhu.edu.cn

3 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA;
dxj@ieee.org

4 Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar;
mguizani@gmail.com

* Correspondence: qiujing@gzhu.edu.cn

Received: 21 October 2019; Accepted: 1 January 2020; Published: 6 January 2020
����������
�������

Abstract: Internet of Things (IoT) software should provide good support for IoT devices as IoT
devices are growing in quantity and complexity. Communication between IoT devices is largely
realized in a concurrent way. How to ensure the correctness of concurrent access becomes a big
challenge to IoT software development. This paper proposes a general refactoring framework for
fine-grained read–write locking and implements an automatic refactoring tool to help developers
convert built-in monitors into fine-grained ReentrantReadWriteLocks. Several program analysis
techniques, such as visitor pattern analysis, alias analysis, and side-effect analysis, are used to
assist with refactoring. Our tool is tested by several real-world applications including HSQLDB,
Cassandra, JGroups, Freedomotic, and MINA. A total of 1072 built-in monitors are refactored into
ReentrantReadWriteLocks. The experiments revealed that our tool can help developers with refactoring
for ReentrantReadWriteLocks and save their time and energy.

Keywords: refactoring; IoT software; synchronization; software quality; concurrency

1. Introduction

The exponential growth of IoT devices is changing our world [1,2]. According to a recent Gartner
report [3], 8.4 billion devices including smart phones, tablets and laptops will be connected by 2020,
and this number is expected to grow up to 20.4 billion by 2022. To enable smooth interaction between
these IoT devices, IoT software should provide good support. [4,5].

Communication between IoT devices is primarily realized in a concurrent way. How to ensure the
correctness of concurrent access becomes a major challenge in IoT software development [6,7]. Java has
become one of the most popular programming languages for IoT software development because of its
capacity to handle concurrency-related problems [8]. Java virtual machine (JVM) provides support for
Java-based IoT applications running almost on any chip. Java provides support for IoT software in
different aspects, such as cloud computing, big data, sensors, and M2M computing. Java’s ability of
combining different devices makes it a good choice for development of IoT applications.

Writing a high-quality concurrent program is still challenging. Developers usually
employ coarse-grained locks which introduce lock contention and decrease performance.

Appl. Sci. 2020, 10, 413; doi:10.3390/app10010413 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2767-5951
https://orcid.org/0000-0003-4202-7802
https://orcid.org/0000-0002-9409-5359
http://dx.doi.org/10.3390/app10010413
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/1/413?type=check_update&version=2

Appl. Sci. 2020, 10, 413 2 of 15

However, fine-grained locking is notoriously difficult. Usually, it makes programs more complicated,
error-prone, and incurs other problems. Sometimes, improper use of fine-grained locking will increase
the overhead of lock operations.

Early works on optimization of concurrent programs focused on the compiler level [9,10].
However, the compiler optimization is complicated and subject to limitation of many factors. Some
researchers proposed methods, such as lock splitting [11] and class splitting [12], to reduce
lock contention, and a method of merging synchronized blocks to reduce lock operation
overhead [13]. Max et al. [14] have proposed an algorithm of refactoring for ReentrantLocks and
ReentrantReadWriteLocks, as well as a refactoring tool Relocker. But Relocker does not support
fine-grained refactoring. Though this tool allows automation to some extent, it relies heavily on
manual selection of codes to refactor. This paper aims to realize fine-grained lock refactoring via lock
splitting and lock degrading of ReentrantReadWriteLocks, and implements an automatic tool.

Our refactoring method for fine-grained ReentrantReadWriteLocks is designed based on static
program analysis. Our method identifies all built-in monitors in a program through visitor pattern
analysis. The problem of alias with the same monitor object is resolved by alias analysis. The read and
write patterns of critical section are analyzed by using effect side analysis. Our refactoring tool works
on the source level to help developers implement the automated refactoring from coarse-grained locks
to fine-grained ReentrantReadWriteLocks. Our tool is tested by five real-world applications, and a total
of 1072 built-in monitors have been refactored.

The main contributions of this paper include the following.

• We developed algorithms that could convert built-in monitor locks to fine-grained
ReentrantReadWriteLocks.

• We developed an automated refactoring tool implemented as Eclipse plugins.
• We evaluated our tool on several real-world applications.

The remainder of this paper is organized as follows. The related works are examined in Section 2.
Some advantages of the ReentrantReadWriteLock over built-in monitor locks are presented in Section 3.
Section 4 demonstrates our refactoring framework, and our refactoring and analysis algorithm design.
Some practical problems are discussed in Section 5. Section 6 presents the evaluation of our proposed
tool on a set of Java applications, and conclusions and future works are presented in Section 7.

2. Related Work

In the early study of lock-oriented refactoring, Aldrich et al. [9] and Bogda et al. [10] focused
on eliminating unnecessary synchronization, but it was complicated on the compiler level and was
limited by many factors. Tao et al. [11] proposed a method of lock splitting based on synchronization
requirement analysis. Diniz et al. [13] reduced the overhead by coarsening the granularity at which
the computation locks objects. Schäfer et al. [14] designed a refactoring tool Relocker to convert built-in
monitors to ReentrantLocks and ReentrantReadWriteLocks. Inspired by his work, Zhang et al. [15]
worked on refactoring from a built-in monitor to a StampedLock by lock downgrading/upgrading
and optimistic synchronization.

