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Abstract: Anime-style comics are popular world-wide and an important industry in Asia. However,
the output quantity and quality control of art workers have become the biggest obstacle to
industrialization, and it is time consuming to produce new manga without the help of an intelligence
assisted tool. As deep learning techniques have achieved great successes in different areas, it is
worth exploring them to develop algorithms and systems for computational manga. Extracting line
drawings from finished illustrations is one of the main tasks in drawing a manuscript and also a
crucial task in the common painting process. However, traditional filters such as Sobel, Laplace, and
Canny cannot output good results and require manual adjustments of the parameters. In order to
address these problems, in this paper, we propose progressive full data convolutional neural networks
for extracting lines from anime-style illustrations. Experimental results show that our progressive
full data convolutional neural networks not only can learn as much as processing methods for the
detailed regions, but also can accomplish the target extraction work with only a small training dataset.

Keywords: manga computation; convolutional neural networks; fine art; deep learning;
line extraction

1. Introduction

The comic industry has been developing for many years and has become an important new
industry. Comics are more and more popular all over the world; however, their productivity is still
quite low. Comic artists are looking for solutions to save drawing time and improve the quality of
comic artworks. In the general situation, they need to employ people to complete the time consuming
work like re-drawing, sticking screen-tones, or coloring to produce comic artworks manually. They are
trying to use computer technologies to improve the efficiency of creating comic works. However, there
are still many problems. For example, in the animation production process, the quality of painting
declines from the original image to the animated one because the painting style is hard to unify. Some
painting details often cannot be improved due to the cost of time. In the industry, they often choose
to ignore some defects such as the collapse of the character drawing quality from a distant view.
In order to pursue a consistent visual effect, painters are often required to use a uniform drawing
style. However, most of the painters cannot follow the style of the original paintings very well, so the
correction to make the paintings that follow the stye of the original paintings becomes very laborious.

In recent years, deep learning has made important breakthroughs in many fields such as image
recognition, speech recognition, and artistic creation, especially the outstanding performance of
convolutional neural networks (CNNs). In order to solve some of the above mentioned problems
in comics, we utilize CNNs to learn and create comic illustrations to reduce the time and costs in

Appl. Sci. 2020, 10, 41; doi:10.3390/app10010041 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5884-1417
http://dx.doi.org/10.3390/app10010041
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/1/41?type=check_update&version=2


Appl. Sci. 2020, 10, 41 2 of 15

the production process. Although the outputs of comic illustrations are very complicated, we can
decompose, learn, and create illustrations through CNNs to complete an illustration drawing system.
The most important issue in the early days was how to prepare training data. At present, there are
no ready-made databases that can be used. It will be inefficient if we rely on manual preparation of a
database. In industrial production, there are already some rough data that can be used, but they are
not enough to enable AI to complete high quality painting learning. For example, deciding whether
some pixels belonging to the nearest character still relies on training with additional accurate data that
are artificially provided.

For extracting lines, there are several traditional edge detectors such as Sobel, Laplace,
and Canny [1,2]. There are also algorithms [3–5] based on texture information for line extraction.
Some algorithms [6–8] were also designed for extracting comic screen patterns. However, these
algorithms are mostly based on local gradient changes or only worked for certain patterns, so they are
not good to extract lines with high accuracy from the human perspective. Usually, painters still need
to adjust parameters manually to get better results after using these algorithms, and such adjustments
cannot be done in a fully automatic or semi-automatic way.

In this paper, we propose a novel neural network structure to deal with line extraction from
anime-style illustrations. The main contributions of this paper are listed as follows:

1. We implement our progressive full data convolutional neural networks (PFD-CNNs), which can
obtain better accuracy in the line extraction problem.

2. Our approach has potential applications for non-photorealistic rendering.

Experimental results show the advantages of progressive full data convolutional neural networks
on line extraction (see Figure 1), and these advantages have been recognized by some art workers
through a preliminary user study. With our approach, we can also convert real-world images to line
drafts or provide teaching materials for painting in the form of lines.

