
applied
sciences

Article

FMNISCF: Fine-Grained Multi-Domain Network
Interconnection Security Control Framework

Bo Lu 1,2 , Ruohan Cao 1,3, Luyao Tian 1,3, Hao Wang 1,2 and Yueming Lu 1,3,*
1 Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education,

Beijing University of Posts and Telecommunications (BUPT), Beijing 100876,
China; bolu@bupt.edu.cn (B.L.); caoruohan@bupt.edu.cn (R.C.); tianluyao@bupt.edu.cn (L.T.);
wanghao2018@bupt.edu.cn (H.W.)

2 The School of Cyberspace Security, Beijing University of Posts and Telecommunications (BUPT),
Beijing 100876, China

3 The School of Information and Communication Engineering, Beijing University of Posts and
Telecommunications (BUPT), Beijing 100876, China

* Correspondence: ymlu@bupt.edu.cn

Received: 7 November 2019; Accepted: 30 December 2019; Published: 6 January 2020
����������
�������

Abstract: The integrated air-ground multi-domain network provides users with a set of shared
infrastructures. Security policies can be defined flexibly in the context of multi-domain network
semantics. The packet filter module in the security gateway can run efficiently, which is an urgent
requirement in this network environment. The framework combined with multi-domain network
semantics implements the transformation into rules. It replaces the traditional manual method
of configuring rules. The framework supports the whole life cycle management of rules from
generation state and distribution state to execution state. In the aspect of security, the map security and
semantic security are analyzed and optimized, respectively. Finally, through a series of experiments,
compared with iptables/DPDK-IPFW/BSD-IPFW/BSD-pfsense, the high efficiency of the scheme
is verified.

Keywords: integrated air-ground multi-domain network; security interconnection gateway; security
policy; security rule; semantic security

1. Introduction

In recent years, the complex network environment represented by the integrated air-ground
network [1,2], IOT [3,4], and the complex private network [5,6] has developed rapidly, which has
brought great convenience to people’s daily life and also generated a lot of security related problems,
especially those dealing with data security. Therefore, as an advanced technology to protect the
legitimate access to data, the research on access control technology in complex network environment is
particularly necessary.

The integrated air-ground network is multiple domain networks with a set of shared
communication infrastructures. The differences among the securities of the multi-domain [7] require
the communication in the application scenarios to have the complex adaptive ability. This adaptability
includes the following aspects, that is, in the network, the business type/feature/security level changes
with the spatiotemporal characteristics of multi-domain and multi-user. The integrated air-ground
network can form physical or virtual network domains due to different user types, business types,
and security levels. In order to ensure the security of the cross-domain communication, a security
gateway needs to be set among the domains. We call this gateway the security interconnection
gateway. The security interconnection gateway is a device that can connect the multi-domain networks

Appl. Sci. 2020, 10, 409; doi:10.3390/app10010409 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8598-1412
http://www.mdpi.com/2076-3417/10/1/409?type=check_update&version=1
http://dx.doi.org/10.3390/app10010409
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 409 2 of 22

according to the security policies. It is set up in a domain interconnection node of isolated physical or
virtual networks.

The complex network environment has the characteristics of dynamic device access,
heterogeneous network segment, and frequent information flow across domains. For example,
the integrated air-ground network is composed of heterogeneous networks such as space-based
backbone networks, space-based access networks, ground-based node networks, ground Internet, and
mobile communication networks. In this network, a large number of ground users have frequent
dynamic access, and the real-time ground information obtained by the space-based access network
flows to ground nodes via the space-based backbone network.

These characteristics bring many new requirements for access control technology in a complex
network environment.

(1) fine-grained control: the complex network environment has a huge amount of information,
and different users have different permissions to use the information, so that the coarse-grained
control will bring lots of security problems.

(2) policy tracking: data information flows frequently between networks. If the corresponding control
policy does not follow the data information ontology to the new network, users will lose control
of the data.

(3) policy semantic normalization: data information flows across different networks,
and inconsistencies in policy languages between networks may cause errors in policy
transformation between networks.

Existing packet filtering techniques [8–12] were initially used in the network to provide security
protection. The access control function of the network packet is implemented on the router, and the
security function of it is separated. The working principle of the program of this technology is that in
a interconnected network device, it works by loading some special instructions such as allowing or
prohibiting packet transfer from specific source address, destination address, TCP terminal number, etc.
Through the corresponding instructions for series of equipment inspections of packets, it can restrict
dangerous packets in and out of the internal network. The advantages of the control are obvious. It can
keep high transparency to users, and high work efficiency. However, he also has serious shortcomings.
For example, the manager can’t fully control information flow in the network. It only can control the
most basic security maintenance. In the face of the high technical content of attack without resistance,
it is difficult to upgrade maintenance, and so can’t maintain the security of users.

These characteristics bring many new requirements for access control technology in a complex
network environment. The fine-grained interconnection security control framework is a key technique
for multi-domain interconnection and access control in multi-domain networks. The impacts of it are
the following aspects:

First, for the complexity of rules working at the bottom, a policy needs to be designed to simplify
the description of logical relationships in complex networks. With this abstract level of policy language,
when designing business-oriented access control logic, network configuration scripts based on the
policy language can look more concise and understandable. In engineering practice, the domain of
the network can be easily configured, and the packet filter program can be executed efficiently in the
gateway. The policy language designed for users in the network can be used to configure network
security constraints flexibly and improve the readability and maintenance of programs. This requires
normalization of policy semantics and data information flows across different networks. In addition,
inconsistencies in policy languages between networks may cause errors in policy transformation
between networks.

Second, in complex business application scenarios, inter-domain isolation needs to be supported.
The traditional coarse-grained access control model can no longer fully meet the requirements of access
control under complex networks in many scenarios. In recent years, fine-grained interconnection
security control [13–15] has developed rapidly and has important applications in the internet of things
security and cloud security.

Appl. Sci. 2020, 10, 409 3 of 22

Many of the current attacks are more and more application-oriented, such as cross-network
scripting attacks, SQL injection attacks, and lunch attacks. This puts forward higher requirements on
the dimension of data filtering. This requires the system to be able to filter packets at a fine-grained
level. They include time and characteristics. The complex network environment has a huge amount
of information, and different users have different permissions to use the information, so that the
coarse-grained control will bring about lots of security problems. Data information flows frequently
between networks. If the corresponding control policy does not follow the data information ontology
to the new network, users will lose control of the data.