Bavarsad et al. [16] proposed a way to overcome the overhead of the global clock for Software
Transactional Memory (STM) by two optimization techniques. The first was read–write lock allocation
(RWLA), which could only improve the performance of the STM if the transaction committed
successfully. However, if conflicts occurred frequently, RWLA would increase the abort cost and
reduce performance; the second optimization technique was a dynamic selection baseline scheme or
adaptive technique to reduce the abort cost of RWLA.

Emmi et al. [17] proposed an automatic lock allocation technique to infer the location of a lock in
a program and ensure that the lock was correct and avoid deadlocks. Kawachiya et al. [18] proposed a
lock retention algorithm that allowed a lock to be retained by a thread. When a thread tried to acquire
a lock operation, if the thread retained the lock, it would not have to perform an atomic operation to

Appl. Sci. 2020, 10, 413 3 of 15

get the lock; otherwise, the thread would use the traditional method to obtain a lock. Hofer et al. [19]
came up with a new method for analyzing lock contention in Java applications by tracking locking
events in Java virtual machines. Their method detected not only when threads were blocked on locks,
but also when other threads held the lock to block it and recorded their call chains. This method could
reveal the causes for lock contention and identify the performance bottlenecks of locks. Our previous
research implemented an automatic refactoring tool to convert built-in monitors to StampedLocks [15],
and refactored Java programs for customized locks [20].

For the software refactoring tools, Dig et al. probed into concurrent refactoring. They proposed
a software parallelization refactoring tool, CONCURRENCER [21], which could refactor serial Java
codes into parallel Java codes. By refactoring a serial program into a re-entrant parallel program using
the java.util.concurrent library, they converted a thread into a Fork/Join framework, converted int.
into AtomicIntegers, and converted HashMaps into ConcurrentHashMaps, making data access thread-safe.
Tip et al. focused on the validation of software correctness in the early stages of refactoring and
designed a refactoring tool Reentrancer [22] to make programs reentrant by transforming a sequence
program into a reentrant program.

The impact of IoT is worldwide [23,24]. Refactoring can improve the quality of software, but in
the meantime incurs security risks [25,26]. Some researchers have paid attention to the security of IoT
software [27,28].

3. Motivation

In this section, we first introduce the background of the ReentrantReadWriteLock and present some
possible application scenarios of the ReentrantReadWriteLock. Also, the performance of the synchronized
lock and the ReentrantReadWriteLock is compared.

3.1. Background

The ReentrantReadWriteLock [29] is a locking mechanism introduced in JDK 1.5. It maintains a pair
of associated locks, read locks, and write locks. As long as there is no write thread, the read lock may
be held simultaneously by multiple read threads. The write lock is an exclusive lock and can be held
only by one thread at a time.

The ReentrantReadWriteLock supports lock downgrading, which means that a current
thread can acquire a read lock while holding a write lock, and then release the write lock.
Acquiring the read lock and then releasing the write lock is to ensure the visibility of the data.
However, a ReentrantReadWriteLock does not support upgrading from a read lock to a write lock,
the purpose of which is also to ensure data visibility. If the read lock is acquired by multiple threads,
any thread among them can successfully acquire the write lock and update the data, but its update is
not visible to other threads that have the read lock.

The ReentrantReadWriteLock enables more concurrency when accessing shared data. In theory,
the performance of using ReentrantReadWriteLocks would be significantly better than using mutually
exclusive locks. However, in practice, the performance also depends on the concurrent processing
power of multi-core processors and access patterns to shared data.

The standard library java.util.concurrent [30] has provided classes and interfaces to enable flexible
usage of locks, such as ReentrantLocks, ReentrantReadWriteLocks, and StampedLocks. These will allow
the program to run with a fine-grained lock. Nevertheless, Pinto et al. [31], after analyzing 2227 Java
projects with concurrent structures on SourceForge.net, concluded that the Java concurrency library
had not been used sufficiently and only ~23% of Java projects with concurrent programming structures
had used it.

3.2. Motivating Example

Figure 1 presents the use of two different lock structures to implement the insert and inquire
operations on the database. The program of Figure 1a is implemented by synchronized, where inquire()

Appl. Sci. 2020, 10, 413 4 of 15

is a query operation for the database and insert() is an insert operation. The program in Figure 1b is
implemented by ReentrantReadWriteLocks, where the query operation inquire() is a read operation, so the
read lock is used. The insertion operation insert() is a write operation, so the write lock is used. Note that
when using ReentrantReadWriteLocks for synchronization, the unlock() command must be called to
release the read lock or the write lock after the operation that requires synchronization. A try-finally
construct is usually used when the ReentrantReadWriteLock is used, and the operation of releasing the
lock is placed in the final block to ensure that the lock is always released to avoid deadlocks.

Figure 1. (a) The method implemented with synchronized locks; (b) the method implemented with
ReentrantReadWriteLocks; (c) the method implemented with synchronized locks; and (d) shows the
method implemented with lock downgrading of ReentrantReadWriteLocks.