Figure 1. Comparisons of input, ground truth, Simo-Serra et al.’s [9] model’s output, and our model’s
output (artwork ids 12994997 and 14843300 from pixiv.net; the ground truth was drawn by Shinya
Hragi and colored by Hamaguti Sakuya).

2. Related Work

Line extraction is one of the important topics in computational manga. There has been a certain
number of papers published in recent years. Mao et al. [10] proposed an approach to extract lines
based on regions for cartoons. Li et al. [11] removed the halftone screen and extracted manga structural
lines from black-white manga with CNNs. Their network structural features were similar to that of
U-Net [12], and they emphasized the establishment of a targeted training database, which would
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include targeted patterns. Liu et al. [13] developed a clear cartoon sketch simplification algorithm for
sketch simplification with closure aware features.

Simo-Serra et al.’s [14] learning to simplify method is a good example of applying CNNs to manga
computation. They used fully convolutional networks (FCNs) [15] to complete the neural network
training for simplifying drawing sketches. Their experimental results showed that CNNs are still
superior to traditional algorithms, although they could not explain the parameters of CNNs well. They
also used CNNs to colorize images automatically with simultaneous classification [16]. These works
demonstrated that CNN based methods can help artists in their creation processes. Zhang et al. [17]
proposed a deep learning approach for user guided image colorization. Han et al. [18] proposed a
novel unsupervised learning method for pixelization.

Cao et al.’s works [19–21] and Pang et al. [22] work focused on manga layout problems. Their
proposed layout algorithms can arrange cartoon picture sequences [20], extract robust panels [22],
and make attention directing composition of manga elements [21]. In [19], even the static manga could
be used to generate animation, and better experience could be built in storytelling. On the other hand,
Liu et al. [23] provided a solution by text detection to extract text aware balloons from manga.

There have been several works on manga computation. Qu et al. [24] proposed a novel
colorization technique that works effectively on coloring halftone area. Later, they proposed a better
method [25] to generate halftone image from the source pictures. Ci et al. [26] proposed a user guided
deep method for amine line art colorization. Hensman and Aizawa [27] developed a conditional
generative adversarial network (cGAN)based manga colorization framework using only a single
training image. Zhu et al. [28] proposed a toon tracking algorithm for animations. This method can be
used for ensuring the color of tracking regions in the corresponding key frames. Liu et al. [29] provided
a novel approach to create the depth of animation key frames to generate stereoscopic animations.

3. Progressive Full Data Convolutional Neural Networks

CNNs [30] have been widely used in computer vision; however, the direct usage of CNNs on
graphics problems may not give the desired results. In addition, to our best knowledge, there is
no approach proposed for extracting lines from anime-style illustrations. Therefore, we propose a
progressive full data convolutional neural network structure, which is shown in Figure 2. In our
network structure, the input layer is connected to the same resolution level layers, and the original
input information is preserved during the whole convolution process, which the different resolution
level layers also have a similar structure. Figure 3 shows how our network structure is used to extract
lines from anime-style illustrations.

Figure 2. Our progressive full data convolutional neural network structure: different from traditional
and state-of-the-art ones, our structure has more concatenated layers, which can provide more accurate
pixel level results.

With the advantages of our network structure, we can reduce much of the preparation cost in
training data. First of all, there is no requirement to recognize the content of the image; we only need to
distinguish whether every pixel belongs to a line or not. The neural network does not need to classify
the image content, so the training data can be easily prepared. Through our experimental tests, it was
confirmed that our network structure could do pixel-wise image processing, and the line extraction
ability was achieved with a small size of training data. Therefore, we did not need to highly increase
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the number of training samples. For most cases, we could apply general parameters to our neural
network, which means that the process could be fully automated. Of course, it was also possible to
adjust the parameters manually. The output quality was good enough, so we could work without
post-processing such as vectorization to remove noise, which may in turn lead to the loss of image
details, resulting in an unattractive picture.