In addition, to turn access control policies for complex application scenarios into rules, a mapping
needs to be designed. By designing a map, the polices are translated into the rules automatically. In the
security policies, the description of multi-domain interconnection is supported. Users can flexibly set
the network functions according to the network security requirements.

Finally, to meet the needs of high-speed network communication, it is necessary to design
rules that can adapt to the high-speed filtering packet of security gateway and the fast filtering of
gateway. According to our proposed rules, gateways can filter packets efficiently. By summarizing the
above requirements, it can be concluded that the fine-grained interconnected security access control
framework needs to design an abstract language (policy) that can directly describe complex application
scenarios, with fine-grained attributes that resist more attacks. The gateway can load and execute
rules efficiently. Mapping mechanisms can translate policies into rules. The research progress in these
aspects will be introduced below.

1.1. Related Work

Due to the importance of fine-grained multi-domain interconnection security control to
high-traffic network platforms and devices, various methods have been used to solve the problems
related to multi-domain interconnection, conflict detection, rule transformation, and fine-grained
control. In this section, we’ll review existing technologies and describe the differences from
FMNISCF. Regarding multi-domain interconnection management, Iizawa et al. [16] proposed a
network orchestrator based on ODENOS (object-defined network allocation system) for orchestrating
multi-layer and multi-domain networks. The network orchestrator can dynamically provide
end-to-end paths according to requests of network services. Li et al. [17] proposed a controller
cluster-based interconnecting framework based on load balance, which can be implemented through
two levels of controller coordination, i.e., inter-cluster and intra-cluster interconnection. However,
they have not carefully demonstrated and considered the security issues among domains. For the
map from policies to rules, Min et al. [18] proposed a policy generation method for a control system
in open environments. The main idea is to formalize the description of the control policy step by
step, associate each stage of the policy generation in an automatic way, and reduce the difficulty of
the description, generation, and final application of the policy. Hager et al. [19] proposed RuleBender,
a rule set transformation technique that encodes decision tree search structures into the transformed
rule set, which in turn can be traversed significantly faster. However, they have not demonstrated
the security of rule map in detail, and there are more ways to utilize the traversal speed of rule set.
Aiming at rule conflict detection, Pisharody et al. [20] proposed a security policy analysis framework
Brew based on OpenDaylight SDN controller, which identified and solved cross-layer conflicts by using
global priority ranking technology for convection rules in a decentralized environment. Khelf et al. [21]
proposed an algorithm for dynamic detection of both intra and inter conflicts of an IPsec security
policy. The proposed algorithm is based on a simple and comprehensive mechanism that uses
Boolean functions to classify and identify. The resolution of intra-policy conflict is also integrated
into the algorithm. However, there is no detailed discussion of the semantic security of the rules.
For fine-grained management control, Liu et al. [22] proposed a fine-grained two-factor authentication
(2FA) access control system for web-based cloud computing services, which requires a user key and
a lightweight security device to complete fine-grained access control of the system and enhance the

Appl. Sci. 2020, 10, 409 4 of 22

security of the system. Pei et al. [23] proposed a fine-grained access control method for the cloud
resources, and the basic idea is to use XACML as an access control language and optimize policies by
data fragmentation and policy refinement algorithms. The XACML language can determine whether
users can access web resources or not. Merindol et al. [24] proposed a new fine-grained multi-source
measurement platform DCART. DCART is a distributed platform running over an operational network
(RENATER, the French research and education network); it gathers data from several sources.

1.2. Our Work

However, the above systems do not introduce time features and cannot control the detailed content
characteristics of the packet. Different from existing studies, our work generates rules by translating
policies, and builds a tree structure of rules to filter packets. The same condition is integrated when
the rules are generated by the policy, which ensures that there is no conflict and redundancy among
rules. At the same time, the rules are arranged in lexicographical order, which facilitates binary search
in packet filtering and improves matching speed. Our work introduces fine-grained control of time,
characteristic, and adds constraint conditions of time and characteristics to the rules. When filtering
packets, not only the five-tuples need to be matched, but also the time and the URL characteristics need
to be matched. We also design the syntax of policies and rules respectively and discuss the semantic
security of policy-to-rule transformations in multi-domain networks by using a formal method. In the
experimental part, we compare the performance of our scheme with the netfilter/iptables of the Linux
operating system. The results show that our scheme is more efficient.

2. Framework

In order to facilitate the management and application, a security policy language is designed,
which fits users’ usage habits. However, this security policy language has low performance and
complex logic, which cannot be directly applied to high-throughput security interconnection gateway.
Therefore, a map method is proposed, which interprets security policies as security rules.

Consider a situation where user u1 of domain d1 and user u2 of domain d2 can communicate with
each other using app1. The communication time is limited from 9:00 a.m. to 10:00 a.m. every day,
and there is no restriction on feature contents. The details of app1 communication among domains d1

and d2 are stored in a relationship and do not appear directly in the policy script. We can express it
as follows: [

de f ault : drop
whitelist : {d1 − d2, app1}

]
.

By means of map components, we can translate this policy into rules that can be loaded by the
gateway. See the following:[

10.0.0.1–10.0.0.1, 20.0.0.2–20.0.0.2, 6–6,
0–65,535,23–23, 287,485,200–287,488,800, _ : accept

]
,

where 10.0.0.1 is the address of user u1, 20.0.0.2 is the address of user u2, 6 is the type of TCP,
0–65,535 is the source port range, 23–23 is the destination port of range, 287,485,200–287,488,800 means
9:00 a.m.–10:00 a.m. every day, the symbol _ means that there is no restriction on feature contents,
and accept is the action of rule. The detail of time code can be shown in Formulas (38) and (39).

Once the gateway loads this rule, it allows only packets that conform to the rule to pass through,
with the rest discarded by default.

Generally speaking, security rules are a kind of language which can be loaded by a security
interconnection gateway. The security interconnection gateway has a large capacity and high efficiency
of execution to meet the requirements of fine-grained security control of the integrated network
of air–ground in multiple domains and achieve the purpose of in-depth protection. In this paper,
we propose a multi-category of joint protection security rules.

Appl. Sci. 2020, 10, 409 5 of 22

Security rules have life cycle management, which consists of the generation state of security
rule, distribution state, and execution state. The elements mentioned above form the framework of
fine-grained multi-domain network interconnection security control, FMNISCF for short. The specific
relationships will be shown in Figure 1.

Life cycle management for security rules

Multi-domain
interconnection

Application
interconnection

Interconnection based on
characteristics

Quintuple time

URL characteristic

Domain
relation

Relation of user IP

Application
relation

Security
rule

generatio
n state

Distribution
state

Characteristic
relation

Quintuple table
Time
table

URL characteristic table

21 3

1 3

Data
stream

Figure 1. FMNISCF: Fine-grained Multi-domain Network Interconnection Security Control Framework.