The method CacheprocessData() in Figure 1c implements the operation of the database. The data
are used directly if the data exist in the cache. The data from the database are read and written to the
local cache if the data do not exist in the local cache.

Figure 1d shows the method processCachedData() implemented through the lock downgrading
mode of ReentrantReadWriteLocks. The code shows that the first read lock is acquired to read the data
into the local cache. If the data do not exist in the local cache, the current thread will release a read
lock to acquire a write lock and find the data in the database, then write the found data into the
local cache. The thread finally acquires the read lock and then releases the write lock to complete
lock downgrading.

3.3. Performance Evaluation

This section first compares the performance of the synchronized lock and the
ReentrantReadWriteLock, then compares the results of the synchronized lock and lock downgrading of
ReentrantReadWriteLocks.

Figure 2 shows the results of four code fragments executed under different configurations. We plot
the execution time where WT represents the number of write threads and RT represents the number of
read threads. All measuring results are obtained by calculating the mean value of 10 runs.

Appl. Sci. 2020, 10, 413 5 of 15

Figure 2a compares the results of operations using ReentrantReadWriteLocks and synchronized locks
(the code in Figure 1a,b) with 10 total threads, each thread performing 100 operations). When RT = 9,
and WT = 1 (WT represents the number of write threads and RT represents the number of read
threads), ReentrantReadWriteLocks and synchronized locks have notable difference in execution time.
However, the execution time is basically the same when RT = 9, and WT = 1. Figure 2b is the result
of the execution of the code with a total of 100 threads, with 100 operations per thread performed,
and the difference of the execution time between the ReentrantReadWriteLock and the synchronized lock
is even more significant when RT = 90 and WT = 10.

Figure 2c presents the result of operations using synchronized locks and lock downgrading
(the source code is similar to that in Figure 1c,d) with a total of 10 threads. Each thread executes
operations 100 times. The read thread represents that the data exist in the local cache, so the data
are used directly. The write thread represents that the data are not in the local cache and need to
be written to the cache from the database. The figure shows that the impact of the number of read
and write threads has not significant impact on the performance of using synchronized locks, but the
execution time of the program using ReentrantReadWriteLocks decreases when the read threads increase.
Figure 2d is the execution result under 100 threads, and the overall trend is similar to Figure 2c.

Figure 2. Performance results. (a) Results of synchronized lock and ReentrantReadWriteLock with 10
threads; (b) Results of synchronized lock and ReentrantReadWriteLock with 100 threads; (c) Results of
synchronized lock and lock downgrading with 10 threads; (d) Results of synchronized lock and lock
downgrading with 100 threads.

The results indicate that a program using ReentrantReadWriteLocks will perform better than
that using synchronized locks when the read operations exceed the write operations and the read
operation takes a relatively long time. When lock downgrading is employed, a program using
ReentrantReadWriteLocks also shows better performance.

Appl. Sci. 2020, 10, 413 6 of 15

4. Refactoring for Fine-Grained ReentrantReadWriteLocks

4.1. Refactoring Framework

The refactoring framework is shown in Figure 3. WALA [32] was used to design our analysis
algorithm. Visiting pattern analysis was employed to find the target code; alias analysis was used
to check the alias of monitor objects; side-effect analysis was used to analyze the critical section and
generate a character sequence. We designed five lock modes for fine-grained ReentrantReadWriteLocks,
which could be inferred by our analysis and followed the inference rules.

Figure 3. The refactoring framework.

4.2. Visitor Pattern Analysis

We parse the Java code into an abstract syntax tree (AST) through ASTParser [33] (a Java language
parser for creating abstract syntax trees in Eclipse JDT). An AST node represents a Java source code
construct, such as a name, type, expression, statement, or declaration. We use the visitor pattern to
traverse all nodes on the AST and find all monitors in the program.

We must distinguish the built-in monitors and collect the monitor objects. For a synchronized
lock, synchronizing methods and synchronized blocks should be considered separately, so should
static methods and non-static ones.

For an object instance:

• For synchronized instance methods, the monitor object is this;
• For a synchronized block with an instance monitor object o, the monitor object is o;

For a class:

• For synchronized static methods, the monitor object is a class object;
• For a synchronized block with a static monitor object O, the monitor object is O;

For an object instance, we declare a new instance of ReentrantReadWriteLock in the class. For the
monitor behavior that acts within the scope of a class, we declare a static ReentrantReadWriteLock
instance in this class.

We define a HashMap lockmap to store the key-value pairs between the monitor object and the lock
field, where the key is the monitor object, and the value is the corresponding lock field.

4.3. Lock Mode

Our refactoring tool transforms a built-in monitor into a fine-grained ReentrantReadWriteLock by
lock downgrading and lock splitting.

Appl. Sci. 2020, 10, 413 7 of 15

Our refactoring tool directly applies the read locks to methods and synchronization blocks that
have no side effects. For methods or blocks with side effects, the write locks, downgrading locks and
splitting locks are used.

The fine-grained lock mode shown in Figure 4 is implemented by lock downgrading [29]. Figure 4a
shows the program before refactoring. The method cache() will first judge the conditional variant flag.
Only when the flag is true, the write operations will be executed.