Our approach focused on improving the neural networks for line extractions. The general
convolution neural network extracts the features from the images in the convolution process, but also
discards some of the detailed information, which is considered unnecessary. However, this information
is exactly what we needed in this topic. In order to retain this information, a basic approach is not to
use the down-sampling layer, that is not to reduce the layer resolution. However, this violates the
basic ideas of the general convolutional neural network. We found that the convolution layer that was
reduced and re-magnified back to the original resolution by convolutional layers could be merged with
the original data as a new convolutional layer. In this way, we could guarantee that all the information
of the input data was involved in the calculation of the convolutional neural network. Figure 2 shows
all the data asymptotic structures.

Figure 3. The conceptual view of our progressive full data neural network for extracting lines in
anime-style illustrations.

The ability of convolutional neural networks has been demonstrated by many papers.
Our network structure explored several popular network structures. The fully convolutional network
(FCN) provides the idea of up-sampling convolution, making it possible for the convolutional neural
network to deal with the pixel-wise problems. At the same time, U-Net uses the connection method
to merge convolution layers with different resolutions and obtain more convolutional information.
ResNet [31] provides ideas on how to connect more information effectively. Finally, the generative
adversarial net (GAN) [32] was added to our network structure. In our network structure, GAN only
used an unverified structure to assist the system. Therefore, it could not completely find the effect
of GAN on the entire system and only ensured that the entire system could work well. If we did
not add GAN, there may have been some noise. The GAN’s main role here was to make the output
style approach the style of the ground truth. The final output processed with GAN and without GAN
results had its advantages and disadvantages, and one may choose whether to add it according to the
actual requirements. Finally, we had our current network structure, a progressive and hierarchical U
shaped neural network. Its global schematic diagram is shown Figure 2.

Our system’s input was a color image with alpha channel X ∈ RH×W×4, which presented the
original anime-style illustration. The output of the system was Ŷ ∈ RH×W×4, which was the line
extraction result. Our CNN model FCNN is specified in Figure 2, and parameterized by θ, trained to
minimize the object function in Equation (1) with database D, which contained the source illustrations
and the corresponding line extraction outputs. The loss function L calculated in Equation (2) describes
the accuracy of our model.

θ∗ = arg min
θ

EX,Y∼D [L(FCNN(X, θ), Y)] (1)

Progressive full data convolutional neural network: The purpose of our network structure was
to include all the detailed information in the convolution process. We merged all the important layers
into each convolution process. For example, in the bottom of the gradual structure diagram, we
connected L4X , L40, L41, L42, L43 layers together and used them to generate L44 layer. Where L40 was
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generated by the convolution of L4X , and L41 was generated by the merged layer of L4X and L40, they
were proceeded step-by-step, as shown in the following equations.

L40 = Fconv(L4X),

L41 = Fconv(Fconcat(L4X , L40)),

L42 = Fconv(Fconcat(L4X , L40, L41)),

L43 = Fconv(Fconcat(L4X , L40, L41, L42)),

L44 = Fconv(Fconcat(L4X , L40, L41, L42, L43)),

The reason why so many layers were set is that different layers could be extrapolated to the
data of different natures. These data were becoming abstract layer-by-layer, and we chose the more
meaningful first four or five layers to do the calculation. The structure of the last level is shown in
Figure 3.

The key concepts in different stages of the network structure are explained here and depicted in
Figures 3 and 4.

1. Full data: Our purpose was to keep all the data, so that all the previous convolutional outputs
would participate in the outputs of the next convolutional layers, and the original input would
also be added; in this case, the system’s computational burden would increase, but it ensured that
the following layers of the neural network would generate the result with the whole information
in the original input.

2. Progressive full data: After ensuring that the source data could be obtained by each convolutional
layer, as many as possible, we also considered the interim results produced as important
information; from the visualization results of a neural network analysis [33], we could know that
interim results represented different levels of feature data; therefore, in the same resolution, we
used the layer concatenation function, as much as possible to make the convolution layer the
same level that could refer to the results generated before.

3. Globally progressive full data: Finally, we needed to refer to and modify the U-Net network
structure. We could not use layer concatenation to connect the output of different resolutions,
thus all the concatenations must be completed at the same resolution, and finally, we had our
neural network structure depicted in Figure 2.