2.1. Security Policy

Security policies in the system are used to help engineers configure access control logic information
for multi-domain networks. Therefore, the security policy should be able to represent the information
such as domain, application, connect/reject etc, and organize them together in the form of a list to
form an overall control map. We design a policy language, which is a collection of strings called P .
The semantics of security policies can be expressed as a map:

p f : D ×D × APP→ action, (1)

where D is a set of domains of the network, APP is a set of applications of network and action is a set
of actions that gateway can do. From the perspective of relationship, in the multi-domain network,
application communication among domains needs to rely on IP address, protocol, and port at the
network layer. In addition, we also add time and URL (Uniform Resource Locator) characteristics.
They form a relationship in a multi-domain network, whose detail is as follows:

Rmdr ⊆ D ×U × IP× APP× PROTOCOL× PORT × TIME× REG, (2)

where U is a set of users in the multi-domain network, IP is a set of IP addresses, PORT is a set of
communication port in the network, TIME is a set of time, and REG is a regular expression language.

2.2. Security Rule

Security rules can be loaded by the gateway. Corresponding to the policy, we also design a rule
language, which is a collection of strings calledR. In fine-grained access control logic, it is a map that
maps dimensional parameters to actions. It can be shown as follows:

r f : T1 × T2 × ...× Tn → action, (3)

where Ti is a dimension in fine-grained access control logic. In the rule which is designed
by engineering personnel, the gateway analyzes packets from seven dimensions: source IP
address, destination IP address, protocol type, source port, destination port, gateway time, and
URL characteristics.

Appl. Sci. 2020, 10, 409 6 of 22

2.3. Execution of Packet Filter

During the process of gateway loading rules, the loader acts as a map. This map transforms
a specific rule string into a packet filtering machine. This machine is the semantics that rules represent.
It can be shown as follows:

e f : R →Mr f , (4)

whereMr f is a machine that can load security rules and filter packets. It has two kinds of instructions:
load security rule and f iter packet. The machine can be understood as having a matching tree.
It updates the matching tree structure by executing the load security rule instruction. When it performs
the f iter packet instruction, it determines whether the packet is accepted or not by comparing each
field of the packet in the matching tree.

2.4. Map

The map from policy to rule is a translator that translates the policy language into the rule
language. The semantic consistency between the two is required in this process. It can be shown
as follows:

m f : P → R. (5)

The above is the definition of FMNISCF four components, which are independent of each other
and complete the whole life cycle management of security rules through mutual cooperation. In the
integrated air-ground multi-domain network, the network communication can be configured according
to the actual security requirements of the domain, and the process can be executed safely and efficiently.

3. Implementation

In this section, we will use Backus–Naur Form (BNF) paradigm to give a normalized policy/rule
language definition and define a map method from policy language to rule language. As a formal
description of policies and rules, subsequent security proofs depend on their structure.

3.1. Security Policy Grammar

In the following production, the string is enclosed in double quotation “”, the brackets [] indicate
that the element appears at most once, the asterisk ∗ indicates that the element appears 0 time or more
times, and the parentheses 〈〉 indicate that the element is a production reference as a whole:

policy set :: [“de f ault” “ : ” action] policy∗, (6)

policy :: 〈white list〉
| 〈black list〉
| 〈scope action list〉 ,

(7)

white list :: “white list” “ : ” “{” 〈list body〉 “}”, (8)

black list :: “black list” “ : ” “{” 〈list body〉 “}”, (9)

scope list :: “scope” “{” 〈list body〉 “}”, (10)

, list body :: con f ig∗, (11)

, con f ig :: ID “− ” ID “, ” application “; ” (12)

application :: ID
| “[” 〈app list〉 “]”
| ∗

, (13)

app list :: ID (“, ” ID)∗, (14)

Appl. Sci. 2020, 10, 409 7 of 22

action :: “accept” | “drop”, (15)

where ID is a string literal and its detailed definition can refer to the string definition in the
c99 standard.

In addition, the functional-independent annotation syntax is not mentioned above.
Strictly speaking, they are also part of the policy language.

3.2. Security Rule Grammar

rule set :: [de f ault : action] rule∗, (16)

rule :: 〈ip section〉 “, ” 〈dst ip rule〉, (17)

dst ip rule :: 〈ip section〉 “, ” 〈protocol type rule〉
| “{” 〈dst ip list〉 “}” , (18)

protocol type rule :: section“, ” 〈src port rule〉
| “{” 〈protocol type list〉 “}”, (19)

src port rule :: section“, ” 〈dst port rule〉
| “{” 〈src port list〉 “}” , (20)

dst port rule :: section“, ” 〈time rule〉
| “{” 〈dst port list〉 “}”, (21)

time rule :: section“, ” 〈characteristic rule〉
| “{” 〈time list〉 “}” , (22)

characteristic rule :: 〈characteristic section〉 “ : ”action“; ”
| “{” 〈characteristic list〉 “}” , (23)

dst ip list :: (ip“, ” 〈protocol type rule〉)∗, (24)

protocol type list :: (section“, ” 〈src port rule〉)∗, (25)

src port list :: (section“, ” 〈dst port rule〉)∗, (26)

des port list :: (section“, ” 〈time rule〉)∗, (27)

time list :: (section“, ” 〈characteristic rule〉)∗, (28)

characteristic list :: (〈characteristic section〉 “ : ”action “; ”)∗, (29)

ip :: 〈ip number〉 “.” 〈ip number〉 “.” 〈ip number〉 “.” 〈ip number〉
− 〈ip number〉 “.” 〈ip number〉 “.” 〈ip number〉 “.” 〈ip number〉

, (30)

ip section :: “[” ip (“, ” ip)∗ “]”
| ip

, (31)

section :: number“− ”number
| “_”

, (32)

characteristic section :: 〈regula rexpression〉
| “_”

, (33)

where number is a decimal natural number, ip number is a decimal number ranging from 0 to 255,
and the detailed definition of regula rexpression is available in reference [25].