Figure 4b presents the program after refactoring. Under the control of a read lock, a conditional
statement flag is read (Line 4). If the condition is met, write operations are executed. Therefore,
the current thread will release the read lock (Line 5) and acquire the write lock (Line 6) to perform
the write operations. Note that a thread needs to release the read lock before getting the write lock.
After acquiring the write lock, the conditional state will be rechecked (Line 7) in case other threads
acquire the write lock and modify the state.

Figure 4. (a) Method cache() based on built-in monitors. (b) Method cache() using the lock downgrading
of ReentrantReadWriteLocks

Figure 5 shows three fine-grained locking modes through splitting of the ReentrantReadWriteLock.
Figure 5a shows the code before refactoring, and Figure 5b presents the code after refactoring. In the
code of Figure 5b, the read lock is used to read the conditional statement (Line 5). If the conditional
state is true, the read lock is released (Line 6), and then the write lock is acquired. The finally block will
check what lock the thread is holding (Line 13). The write lock will be released when the write lock is
held by the thread, and the read lock will be released when the read lock is held.

Other refactoring implementations shown in Figure 5c may cause threads to lose their perception
of data updates. For instance, the section protected by the write lock has a write operation on the
shared variable s, and the section protected by the read lock has a read operation on s. This will cause
a problem: the thread may not read the data it has already modified. Synchronization problems may
arise when the section protected by the write lock and the section protected by the read lock have the
same shared variables.

We made a precondition that the read and write operations cannot access the same variable for
refactoring under this mode. Because two operations access the same variable, the visibility of the data
will be lost. For example, thread A acquires the read lock and reads the value of variable i, then releases
the read lock. Thread B acquires write lock and modifies the value of variable i. But thread A cannot
know the update of the value.

Appl. Sci. 2020, 10, 413 8 of 15

We put the shared variables read by the read lock into the list readlist, and the shared variables
written by the write lock into the collection writelist. If the two lists do not share the same element,
the refactoring tool uses the read lock. Otherwise, the tool uses the write lock for refactoring.

Figure 5. splitting of ReentrantReadWriteLocks

4.4. Alias Analysis

When synchronization blocks are transformed, our tool will analyze the lock set. The monitor
objects of the synchronization blocks may have different names but two or more objects point to
the same memory position. We use the program analysis framework WALA [32] to design our alias
analysis to check alias on the lock set. Our alias analysis is based on context-sensitivity pointer analysis.

WALA uses a HeapModel to abstract pointers and heap locations and provides a HeapGraph to
navigate the results of a pointer analysis. The nodes in a HeapGraph are PointerKeys and InstanceKeys.
The PointerKey represents an abstract pointer and the InstanceKey represents an abstract heap location.
There is an edge from a PointerKey to an InstanceKey when thePointerKey points to the InstanceKey,
and there is an edge from an InstanceKey to a PointerKey when the PointerKey represents a field of an
object instance modeled by the InstanceKey.

For example, we have a HeapGraph h and an InstanceKey p of a monitor object. We first use
h.getSuccNodes(p) to find all pointer keys that InstanceKeys p may point to, and for each such InstanceKey
i, h.getPredNodes(i) are used to find other PointerKeys that the alias p may point to. Our pointer analysis
is based on this example.

4.5. Side Effect Analysis

An operation, method or expression has a side effect if it modifies the state outside its local
environment. Our side effect analysis is to identify whether the critical section has side effects.
WALA uses the Intermediate Representation (IR) structure to get all instructions in the method.
The WALA IR is the central data structure that represents the instructions of a particular method.
The IR represents a method’s instructions in a language close to JVM bytecode, but in an SSA-based

Appl. Sci. 2020, 10, 413 9 of 15

register transfer language which eliminates the stack abstraction, it relies instead on a set of symbolic
registers. As shown in the code in Figure 6, we analyze each instruction in the method and generate a
sequence string for read and write operations for each method.

The side-effect analysis algorithm is shown in Figure 6. We first get all the instructions in the
method and store them in a collection (Line 4), then traverse each instruction and analyze the side
effects using the method getAnalysis (Line 14). The analysis method determines whether there is any
instruction that modifies the memory. If the instruction is InvokeInstruction, the analysis method will
get the called method, and the instruction in the method will be traversally analyzed. The method has
side effects if it has a write instruction.

Figure 6. Algorithm for side-effect analysis

As ReentrantReadWriteLocks have many types of locking modes, such as read/write locks, lock
degrading and lock splitting, the use of lock modes depends on the side effects of the critical section.
The side-effect analysis will analyze the critical section and generate a character sequence.

To match the character sequence, we define five regular expressions for inferring lock modes.
The regulation sequence and representation of the characters are shown in Table 1.

Table 1. Regulation sequence and character representation.

Regulation Sequence

Regulation 1 R+

Regulation 2 ((C|T)∗|(R|W)∗)∗

Regulation 3 R∗CR∗W(W|R)∗T
Regulation 4 R+W+|W+R+

Regulation 5 R∗CR∗W(W|R)∗TR+

R: Read operation; W: Write operation; C: If condition; T: End of if condition; *: Zero or multiple times;
+: Once or multiple times.