According to the ideas provided in [33], the first five layers contained rich information such as
color, edge, texture, and abstraction information. However, the information contained after the fifth
layer was more abstract and of lower value. In our proposed globally progressive full data structure,
we did not skip the links to certain convolutional layers because in our understanding, none of the first
five layers of data could easily be skipped, even it were to be streamlined. Even the neural networks,
which reduced the computational burden, should not omit the key convolutional layers.

Layer concatenation: We used the concatenate function to connect the different resolutions of
convolutional layers. In this way, the low resolution and high resolution features were perceived
together by neural network. We obtained the half-size layers with stride of two convolution layers
and recovered the size in the corresponding de-convolution layers. Our network structure in Figure 2
shows how we concatenated these layers. The parameters of the layers are shown in Table 1.
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Figure 4. Different designs of neural network structures: (a) traditional neural network; (b) full data
neural network; (c) progressive full data neural network.

Table 1. List of layer parameters.

Type Kernel Size Stride Output Size

Input - - 4× H ×W
Convolution 3× 3 1× 1 32× H ×W
Convolution 5× 5 2× 2 64× H/2 ×W/2
Convolution 3× 3 1× 1 64× H/2 ×W/2
Convolution 5× 5 2× 2 128× H/4 ×W/4
Convolution 3× 3 1× 1 128× H/4 ×W/4
Convolution 5× 5 2× 2 256× H/8 ×W/8
Convolution 3× 3 1× 1 256× H/8 ×W/8
Convolution 3× 3 1× 1 512× H/8 ×W/8
Convolution 3× 3 1× 1 768× H/8 ×W/8
Convolution 3× 3 1× 1 1024× H/8 ×W/8
Convolution 3× 3 1× 1 1280× H/8 ×W/8

De-convolution 4× 4 2× 2 128× H/4 ×W/4
De-convolution 4× 4 2× 2 64× H/2 ×W/2
De-convolution 4× 4 2× 2 32× H ×W

Convolution 3× 3 1× 1 32× H ×W
Convolution 3× 3 1× 1 32× H ×W
Convolution 3× 3 1× 1 32× H ×W
Convolution 3× 3 1× 1 32× H ×W

Output 3× 3 1× 1 4× H ×W

4. The Line Extraction Pipeline

In order to make use of our proposed progressive full data convolutional neural networks,
we developed a system for line extraction from anime-style illustrations. We had two concerns in our
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system design: a standardized dataset and user involvement. These concerns were considered in
our implementation.

Standardized dataset: Illustrations are industrial or commercial assets, so they cannot be used
freely. Under such circumstances, researchers need to create a dataset by themselves or collect data
that are already available on the Internet. There is no doubt that search engines with powerful spiders
or public photo galleries are the most powerful collecting channels, but the direct use of these data
often fails to achieve good results because there is no uniform standard for training data; such as
the background of line drawings, where white background and transparent background have two
different standards. If both of these are reasonable outputs in the process of extracting line drawings,
it is clearly not reasonable in the strict definition. In this paper, we adopted the standard that line
drawings must have a transparent background. The pupils of the characters in the illustrations were
sometimes completely blacked out, and we chose to ignore this kind of ground truth area. In order
to obtain correct outputs, we still needed to clear the colored areas in the pupils while preserving
the lines.

User involvement: In art creation, the user’s involvement is very important. Usually, neural
networks can only react to user-entered training data. Therefore, the neural network needs to learn
the stages of the drawing process. First of all, we should do some preliminary painter user study
and pay attention to the painter user feedback data to ensure that painter users’ knowledge can guide
the model training direction. The second is to ensure the tool is easy for use. It is better if users do not
need to make any settings at first and can rely on a fully automatic method to generate preliminary
results. If the users have more detailed requirements, then they may configure the parameters to
obtain semi-automatic output results. The efficiency of training and production are also important. We
tried to use simpler structures and smaller resolution training data, and users only needed to provide
around 30 training source images to our system to complete the line drawing extraction model training.
Finally, we tried to avoid extra pre-processing or post-processing of the data, such as vectorizing the
results, which may remove the details together while de-noising.