Appl. Sci. 2020, 10, 409 8 of 22

3.3. Map Policies to Rules

As a map, this section transforms the conforming policy language into the corresponding rule
language. In combination with the actual situation, IP addresses among users are different, and IP
addresses domains are also different. Therefore, we can further conclude that the relation has the
following properties:

Definition 1. ∀u ∈ πU (Rmdr). ∃ip. 〈u, ip〉 ∈ πU ,IP(Rmdr),

Definition 2. ∀d ∈ L(con f ig− ID). πU (σD=dRmdr) 6= ∅,

Definition 3. ∀app ∈ L(application− ID). πAPP(σAPP=appRmdr) 6= ∅,

Definition 4. ∀reg1, reg1 ∈ πREG(Rmdr). reg1 = reg2 ∨ L(reg1) ∩ L(reg2) = ∅,

Definition 5. ∀ 〈d1, ip1〉 , 〈d2, ip2〉 ∈ πD,IP(Rmdr). d1 6= d2 −→ ip1 6= ip2,

Definition 6. ∀ 〈u1, ip1〉 , 〈u2, ip2〉 ∈ πU ,IP(Rmdr). u1 6= u2 −→ ip1 6= ip2,

where π is a projection operation on a relationship. The parameters between them are the terms to
be projected. The function L() represents a collection of strings that a node of grammar tree matches.
The function L() is a set of strings represented by a regular expression. Now, we describe the steps of
the algorithm by means of the following examples:

de f ault : accept
white list : {A− B, app1 A− C, [app1, app2] A− B, app2}
black list : { A− B, app1 A− B, app3}
scope list : {A− B, app1, app2, app3}

 . (34)

1. From Formulas (6) and (16), we can know that ε ∈ policy language ∧ ε ∈ rule language, where ε

is empty string. We specify that, when the policy is ε, the corresponding rule image is ε. Using the
same policy, we transform [“de f ault” “ : ” action] statement from the policy to rule.

2. Transform a policy statement into a rule statement. We divide the policy into three cases: when
the policy is whitelist, the rule action is translated as “accept”; when the policy is the blacklist,
it is translated as “drop”, and, in the last case, it is translated as the default statement of the
opposite action.

First, merge every con f ig bar in the whitelist into a tree (white list tree). Traversal from
root to leaf: if the two nodes currently being compared are the same, merge them into one node;
otherwise, the remaining subtrees are merged under the parent node. Figure 2 is the algorithm of
con f ig in white list to merge into white list tree.

A B

C

A B

A

app1

app2

app2

app1 A B

C

app1

app2

app2

app1

Figure 2. Tree mergers of config in the whitelist.

Appl. Sci. 2020, 10, 409 9 of 22

Next, merge each con f ig of the blacklist into the white list tree in turn and conflict checking
is performed for each merge. The specific process is that, if the exact same subtree appears,
the system will prompt for a “detected conflict” message. Figures 3 and 4 show an example of
a conflict detected.

A B

A B app3

app1A B

C

app1

app2

app2

app1

ERROR！

M
e
r
g
e

Figure 3. Tree mergers of config in the blacklist.

A B app3

A B

C

app1

app2

app2

app1
M
e
r
g
e

A B

C

app1

app2

app2

app1

app3

Figure 4. Tree mergers of config in the blacklist conflict checking.

Next, each scope list is merged into the whitelist tree, as opposed to the default operation,
which merges the list (if the default action is accepted, it merges with the blacklist; otherwise, it
merges with the whitelist). Figure 5 shows that the scope list is merged into the whitelist tree.

A B

C

app1

app2

app2

app1

app3

A B

app3

app2

app1

M
e
r
g
e

A B

C

app1

app2

app2

app1

app3

Figure 5. Tree mergers of config in the scope list.

Through this algorithm, a new tree can be merged into the existing tree, and the original principle
can be maintained. The operation to merge the subtree into the original tree is represented by
plus sign +.

Appl. Sci. 2020, 10, 409 10 of 22

3. If the listbody is ε, translate ε as follows (all other parts of the signed ∗ are the same). When there
is only one configuration, from Formula (12), we have:

con f ig :: ID “− ” ID “, ” application “; ”.

From script (34), we get the domain set {A, B, C} and the application set {app1, app2, app3}.
For example, the domain of A corresponds to IP interval [10.0.0.1-10.0.0.3 10.0.0.5, 10.0.0.7].
Similarly, the IP interval of the domain B is [6,8-9]. For the language element A− B of the security
policy script, it can be translated into the source IP interval, and the destination IP interval of the
language element in the security rules script respectively. It can be written as [1-3,5,7,10],[6,8-9].
Similarly, a− c can be translated into [1-3,5,7,10],[10,12].

4. Ignoring the control characters “, ” and “; ”, we consider the second half of the formula
“application”. We mark these APPs as appi. By Definition 3, for each ID, it can obtain the
protocol type, destination port, time, and characteristics via relational operation expression
πPROTOCOL,PORT,TIME,REG(σAPP=appi (Rmdr)). The source port is used for its own side to receive
messages and is randomly assigned with no restrictions. Covert this relational structure into a tree
structure in order. The application element is translated into protocol type interval, source port
interval, destination port interval and time interval characteristics in security rules. By searching
for application name in scripts, we can get a security rule subtree with an application from the
multi-domain network. For example, app1 uses TCP, UDP and ICMP protocols. Among them,
TCP uses port 80 as the destination port, and UDP uses port 90 as the destination port. The usage
time of app1 is limited to 5:00 a.m.–11:00 a.m. per day. The algorithm is illustrated by the
following Figure 6:

app1
tcp:
6

0-
6553
5

0-
6553
5

0-
6553
5

udp:
17

icmp
:1

80-
80

90-
90

0-0

8:00
-

9:00

8:00
-

9:00

8:00
-

9:00

app2 7
0-

6553
5

81-
81

8:00
-

9:00

app3 8
0-

6553
5

82-
82

8:00
-

9:00

_

_

_

_

_

Figure 6. Transform from relationship to application match tree.

5. In steps 3 and 4, multiple tree merges are involved. Our approach is the same merge,
different splits. Combining the whitelist tree of step 2, the security policy language is finally
translated into the security rules script. In this process, the subtrees of the step 2 are connected,
and the corresponding actions are added to the final rule part in combination with the black and
white list action of the whitelist tree.