Regulation 1: The read lock mode.
Regulation 1 shows the read lock mode, in which the critical section has at least one read operation

and does not have write operations.
Regulation 2: The write lock mode.
Regulation 2 represents a mode in which the critical section has at least one write operation.
Regulation 3: The lock downgrading mode.
Regulation 3 represents a mode in which a critical section has an if statement that has write

operations and at least one read operation in the end.
Regulation 4: The lock splitting mode.
Regulation 4 represents a mode in which a critical section only has one if statement and has write

operations in the body of statement.
Regulation 5: The lock splitting mode.

Appl. Sci. 2020, 10, 413 10 of 15

Regulation 5 represents the separation of read and write operations in the critical section.
We now describe the refactoring algorithm in more detail. The code in Figure 7 first gets the

monitor object of the method m (Line 2), and then checks it in the lock set lockmap. If the monitor object
exists in lockmap, the corresponding lock field is obtained. Otherwise, it creates an appropriate lock
field based on the type of the monitor object and presents a new mapping relationship in lockmap.

After the lock field is obtained, the synchronizing methods and synchronized blocks are refactored
accordingly. For a synchronizing method (Line 19), the method is analyzed first by side effect analysis,
and the corresponding reading and writing sequence is generated. A finite automaton is used to
identify the reading and writing sequence (Line 20). Because the monitor object in the synchronized
block may have aliases, alias analysis is included in all methods for refactoring the synchronized blocks
(Line 27).

Figure 7. Refactoring algorithm for fine-grained ReentrantReadWriteLocks.

5. Refactoring Tool and Practical Issues

5.1. Refactoring Tool

We implement our refactoring tool as an Eclipse plugin (the source code and the jar of the
repository are available at https://uzhangyang.github.io/refactoring.html). Figure 8 is a screenshot
of our refactoring tool, which displays a comparison between the code before and after refactoring.
The source code before refactoring is presented on the left while that after refactoring is on the right.

https://uzhangyang.github.io/refactoring.html

Appl. Sci. 2020, 10, 413 11 of 15

Figure 8. Screenshot of the refactoring tool.

5.2. Practical Issues

As our refactoring tool inserts part of the code into the try-finally construct, the scope of variables
may be changed for some variables defined in the critical section. To resolve this problem, our tool
checks these defined variables and allows them to be defined outside of the try block.

6. Evaluation

6.1. Setup

All experiments are conducted on a laptop with a 1.6 GHz Intel Core i5 CPU, 8 GB RAM.
The machine runs Ubuntu 16.04 and has JDK 1.8.0_191, Eclipse 4.10.0 and WALA [32] 1.5.2 installed.

6.2. Benchmarks

Several real-world applications, including HyperSQL DataBase [34](HSQLDB), Cassandra [35],
JGroups [36], Freedomotic [37] and Multipurpose Infrastructure for Network Applications(MINA)
[38], are selected to evaluate our refactoring tool.

HSQLDB, Cassandra, and JGroups are widely used, and contain a lot of built-in monitors.
HSQLDB is fully multi-threaded and supports high performance 2PL and MVCC (multiversion
concurrency control) transaction control models. HSQLDB is used as a database and persistence
engine in over 1700 Open Source Software projects and many commercial products. Cassandra is an
Apache distributed database. It can be used to manage large amounts of structured data. Cassandra
is the most commonly used NoSQL database. Because the data provided by the IoT are time series,
Cassandra is often used to store data generated by sensors and devices in IoT applications. Over 1500
more companies worldwide with massive, active data sets are using Cassandra. JGroups is a reliable
group communication tool written by Java. It is widely used in distributed systems, including JBoss,
ElasticMQ, etc.

Freedomotic is an open-source, flexible, and secure IoT application framework for building and
managing modern smart spaces. Freedomotic can run on Raspberry Pi and can easily interact with
DIY Arduino projects. It is widely used in IoT applications. Apache MINA is a network application
framework that helps developers develop high-performance, high-scalability network applications.
MINA comes with many sub-projects such as AsyncWeb, FtpServer, SSHD, etc.

Appl. Sci. 2020, 10, 413 12 of 15

6.3. Results

Table 2 presents the evaluation results, with parameters including the lines of source code and
built-in monitors in each benchmark. The last four columns show the number of four lock modes of
each benchmark refactored by our tool.

Table 2. Evaluation of the refactoring.

Benchmark KSLOC #Built-In Monitors #Downgrading
Locks

#Splitting
Locks #Read Locks #Write Locks

HSQLDB 179 621 6 39 51 525
Cassandra 432 239 2 24 33 180
JGroups 123 179 5 33 28 113

Freedomotic 57 21 2 1 2 16
MINA 24 12 0 3 1 8

Our refactoring tool detected and refactored 621 built-in monitors in HSQLDB, 239 in Cassandra,
179 in JGroups, 21 in Freedomotic, and 21 in MINA. In total, all benchmarks have 1072 built-in monitors
refactored by our refactoring tool. 12,008 SLOCs were modified. These results show that our refactoring
tool can effectively save the developers’ time and energy.