In order to maintain the balance between training data size and neural network structure
complexity, our model adopted a strategy of increasing neural network complexity in exchange
for reducing training data size. Our system had three key points: the design of the neural network
system, the preparation of training data, and the determination of both subjective and objective
evaluation criteria. The pipeline of our system is depicted in Figure 5.

Figure 5. The pipeline of line extraction.

Here, we briefly explain the different blocks and factors of the pipeline as follows:
Data collection: The initial work of the pipeline was data collection. This part of the work is often

the least creative, but it is also the most labor intensive. We could collect data through the Internet or
manually create a corresponding database for management. Then, we needed to conduct data analysis
and select the data that were suitable for training. Using raw data for training would cause noise
problems and could not achieve high quality output. After the data analysis, we could standardize
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the selected data to reduce the output noise and use less training data. Then, we could ensure the
uniqueness of the training direction.

The neural network of the training system adopted our proposed progressive full data
convolutional neural network. According to different training datasets, we could complete the
extraction of line drawings for different types of images. Here, we mainly chose anime-style illustration
data for testing, because the patterns of anime-style illustrations are similar. General users could
extract lines by using the line extracting model for getting outputs automatically. Usually, users did not
need to train the model by themselves. If there were specific requirements, then users could re-select
the training dataset and re-train the corresponding model. Users only needed to adjust the output
of the existing model and input the adjusted result into the data collector to regenerate the training
dataset. Then, an updated model could be generated by re-training.

The training data were collected from the Internet or created by ourselves. It would be better if we
could directly obtain the corresponding line drawings from artists. Completed colorized illustrations
were used as input data and the corresponding line drawing images as output data. The data were
selected manually so the quantity may be not enough. By using noise generation, clipping, and scaling
methods, we increased the amount of input images. The training input image size was 128× 128 pixels.

Patterns’ collection: Usually, the size of a source illustration is much larger than the training input
image size. Thus, we needed to find the patterns of source illustrations instead of submitting full
illustration images to the training system in order to save computational resources. We had 20 pairs
of training input pattern images. The quantity of the patterns was still not enough for covering all
drawing styles, but it was good enough to extract line drawings from some illustrations. We used
pattern images to describe the data features in a simple way, and our convolutional neural network
could extend these features. The sample images of the training data generated by using the following
guidelines are shown in Figure 6.

1. The first consideration was whether the background was transparent or white. We recommend
using a background transparent ground truth, because in some images, the white color may be the
line color. Only the alpha value can directly provide a certain value of a transparent background.

2. The second consideration was the thickness of the line. In the current mainstream anime-style
illustrations, slight changes in the thickness of the line are worth attention. In the line extraction
topic, sometimes a line may be too thick and does not look like a line, but the training data
included these situations; thus, the model could satisfy our needs.

3. The third consideration was the background color or the difference in the surrounding color
patches. The flat coated color patches were the basic pattern, then the color gradient patches.
The celluloid color is also common type. These color blocks were not lines. However, the narrow
color blocks were easily detected as lines in the case of insufficient training. Thus, we needed to
optimize the selected training data dynamically according to the training results.

4. Finally, we used some basic image transformation methods such as translation, rotation, scaling,
etc., to generate more data. These data can also further optimize the training results.

Figure 6. The main source patterns in our training data.

Manual data: Pattern data alone were not enough, and we also needed some manual painting data.
These data are usually available from Internet, but the strictness of the content selection determines
the final training quality. Currently, there is no automatic screening tool with high quality and high
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efficiency. Therefore, the screening of data by professionals still has a certain significance. People have
to learn some relevant artistic creation knowledge, then complete the data screening work. Simply
using the batch download method to establish a training database is not suggested.

Reasonable color format: Because the line drawing extraction process is sensitive to color, we used
the RGBAformat for input data. Although the YCbCr format shows the changes in brightness channel
intuitively, sometimes it does not mean there is a line, but a border there. The alpha channel is
important for further drawing of anime-style illustrations and can help the predictions better.