In the implementation, the packet filter module will call the mutual exclusion of the two operations
through the synchronization variable lock when loading the forest rules or filtering the packet.
Algorithm 1 is described precisely as follows:

Appl. Sci. 2020, 10, 409 11 of 22

Algorithm 1: Fine-grained packet filter
Input: Packet t, Forest rules rt
Output: Action r

1 initialization: Synchronous lock, int status;
2 P(lock);
3 if status==LOAD_RULES then
4 parse_policies(rt);
5 merge trees into forest (*Algorithm 2*);
6 map policies to rules (*Algorithm 3*);
7 convert absolute Time to relative time (*Algorithm 4*);
8 else
9 if status==FILTER_PACKET then

10 update time interval (*Algorithm 5*);
11 V(lock);
12 return r = filtering_packet(t);
13 end
14 end
15 V(lock);
16 return NOACTION;

We define a type named Forest_policy whose type can be seen in Formula (35):

Forest_policy{
Forest_policy parent;

List < Forest_policy > child_list;

Union{List < Interval > data_list;

Enumerate action;

}list_action;

},

(35)

where parent is the parent of this level, and child_list is its children. child_action is the data of the node.
There are four levels of the forest which has been built. They are the source of the domain,

the destination of the domain, the application, and the action of the forest policy, respectively.
Corresponding to Forest_policy, we also define Forest_rule. There are eight levels that are the source
of IP, the destination of IP, the source of the port, the destination of the port, the protocol type, the time,
the characteristic, and the action. See Formula (36):

Forest_rule{
Forest_rule parent;

List < Forest_rule > child_list;

Union{List < Interval > data_list;

Enumerate action;

}list_action;

}.

(36)

The policies can be mapped to the rules by Algorithm 3. The initialization of it also needs to
be finished by Algorithm 2. It merges each policy tree in the policy file into the forest policy. In the
process, the algorithm simultaneously merges the policies and detects conflicts.

Appl. Sci. 2020, 10, 409 12 of 22

Algorithm 2: Merge trees into forest
Input: Single policy p, forest policies f
Output: forest policies f

1 for i = 0; i < f .child_list.size(); i++ do
2 f _rooti= f .child_list.get(i);
3 if f _rooti==t then
4 for j = 0; j < f _rooti.child_list.size(); j++ do
5 f _nodej = f _rooti.child_list.get(j);
6 p_node = p.child_list.get(0);
7 if f _nodej==p_node then
8 for k = 0; k < p_node.child_list.size(); k++ do
9 p_appk = p_node.child_list.get(k);

10 for l = 0; l < f _nodej.child_list.size(); l++ do
11 f _appl = f _nodej.child_list.get(l);
12 if f _appl==p_appk then
13 if f _appl .action==SCOPE then
14 if p_appk.action==BLACK or WHITE then
15 f _appk.action = p_appl .action;
16 end
17 end
18 else
19 if f _appl .action! = SCOPE then
20 if p_appk.action! = SCOPE then
21 throw “conflict detection!”;
22 end
23 end
24 if f _appl .action! = SCOPE then
25 f _appk.action = p_appl .action;
26 end
27 end
28 end
29 f _appk.child_list.add(p_appl);
30 end
31 end
32 end
33 return f _rooti.child_list.add(p_node);
34 end
35 end
36 return f .child_list.add(p);

Each policy p in the list is regarded as a tree, so policies f can be considered as a forest. Both forest
and trees are three-layer structures. The layers represent source domain, destination domain, and
app, respectively. As for app nodes, they all contain an action field (BLACK/WHITE/SCOPE).
The function of Algorithm 2 is to merge trees into a forest.

Algorithm 2 is described precisely as follows:
Travel through every tree in the forest and try to merge policy p into the tree. If it fails to merge

policy p into any tree in the forest, just add policy p into f .childl ist. The method of merging trees is
as follows. First, compare the root node of policy p with that of the i-th tree in the forest, which are
denoted as t and f _rooti, respectively. If they are different, policy p cannot be merged into the i-th tree.

Appl. Sci. 2020, 10, 409 13 of 22

Try to merge it into another tree. If they are the same, compare their child nodes which are denoted as
p_node and f _node.

If a child node of f _rooti denoted as f _nodej is the same as p_node, compare their child nodes
which are denoted as f _app and p_app, or add p_node to f _rooti.child_list.

For each p_app, if there is no f _app like it, add it to f _nodej.child_list. If there is an f _app denoted
as _appl which is the same as p_appk, compare their actions. If one is SCOPE and the other is BLACK
or WHITE, then f _appk.action = BLACK or WHITE. If they are different and neither is SCOPE,
throw “conflict detection!”.

Algorithm 3 is described precisely as follows:
In Algorithm 3, it maps forest policies f , p into forest rules r, t. For each tree in the forest

f , p, use the following method to turn it into a rule tree. As mentioned above, the trees of policy
forest are three-layer structure, representing source domain, destination domain and app, respectively.
Thus, given the root of the i-th tree, we can get the source domain, and further obtain the source
IP address srcipi by searching the set of relationships Rmdr. The destination IP address dstipj can
be obtained similarly. Then, add it to srcipi.child_list. From the app, we can get the information
of protocol, source port, destination port, time, reg and action. Add them to the child_list of their
previous element respectively and make reg the leaf node of the rule tree. Leaf nodes of rule trees
contain an action field which is the same as the app node of the original policy tree.

Algorithm 3: Map policies to rules
Input: Forest policies f p
Output: Forest rules rt

1 initialization: f p.init(), rt.init();
2 for i = 0; i < fp.child_list.size(); i++ do
3 root = f p.child_list.get(i);
4 srcipi = π IP(σD=rootRmdr);
5 for j = 0; j < root.child_list.size(); j++ do
6 node = root.child_list.get(j);
7 dstipj = π IP(σD=nodeRmdr);
8 srcipi.child_list.add(dstipj);
9 for k = 0; k < node.child_list.size(); k++ do

10 app = node.child_list.get(k);
11 protocolk = πPROTOCOL(σAPP=appRmdr); dstipj.child_list.add(protocolk);
12 srcportk = [0-65535];
13 protocolk.child_list.add(srcportk);
14 dstportk = πPORT(σAPP=appRmdr);
15 srcportk.child_list.add(dstportk);
16 timek = πTIME(σAPP=appRmdr);
17 dstportk.child_list.add(timek);
18 regk = πREG(σAPP=appRmdr);
19 timek.child_list.add(regk);
20 lea fk = app.action;
21 regk.action = lea fk;
22 end
23 end
24 rt.list.add(srcipi);
25 end

Appl. Sci. 2020, 10, 409 14 of 22

Time coding is divided into absolute time and relative time. Time elements such as year,
month, day, week, hour, minute and second are used to encode relative time. Absolute time is encoded
in seconds that have elapsed since 1 January 1970. The relative time of the base structure from
low to high is 60, 60, 24, 7, 31, and 12. Of these, number 7 means that the week is unlimited.
Number 31 means days are unlimited. Number 12 means month is unlimited. For the time format
“yyyy−mm− ddhh : MM : ss”,

intToRe(mm, dd, w, hh, MM, ss) = ss× 1 + MM× 60 + hh× 60× 60 + w× 24× 60× 60

+dd× 7× 24× 60× 60 + mm× 31× 7× 24× 60× 60,
(37)

where the week w can be calculated using the library function provided by “time.h”. For example,
from 9:00 a.m. to 10:00 a.m. every day, the code of relative time is Formulas (38) and (39):

287485200 = intToRe(12, 31, 7, 9, 0, 0), (38)

287488800 = intToRe(12, 31, 7, 10, 0, 0). (39)

If it’s 0:00 a.m. to 0:00 a.m. per day, this means that there’s no limit about time. For “intToAb(·)”,
we first reverse calculate [mm, dd, w, hh, mm, ss] = intToRe−1(·), obtain the current absolute time via
“time(·)”, then assign the rest to the absolute time structure, and finally calculate the absolute time
value through the library function “mktime(·)”.