For IoT applications, our tool has refactored Freedomotic—an IoT framework—and Cassandra,
a widely used database engine. Our tool is not running in the IoT environment, but our tool can
refactor IoT concurrent software, which runs in the IoT environment. We conclude that there are
programs in our real-world applications that conform to our lock downgrading and lock splitting
rules. In most cases, the tool uses write locks, and there is not much lock downgrading. We don’t
suggest converting all built-in monitors into ReentrantReadWriteLocks, because the performance of the
ReentrantReadWriteLock is not necessarily better than the built-in monitor. The actual situation should
be considered during refactoring.

6.4. Correctness Of Refactoring

HSQLDB benchmark is evaluated by connecting the database under several connection modes,
such as in-memory mode, standalone mode and server mode. The evaluation results show that
HSQLDB under all modes can connect to the database. We also create database, run SQL statements to
insert and delete data, and perform other database operations. They all execute correctly. We run the
JDBCBench and TestBench in package org.hsqldb.test. The JDBCBench is a test of JDBC connection and
TestBench is a stress test of transaction processing. They all run correctly and return a benchmark report.

For Cassandra, we connect to the database and executed some CQL statements after the
refactoring. They all work correctly, and we run all the unit tests in the test folder of Cassandra.
A total of 648 unit tests, cover almost all classes in the source code. We find that they all run smoothly
without reporting any errors. Cassandra has part of code that already use ReentrantReadWriteLock.
We then manually refactor them back to synchronized locks, and use our tool to infer the original
ReentrantReadWriteLock usage. The method mayReload() in class CompactStrategyManager uses write lock
before refactoring. Our tool infers this method uses splitting lock. After manual check, the splitting
lock does not change the behavior of method mayReload(). The other locks are inferred as same as
original usage.

We used JGroups to deploy the cluster of three nodes after refactoring and successfully completed
the communication between them. There are some test programs in JGroups, 49 of which were tested,
and they all ran smoothly without reporting any errors.

Because Freedomotic and MINA have fewer built-in monitors, we manually inspected all the
refactored locks. We manually identified (1) if the refactoring had changed the behavior; (2) if a correct
kind of lock was inferred, (3) if a lock was inserted to a correct position, (4) if a lock structure was
used correctly, and (5) if the critical section was protected safely. During the inspection, we found that

Appl. Sci. 2020, 10, 413 13 of 15

the refactoring had not changed any behavior of the original programs, and each critical section had
been inferred with the kind of lock according to the lock mode and almost all of them were accurate.
The position that the lock inserted and the used lock structure were correct. Finally, the critical sections
are surrounded by locks and the protection of the critical section is safe.

6.5. Comparison With Relocker

Max et al. [14] have proposed an algorithm of refactoring for ReentrantLocks and
ReentrantReadWriteLocks, as well as a refactoring tool Relocker.

Running Relocker requires an earlier JDK version, so the JDK version used in this experiment is
1.6. HSQLDB version is 1.8.0.10, and Cassandra version is 0.4.0. Table 3 shows the comparison result
between Relocker and our tool. Compared with Relocker which only uses read locks or write locks
for synchronization protection, our tool uses lock downgrading and lock splitting to realize more
fine-grained locking. Our tool has inferred more read locks than Relocker. After manual verification,
the read locks inferred by our tool is used correctly. Relocker still relies heavily on manual selection of
codes to refactor, and our tool is more automatic.

Table 3. Comparison between Relocker and our tool.

Relocker Our Tool

Benchmark #Read
Locks

#Write
Locks

#Can’t be
Refactoring

#Downgrading
Locks

#Splitting
Locks

#Read
Locks

#Write
Locks

HSQLDB 31 212 23 8 23 45 190
Cassandra 4 50 3 3 1 6 47

7. Conclusions and Future Work

The JDK library provides flexible locking constructs that can improve performance of software
by reducing lock contention. In this paper, we presented an approach might improve the software
quality by using ReentrantReadWriteLocks. We proposed a refactoring algorithm for fine-grained
ReentrantReadWriteLocks, and implemented a refactoring tool as an Eclipse plugin. Our tool has been
tested by several real-world applications. The refactoring approach is applicable not only to IoT
software, but also to other concurrent software.

The major limitation of this study is that the selected applications cannot represent all applications
which may have different concurrent behaviors. In future studies, we will use our refactoring tool
to refactor more IoT programs, find more application scenarios suitable for fine-grained read–write
locking, and explore more refactoring modes that reduce lock contention.

Author Contributions: Designed the framework of detection method and paper writing, Y.Z.; Wrote the first
draft, coding, and experiment, S.S.; Setting overall research goals and part of the ideas, M.J.; Literature search,
data analysis, and proof read, J.Q. and Z.T.; Verify the model, and proof read, X.D. and M.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is supported by the Guangdong Province Key Research and Development Plan
(2019B010137004), the National Key research and Development Plan (2018YEB1004003), the National Natural
Science Foundation of China (U1636215,61871140,61872100), in part by the Scientific Research Foundation of
Hebei Educational Department under Grant ZD2019093, in part by the Fundamental Research Foundation of
Hebei Province under Grant 18960106D, and Guangdong Province Universities and Colleges Pearl River Scholar
Funded Scheme (2019).