Small training dataset: The information obtained through web crawling is currently facing legal
issues. Some of the neural network training results are based on the results of illegal data collection,
and it is easy to retain the common features of the training dataset. Sometimes, a user may only
want to learn a specific drawing style, but this cannot be trained by a huge dataset. In this issue, our
model used only a small amount of raw data, and the problem of large scale illegal data collection was
avoided, while users may just do training with a specific drawing style.

Line weight: The initial experimental results showed that if the bold and thin line samples were
used for training at the same time, this would cause difficulty in convergence. The solution only
considered the thin line situation, and we could add another network to process bold lines.

Training data weights: At the same time, we also needed to pay attention to the weight distribution
of training samples. If the weights of important samples were too low, we would get errors or bad
results even if the loss function converged, because potentially unimportant samples dominated the
effect of the convergence direction. For example, if the pattern was all black, no line should be extracted.
Such a sample was needed, but only a few could be added into the training database. Otherwise, any
black area may be ignored, and the neural network chose not to extract any lines.

Content scaling loss: Experimental results showed that the feature data should be plentiful.
For example, in a 128× 128 pixel image, if only one line was drawn with a thickness of about one
to three pixels and the length was only 80 pixels or less, a large amount of this sample data would
cause insufficient feature extraction. Instead, this may lead to a training focused on removing the
background color. In this situation, the network may output the lines that cannot be seen.

Color contrast: Experimental results showed that dark lines and light colored samples were high
contrast samples, and they usually helped obtain better extraction results. Therefore, we needed to
add samples with lower contrast and increase the weight of these samples; otherwise, it would be
difficult to extract the lines we required in low contrast images. For example, lines and the color of
black hair are easily mixed together. Similarly, there are cases where the dark areas are edged with
light colored lines. In order to adapt to more situations, we needed to adjust the training data content
and weights based on incorrect or unsatisfactory outputs, as many as possible.

Training direction: If there was an error in the training direction, it was better to select the backup
file and continue the training from the good model because the correction of the training direction may
take a long time or even could not be corrected.

Simplified network: For quick testing, we designed a simplified version of the progressive full
data convolutional neural network by appropriately reducing the channel amount of convolutional
layers. It could do a good job of rough line extraction, but there were many noises. For practical use,
there is still no good way to simplify the standard model provided in this paper.

Batch normalization: The neural network structure proposed in this paper did not use batch
normalization because the convergence rate slowed down after using batch normalization, and the
results after the reference were not significantly improved.

Without pre-training: The model in this paper was based on new training without any pre-trained
models. Even if we started training from scratch, we found that we could usually get preliminary
results in a few hours. With the current computational power on a typical PC, it is usually possible to
train a neural network model with the most appropriate loss and output effects in about three days.
If the training data were changed and retrained, unexpected situations would often occur.
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Batch size: The batch training size value was fixed at 16 in our test. Too small batch training size
values, such as one, could lead to problems such that the loss of model could not converge because
each training direction could not be fixed. Excessive values could lead to memory overflow because
our model was complex, and the progressive whole-data convolution process was also performed
at the level of the original image size, so the memory consumption was very large. To sum up, we
obtained a value of 16 based on trial-and-error.

Loss function: We use the mean squared error (MSE) to calculate the loss of our model.
The following equation expressed the loss function:

L =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (2)

5. Experimental Results

We implemented our network with Chainer, and we trained and tested our model on a machine
with Intel E3 1230 v3 CPU and Nvidia GTX 1080 Ti GPU. There were finally around 10 pairs of
source images and 10,000 pairs of input images generated from the source images by clipping and
scaling operations. The training step took about 93 h for 1,000,000 iterations with a batch size of 16.
The database size was 10,000; thus, there were about 1600 epochs.

The results in Figure 7 show the advantages of our model. The traditional model similar to U-Net
with GAN was confused about how to handle the lines, so the lines were not as clear as ours. The image
in Column (c) in the second line shows that the background removal was not completed, so it had more
noise in the background than the image in Column (d), which was generated by our model.