Algorithm 4 is described precisely as follows.
In Algorithm 4, given the relative time interval which begins with stamp1 and ends with

stamp2, the corresponding absolute time interval can be obtained. Time stamp is an integer and
can be converted into relative time or absolute time through function “intToRe(·)” or “intToAb(·)”.
Using function “intToRe−1(·)” for stamp1 and stamp2, we can get six pairs of numbers representing
the restrictions on month, date, day of week, hour, minute, and second. Placing restrictions on month
means the period from one month to one month every year and no restriction implies January to
December. Similarly, for date, day of week, hour, minute, and second, whether to make restrictions or
not is optional.

Using function intToAb() for update, the time stamp of current time, we can get the current month,
date, day of week, hour, minute, and second. If current time meets the limits to month, date, and day of
week, there are two cases to consider. One case is that there are no limits to hour, minute, and second,
and the other is that hour, minute, and second are limited. For the former, the absolute time interval
converted is from 0:0:0 a.m. that day to 0:0:0 a.m. the next day. For the latter, it is the limited time
interval that day. If current time does not meet any limit to month, date or day of week, the absolute
time interval converted is from 1 January 1970, 0:0:0 a.m. to 1 January 1970, 0:0:0 a.m..

Algorithm 5 is described precisely as follows:
Since absolute time interval are converted from relative time interval according to current time,

the absolute time interval converted should change as current time changes. Thus, it is necessary
to invoke Algorithm 5 to update absolute time interval to ensure accuracy. The update input is the
time stamp of the last time calling Algorithm 4. If the time stamp of packet packetTime is bigger than
update, invoke Algorithm 4 and update update ensuring that the next update will be completed before
the time constrained.

Appl. Sci. 2020, 10, 409 15 of 22

Algorithm 4: Convert relative time into absolute Time
Input: int stamp1, stamp2

Output: int update, ustamp1, ustamp2

1 update = time();
2 [mon1,mday1,wday1,hour1,min1,sec1] = intToRe(stamp1);
3 [mon2,mday2,wday2,hour2,min2,sec2] = intToRe(stamp2);
4 [mona,mdaya,wdaya,houra,mina,seca] = intToAb(update);
5 if mon1 <= mona <= mon2||(mon1==mon2==13) then
6 if mday1 <= mdaya <= mday2||(mday1==mday2==8) then
7 if wday1 <= wdaya <= wday2||(wday1==wday2==32) then
8 if hour1==min1==sec1==hour2==min2==sec2==0 then
9 ustamp1 = ustamp2 = intToAb(0,0,0);

10 else
11 ustamp1 = intToAb(hour1,min1,sec1);
12 ustamp2 = intToAb(hour2,min2,sec2);
13 end
14 return [update, ustamp1, ustamp2];
15 end
16 end
17 end
18 ustamp1 = ustamp2 = intToAb(1970,1,1,0,0,0);
19 return [update, ustamp1, ustamp2];

Algorithm 5: Update time interval
Input: int packetTime, update, stamp1, stamp2

Output: int update, ustamp1, ustamp2

1 if packetTime >= update then
2 [ustamp1, ustamp2] = Algorithm 4(stamp1, stamp2);
3 h = stamp(0,0,0) + 24*60*60 + rand()%(h*60*60);
4 end

3.4. Match Tree Building of Packet Filter

The transmitted security rules are built into a packet filter match tree in the gateway machine.
The implementation method is to build an 8-layer filter matching tree. The root node is in the first
layer, the second layer is the source IP range of child nodes, and the third layer is the source IP range of
which the parent node is IP range node. By analogy, the fourth floor is protocol type interval, the fifth
layer is the source port interval, the sixth layer is the destination port, the seventh layer is the time
interval, and the eighth floor is URL characteristics. As you can see from step 2, the security rule script
has a very similar structure to the filter match tree. This procedure can be understood as the gateway
machineMr f executing the load security rule instruction.

After the matching tree has been built, when the gateway machine executes the instructions
f ilter packet, it will start from the root node, from top to bottom, and select the matching subtree from
the eligible subtree, until it finds the action of the leaf node. In particular, if no eligible subtrees are
found at a certain level, it jumps out of the tree traversal and performs the default action.

4. Security of System

We treat the policy set as a string of elements, which can be abstracted into three categories: Empty
set ε, de f ault“ : ”action, and policy. According to the policy set grammar, we know that:

Appl. Sci. 2020, 10, 409 16 of 22

Definition 7. 1. Empty set is a policy set.
2. The default action is a policy set.
3. A policy set join policy is a policy set.
4. The other cases are not a policy set.

The join operation between the policy set and the policy is marked as ⊕. According to the
above definition, the join operation is closed on policy set. The 〈policy set ,⊕〉 now constitutes
an algebraic system.

In the same way, rule sets are also divided into three similar parts: empty set ε, de f ault“ : ”action,
and rule.

According to the rule set grammar, we know that:

Definition 8. 1. Empty set is a rule set.
2. The default action is a rule set.
3. A rule set join rule is a rule set.
4. The other cases are not a rule set.

The join operation between the rule set and the policy is marked as ⊗. According to the
above definition, the join operation is closed on rule set. The 〈rule set ,⊗〉 now constitutes
an algebraic system.

4.1. Map Security

Review Section 3.3 map policies to rules, we stipulate map m f :

m f (p) =


ε p = ε,

de f ault“ : ”action p = de f ault“ : ”action,

m f (p′) + pcon f ig p = p′pcon f ig.

(40)

The meaning of the operator + is specified above.