Acknowledgments: The authors gratefully acknowledge the helpful comments and suggestions from
the reviewers.

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2020, 10, 413 14 of 15

References

1. Shen, M.; Ma, B.; Zhu, L.; Mijumbi, R.; Du, X.; Hu, J. Cloud-based approximate constrained shortest distance
queries over encrypted graphs with privacy protection. IEEE Trans. Infor. Forensics Secur. 2017, 13, 940–953.
[CrossRef]

2. Xiao, L.; Li, Y.; Huang, X.; Du, X. Cloud-based Malware Detection Game for Mobile Devices with Offloading.
IEEE Trans. Mob. Comput. 2017, 16, 2742–2750. [CrossRef]

3. Hassan, W. H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019,
148, 283–294.

4. Tian, Z.; Luo, C.; Qiu, J.; Du, X.; Guizani, M. A distributed deep learning system for Web attack detection on
edge devices. IEEE Trans. Ind. Inform. 2019. [CrossRef]

5. Tian, Z.; Su, S.; Shi, W.; Du, X.; Guizani, M.; Yu, X. A data-driven method for future Internet route decision
modeling. Future Gener. Comput. Syst. 2019, 95, 212–220. [CrossRef]

6. Qiu, J.; Chai, Y.; Tian, Z.; Du, X.; Guizani, M. Automatic Concept Extraction based on Semantic Graphs from
Big Data in Smart City. IEEE Trans. Comput. Soc. Syst. 2019. [CrossRef]

7. Qiu, J.; Du, L.; Zhang, D.; Su, S.; Tian, Z. Nei-TTE: Intelligent Traffic Time Estimation Based on Fine-grained
Time Derivation of Road Segments for Smart City. IEEE Trans. Ind. Inform. 2019. [CrossRef]

8. Tan, Q.; Gao, Y.; Shi, J.; Wang, X.; Fang, B.; Tian, Z. Toward a Comprehensive Insight Into the Eclipse Attacks
of Tor Hidden Services. IEEE Internet Things J. 2019, 6, 1584–1593. [CrossRef]

9. Aldrich, J.; Chambers, C.; Sirer, E.; Eggers, S. Static analyses for eliminating unnecessary synchronization
from Java programs. Int. Static Anal. Symp. 1999, 1694, 19–38.

10. Bogda, J.; Hölzle, U. Removing unnecessary synchronization in Java. ACM Sigplan Not. 1999, 34, 35–46.
[CrossRef]

11. Tao, B.; Qian, J. Refactoring java concurrent programs based on synchronization requirement analysis.
IEEE Int. Conf. Softw. Maint. Evol. 2014, 361–370.

12. Lea, D. Concurrent Programming in Java: Design Principles and Patterns; Addison-Wesley Professional: Boston,
MA, USA, 2000.

13. Diniz, P. C.; Rinard, M. C. Lock coarsening: Eliminating lock overhead in automatically parallelized
object-based programs. J. Parallel Distrib. Comput. 1998, 49, 218–244. [CrossRef]

14. Schafer, M.; Sridharan, M.; Dolby, J.; Tip, F. Refactoring Java programs for flexible locking. In Proceedings of
the 2011 33rd International Conference on Software Engineering (ICSE), Honolulu, HI, USA, 21–28 May 2011;
pp. 71–80.

15. Zhang, Y.; Dong, S.; Zhang, X.; Liu, H.; Zhang, D. Automated Refactoring for StampedLock. IEEE Access
2019, 7, 104900–104911. [CrossRef]

16. Bavarsad, A.G.; Atoofian, E. Read-Write Lock Allocation in Software Transactional Memory. In Proceedings
of the 2013 42nd International Conference on Parallel Processing, Lyon, France, 1–4 October 2013; pp. 680–687.

17. Emmi, M.; Fischer, J. S.; Jhala, R.; Majumdar, R. Lock allocation. ACM Sigplan Not. 2007, 42, 291–296.
[CrossRef]

18. Kawachiya, K.; Koseki, A.; Onodera, T. Lock reservation: Java locks can mostly do without atomic operations.
ACM Sigplan Not. 2002, 37, 130–141. [CrossRef]

19. Hofer, P.; Gnedt, D.; Schörgenhumer, A.; Mössenböck, H. Efficient tracing and versatile analysis of lock
contention in Java applications on the virtual machine level. In Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering, Delft, The Netherlands, 12–16 March 2016;
pp. 263–274.

20. Zhang, Y.; Shao, S.; Liu, H.; Qiu, J.; Zhang, D.; Zhang, G. Refactoring Java Programs for Customizable Locks
Based on Bytecode Transformation. IEEE Access 2019, 7, 66292–66303. [CrossRef]

21. Dig, D.; Marrero, J.; Ernst, M.D. Refactoring sequential Java code for concurrency via concurrent libraries.
In Proceedings of the 31st International Conference on Software Engineering, Vancouver, BC, Canada,
16–24 May 2009; pp. 397–407.