Figure 7. Comparisons of experimental results: Images of Column (a) are input and images of Column
(b) are ground truth; Images of Column (c) and images of Column (d) were generated by different
models; both of these models’ loss values were converged for rough comparison, and the same
parameters and training database were used. We can see clearly that our model obtained better results
than those of the models based on the traditional U-Net structure.
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From the results in Figure 8, we can see that the outputs in the control group had more faults than
the outputs generated by our model. Our lines were clear.er Our model and the models we compared
had the same training database, but had different understanding of the lines. The results showed that
our model correctly removed the dark area and reserved the lines around it. The model recognized
by itself that we only needed the lines, but the model without a progressive structure may regard the
black as some kind of very bold lines.

Figure 8. Experimental results: the original images are shown in the first column, the images generated
by a model similar to U-Net with GAN (Simo-Serra et al. [9]) are shown in the second column, and the
images generated by our model are shown in the third column. Details are highlighted and compared
in the two small images below the results, and the right one of the two was generated by our model.

There are more results in Figure 9. These outputs showed that most of the time, our model worked
well. The traditional models also reached the goal of line extraction, but the results were not good
enough. There were mainly three points by which our model worked better than the traditional U-Net
models:

1. Clearer lines.
2. Prediction based on pixel level and global level views.
3. Better background removal.
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Based on the feedback from users, we obtained the following evaluation. Our system had a greater
precision than those of other recent systems. The basic reason was that the system that integrated with
our model retained the details of the data as much as possible, while other systems preferred fuzzy
processing. The fully automatic mode was more convenient for users who did not understand how a
neural network works. The cumbersome training data preparation and the working principle of the
neural network are difficult for general users to understand, so it is not yet possible to achieve their
needs through simple steps. For example, professionals have great interest in whether the system can
be used to train high precision line corrections.

Figure 9. More experimental results: There are five groups of images. The first image of each
group is the original image; the second one is generated by the model similar to U-Net with GAN
(Simo-Serra et al. [9]); and the third one is generated by our model.

6. Application

Through the preliminary user study, we believe that the current system has two practical
applications. One is to extract line drawings of the landscape according to the style of manga drawing,
and the other is to extract the line drawings from the existing illustrations and provide them to the
students who want to learn coloring.

Figure 10 shows the results of extracting line drawings from real landscape photos. The details of
buildings and trees are completely preserved. It can directly replace traditional photo filters and even
eliminate the requirement of manually setup parameters.

Because the comic line drawing style ignores textures and light effects on human and animal skin,
the vision effect of painting did not look good. It is appropriate to learn the pencil sketch painting
style for human or animals, but this is beyond the scope of this paper. In addition, a more important
application is to use our system to provide analytical data for subsequent drawing simulations. We can
also try to extract the basic color layer and add light, shadow, or texture blending effects to the basic
color layer.
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Figure 10. Application: extracting lines from realistic photos.

7. Conclusions and Future Work

In this paper, we proposed progressive full data convolutional neural networks specific for
extracting lines from anime-style illustrations. In addition, we also implemented a system that
integrated our proposed networks. Experimental results showed that our model could more accurately
extract lines from anime-style comic illustrations compared to those obtained with the latest neural
network structures. Besides, our results were closer to the human perspective. We also showed the
potential of applying our model for non-photorealistic rendering applications. We also suggested that
data standardization should be considered for the reduction of training samples and the improvement
of output accuracy.

Regarding the limitations of our model, our model wasted some computational memory space.
In fact, in order to extract lines, it did not need RGBA channels, and we may only need the alpha or
intensity channel. In addition, if the training data range could exceed the range of integers from 0–255,
it could provide more training information. Of course, the accuracy may be increased if we could train
the neural network with 256× 256 resolution inputs or add L5 layers. However, based on our current
equipment’s performance, we already optimized the model for 128× 128 resolution inputs and the
deepest L4 layers.

Based on our experiments, we recognized that the network should be designed as a targeted
network structure. If the complexity of a neural network structure is limited, a network needs to be
divided into several neural networks to process the problems separately. At the same time, a high
quality training database should be prepared. The network was not suitable for real-time applications
because of the long processing time required. In the future, we expect to improve the networks for
real-time applications, so artists can have semi-automatic interactions to get involved in the drawing
simulation process.
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