Theorem 1. ∀p ∈ policy set. ∃r ∈ rule set. m f (p) = r

Proof. From Formula (40), if p = ε or p = de f ault“ : ”action, the theorem is established.
Assuming that m f (p′) satisfies the Theorem 1, we can deduce that this policy has a corresponding

treep′ . From Step 3, the policy pcon f ig also has a corresponding treepcon f ig . From Step 5, these trees can
be merged into a treep, which can be translated into a rule.

Now, this theorem is proved by induction.

From Theorem 1, we can reach a conclusion that, for every set of grammatical and semantical
policies in the network, we can always find the set of rules corresponding to them.

4.2. Semantic Security

In terms of the semantics of rules, machine Mr f with the same function is a kind of rule class
for different forms of rules. The difference of these rules can be reflected in the choice of the interval,
such as the case of 1− 3, 3− 4 and 1− 2, 2− 4. However, in terms of the point of view of the packet
filtering function of the machine, they are the same.

Lemma 1. !∃p ∈ policyset, Mp f 1 6= Mp f 2. e f (m f (p)) = Mp f 1 ∧ e f (m f (p)) = Mp f 2.

Proof. Suppose there is a rule p that performs both receive and discard actions for a packet.
This requires the encoding of the interval to have two meanings, which does not conform to the

Appl. Sci. 2020, 10, 409 17 of 22

natural number encoding, time encoding, and collection of characteristic encoding (from Definition 4).
This leads to a contradiction.

Theorem 2. The map e f is well-defined. (It involves semantics of m f)

Proof. According to Lemma 1, we know that the relation of the semantics of policy/rule forms a
partition of it. From Theorem 1, we can know ∀p ∈ policy set. ∃Mp f = e f (m f (p)). Combined with the
properties of partition, if two Mp f 1, Mp f 2 are different, the corresponding partition must be different.
This satisfies two requirements of a well-definition.

By Theorem 2, we can guarantee that the “Execution of packate filter” component will not generate
ambiguity, thus ensuring semantic security.

4.3. Optimization

Theorem 3. Nodes in the same hierarchy can be arranged in order except for their characteristics.

Proof. Considering the source IP, destination IP, protocol type, source port, destination port and time,
they are all encoded with a natural number, and there is no intersection between the intervals of each
node, so they can be arranged orderly.

By Theorem 3, we can optimize the packet filtering algorithm. In addition to characteristic nodes,
nodes at other levels can be arranged in an orderly manner, so the gateway can use the binary search
method to retrieve the rule tree.

5. Performance

The operation interface of the three procedure in the framework FMNISCF is shown as follows:
Figure 7a shows the configuration of a security policy on a web browser. The newly added

security policy is saved in the database, and then the user can see it in the list. Figure 7b shows the
deployment of security rules to the gateway through a web browser. While clicking the “Distribute”
button, the system automatically converts security policies into security rules and deploys them to the
gateway. Figure 7c shows the gateway loading security rules sent by the visual management system
into the gateway through the security rules loader. Thus, the interconnected security gateway can filter
fine-grained packets.

We test the performance of three processes of the framework FMNISCF. Since instructions
are distributed by socket communication, the selection of operating system version does not affect
FMNISCF deployment. The test hardware environment, software environment and running speed
under different configurations are given below:

Table 1 shows the interconnected security gateway and the hardware environment of the visual
management system. Interconnection security gateway, controlled by the visual management system,
can accept or drop the packets passing through the network according to the instructions sent by
the system.

We use software “iPerf3” [26] as the packet sending tool. It simulates communication scenarios in
the network.

Table 2 shows the software environment of each state during the rule life cycle management.
In the policy transfer phase, a database is required to store security policies, security rule data, and
other management information. The data caching software in the web background improves the speed
of data query in the system. Web service programs rely on JVM and rapid development framework
spring. Fine-grained web management requires support from Shiro components. In the front-end,
JavaScript provides rich support of the running script. In the phase of rule loading and packet filtering,
the network modules in the kernel are used to provide support.

Appl. Sci. 2020, 10, 409 18 of 22

After setting up the running environment, we can test the three processes in the framework
FMNISCF. The first step is to write the policy configuration file. Transform policies into rules through
the map. The following is the rate at which rule profiles are generated under different semantic
environments in a multi-domain network.

(a)

(b) (c)

Figure 7. Operation interface. (a) map from policy to rule and distribution; (b) add policy configuration;
(c) packet filter execution.

Table 1. The Relation between test unit and running environment of hardware.

CPU DDR4 OS Test Unit

Intel(R) Xeon(R) 128 G Centos 7 Policy translation
E5-2670 0 2.60 GHz

Intel(R) Xeon(R) 4 G Ubuntu 14 Rule loading
E3-1220 V2 3.10 GHz Packet filter

Table 2. The relation between test unit and running environment of FMNISCF.

Software Version Test Unit

database MySQL 5.0 Policy translation
in-memory data redis 4.0 Policy translation
structure store

JVM JDK1.8.0 Policy translation
web framework spring MVC 4.2 Policy translation

persistence framework mybatis 4.2 Policy translation
Java security framework Apache Shiro 1.2.5 Policy translation

JavaScript library JQuery 1.8.3 Policy translation
netfilter linux kernel Rule loading

3.10.0-862.el7.x86_64 Packet filter
iPerf3 iperf-3.1.3 Packet sending

Appl. Sci. 2020, 10, 409 19 of 22

In Figure 8, the time of generating security rules increases linearly with the number of policies.
When the number of policies reaches 660,000, generating security rules only costs about 5 s. This means
that, in actual deployments, the system can support very complex security policy configurations and
keep the rule generation process efficient.

98 3037 21961 112695 324963 664367

number of rules

0

1000

2000

3000

4000

5000

g
e
n
e
r
a
t
i
o
n
t
i
m
e
H
m
s
L

98 3037 21961 112695 324963 664367

Figure 8. Time of rule generation.

Next is the test of time of the rule configuration file loading. In Figure 9, when the number
of security rules is 400,000, the loading time of the interconnected security gateway is about 9 s,
which means that, in the actual deployment, the system can quickly load the rules generated by the
system and respond to the changes in the network. In different rule scales, the loading time changes
are shown as follows:

10
1

10
2

10
3

10
4
5´10

4
10

5
2´10

5
3´10

5

number of rules

0

2000

4000

6000

8000

l
o
a
d
i
n
g

t
i
m
e
H
m
s
L

10
1

10
2

10
3

10
4
5´10

4
10

5
2´10

5
3´10

5

Figure 9. Time of rule loading.