22. Wloka, J.; Sridharan, M.; Tip, F. Refactoring for reentrancy. In Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on The foundations of
Software Engineering, Amsterdam, The Netherlands, 24–28 August 2009; pp. 173–182.

http://dx.doi.org/10.1109/TIFS.2017.2774451
http://dx.doi.org/10.1109/TMC.2017.2687918
http://dx.doi.org/10.1109/TII.2019.2938778
http://dx.doi.org/10.1016/j.future.2018.12.054
http://dx.doi.org/10.1109/TCSS.2019.2946181
http://dx.doi.org/10.1109/TII.2019.2943906
http://dx.doi.org/10.1109/JIOT.2018.2846624
http://dx.doi.org/10.1145/320385.320388
http://dx.doi.org/10.1006/jpdc.1998.1441
http://dx.doi.org/10.1109/ACCESS.2019.2931953
http://dx.doi.org/10.1145/1190215.1190260
http://dx.doi.org/10.1145/583854.582433
http://dx.doi.org/10.1109/ACCESS.2019.2919203

Appl. Sci. 2020, 10, 413 15 of 15

23. Du, X.; Guizani, M.; Xiao, Y.; Chen, H.H. Transactions papers a routing-driven elliptic curve cryptography
based key management scheme for heterogeneous sensor networks. IEEE Trans. Wirel. Commun. 2009,
8, 1223–1229. [CrossRef]

24. Dong, P.; Du, X.; Zhang, H.; Xu, T. A detection method for a novel DDoS attack against SDN controllers by
vast new low-traffic flows. In Proceedings of the 2016 IEEE International Conference on Communications
(ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6.

25. Tian, Z.; Shi, W.; Wang, Y.; Zhu, C.; Du, X.; Su, S.; Sun, Y.; Guizani, M. Real-Time Lateral Movement Detection
Based on Evidence Reasoning Network for Edge Computing Environment. IEEE Trans. Ind. Inform. 2019, 15,
4285–4294. [CrossRef]

26. Qiu, J.; Chai, Y.; Tian, Z.; Du, X.; Guizani, M. Vcash: A Novel Reputation Framework for Identifying Denial
of Traffic Service in Internet of Connected Vehicles. IEEE Internet Things J. 2020. [CrossRef]

27. Xiao, L.; Wan, X.; Dai, C.; Du, X.; Chen, X.; Guizani, M. Security in mobile edge caching with reinforcement
learning. IEEE Wirel. Commun. 2018, 25, 116–122. [CrossRef]

28. Wu, L.; Du, X.; Wang, W.; Lin, B. An Out-of-band Authentication Scheme for Internet of Things Using
Blockchain Technology. In Proceedings of the 2018 International Conference on Computing, Networking
and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 769–773.

29. Oracle. Java.util.concurrent.locks.ReentrantReadWriteLock API Specification. Available online: https://docs.
oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html (accessed on
5 December 2019).

30. Oracle. Java.util.concurrent.locks API Specification. Available online: http://download.oracle.com/javase/
6/docs/api/java/util/concurrent/locks/package-summary.html (accessed on 12 August 2019).

31. Pinto, G.; Torres, W.; Fernandes, B.; Castor, F.; Barros, R.S. A large-scale study on the usage of Java’s
concurrent programming constructs. J. Syst. Softw. 2015, 106, 59–81. [CrossRef]

32. WALA. Available online: http://wala.sourceforge.net/wiki/index.php/Main_Page (accessed on
12 August 2019).

33. Eclipse JDT. Org.eclipse.jdt.core.dom.ASTParser API Specification. Available online: https://help.eclipse.
org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
(accessed on 6 December 2019).

34. HyperSQL. Available online: http://hsqldb.org/ (accessed on 6 December 2019).
35. Cassandra. Available online: https://cassandra.apache.org/ (accessed on 6 December 2019).
36. JGroups. Available online: http://www.jgroups.org/ (accessed on 6 December 2019).
37. Freedomotic. Available online: https://freedomotic-user-manual.readthedocs.io/en/latest/index.html

(accessed on 6 December 2019).
38. MINA. Available online: http://mina.apache.org/mina-project/ (accessed on 6 December 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TWC.2009.060598
http://dx.doi.org/10.1109/TII.2019.2907754
http://dx.doi.org/10.1109/JIOT.2019.2951620
http://dx.doi.org/10.1109/MWC.2018.1700291
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/locks/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/locks/package-summary.html
http://dx.doi.org/10.1016/j.jss.2015.04.064
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
https://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
http://hsqldb.org/
https://cassandra.apache.org/
http://www.jgroups.org/
https://freedomotic-user-manual.readthedocs.io/en/latest/index.html
http://mina.apache.org/mina-project/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Motivation
	Background
	Motivating Example
	Performance Evaluation

	Refactoring for Fine-Grained ReentrantReadWriteLocks
	Refactoring Framework
	Visitor Pattern Analysis
	Lock Mode
	Alias Analysis
	Side Effect Analysis

	Refactoring Tool and Practical Issues
	Refactoring Tool
	Practical Issues

	Evaluation
	Setup
	Benchmarks
	Results
	Correctness Of Refactoring
	Comparison With Relocker

	Conclusions and Future Work
	References