Finally, the iPerf3/pktgen generates packet traffic to test the throughput of gateway after loading
rules. In the experiment, the tools are used to generate 10 Gbps of traffic. We compare the iptables,
DPDK-IPFW, BSD-IPFW, BSD-pfsense, and FMNISCF.

In Figure 10, we analyze the data: as for the optimization of network card drive, DPDK-IPFW
can increase the limit value of the data transmission speed of the device. In the actual transmission,
it reaches 9.3 Gbps. Furthermore, DPDK-IPFW supports up to 23,207 rules. In addition, BSD-IPFW
supports up to 65,535 rules and maintains a stable transmission speed of 1.03 Gbps when the number
of rules is greater than 1 W. This shows that BSD-IPFW is very suitable for deployment on the network
equipment with a Gigabit network card. This speed is just the upper limit which is generally supported
by the intermediate nodes of the network. The network speed of BSD-pfsense can only maintain at 0.2
Gbps. We compare other schemes with ours. It can be seen from the comparison that the throughput of
other schemes decreases rapidly with the increase of rules. The speed of other schemes has dropped to
1 Gbps when there are 1 W rules. In contrast, when the number of security rules is 50 W, the throughput
of FMNISCF can still maintain 4.6 Gbps. This means that, in the actual deployment, even if the system
is loaded with complex filtering rules, the network data can still be transferred quickly. Our plan does
not lead to a significant reduction.

Appl. Sci. 2020, 10, 409 20 of 22

bar
�

0� 10
4

5´10
4

10
5

2´10
5
3´10

5
4´10

5
5´10

5

number of rules

0

2

4

6

8

10

t
h
r
o
u
g
h
p
u
t
H
G
b
p
s
L

bar
�

0� 10
4

5´10
4

10
5

2´10
5
3´10

5
4´10

5
5´10

5

BSD-pfsense

BSD-IPFW

DPDK-IPFW

iptables

FMNISCF

Figure 10. Packet throughput of Iptables and ours.

6. Conclusions

This paper proposes the framework of a fine-grained multi-domain network interconnection
security control, FMNISCF for short. BNF is used to design the grammar specifications of rules
and policies. The map method from policy to rule is designed based on the semantics of integrated
air-ground multi-domain network. Unifying policies and rules into the structure of the matching tree
is the key to establishing the relationship between policies and rules. This structure also provides
a scheme for the implementation of packet filtering semantics of gateway. In terms of security analysis,
we discuss the security of design about map and semantic. This ensures that the system does not
“crash” or generate ambiguities. Combining the characteristics of the system, we optimize the matching
tree structure. Finally, we test the system running environment and the running time of each stage,
respectively. Our solution is more efficient than iptables in terms of packet filtering performance.
The framework can be used to filter more protocols/attacks from the application layer. In some
common SQL injection attacks, mining Trojan attacks and other scenarios, it can filter this type
of packet in a fine-grained way. In periodic application scenarios, for example, when employees
arrive at work at 9:00 a.m. and leave at 5:00 p.m. on weekdays, window time can be set to prevent
employees from accessing the company’s confidential database after work. Through the establishment
of multiple domains, the framework can implement the access control management of each department
of the company.

7. Future Research Work

In the future, we will design a fine-grained intrusion detection system. Combined with this
system, many security policies can be automatically generated by the intrusion detection system and
quickly deployed into the FMNISCF. In the intrusion detection system, the attack behavior is analyzed
by combining multi-domain network semantics. This includes information such as network topology,
department organization structure, and application protocol structure. Coordinated detection and
response to attacks are implemented on distributed gateways supported by time synchronization.

Author Contributions: Conceptualization, B.L. and R.C.; methodology, B.L. and Y.L.; software, B.L. and L.T.;
validation, B.L., L.T. and H.W.; formal analysis, B.L.; investigation, B.L. and R.C.; resources, Y.L.; data curation,
B.L., L.T. and H.W.; writing—original draft preparation, B.L., L.T. and H.W.; writing—review and editing, B.L.;
visualization, B.L.; supervision, Y.L.; project administration, Y.L.; funding acquisition, Y.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (No. 2016YFB0800302),
and funded by the BUPT Excellent Ph.D. Students Foundation (No. CX2019230).

Appl. Sci. 2020, 10, 409 21 of 22

Acknowledgments: This research is supported by the National Key R&D Program of China (No. 2016YFB0800302)
and the BUPT Excellent Ph.D. Students Foundation (No. CX2019230).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FMNISCF Fine-grained Multi-domain Network Interconnection Security Control Framework
TCP Transmission Control Protocol
ODENOS Object-Defined Network Allocation System
SDN Software Defend Network
2FA Two-Factor Authentication
XACML eXtensible Access Control Markup Language
URL Uniform Resource Locator
IP Internet Protocol
BNF Backus–Naur Form
UDP User Datagram Protocol
ICMP Internet Control Message Protocol
JVM Java Virtual Machine
JDK Java Development Kit
MVC Model View Controller
Gbps Gigabits/Second
DPDK Data Plane Development Kit
BSD Berkeley Software Distribution
IPFW Internet Protocol Firewall
IOT Internet of Things

References

1. Yang, Z.; Xiao, B.; Chen, Y. Modeling and Verification of Space-Air-Ground Integrated Networks on
Requirement Level Using STeC. In Proceedings of the 2015 International Symposium on Theoretical Aspects
of Software Engineering, Nanjing, China, 12–14 September 2015; pp. 131–134. [CrossRef]

2. Varasteh, A.; Hofmann, S.; Deric, N.; He, M.; Schupke, D.; Kellerer, W.; Machuca, C.M. Mobility-Aware Joint
Service Placement and Routing in Space-Air-Ground Integrated Networks. arXiv 2019, arXiv:1902.01682.

3. Ronen, E.; Shamir, A.; Weingarten, A.O.; O’Flynn, C. IoT Goes Nuclear: Creating a Zigbee Chain Reaction.
IEEE Secur. Priv. 2018, 16, 54–62. [CrossRef]

4. Wang, L.; Wang, X.V. Latest Advancement in CPS and IoT Applications. In Cloud-Based Cyber-Physical
Systems in Manufacturing; Wang, L., Wang, X.V., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 33–61. [CrossRef]

5. Yan, H.; Li, Y.; Dong, W.; Jin, D. Software-Defined WAN via Open APIs. IEEE Access 2018, 6, 33752–33765.
[CrossRef]

6. Hauser, F.; Häberle, M.; Schmidt, M.; Menth, M. P4-IPsec: Implementation of IPsec Gateways in P4 with
SDN Control for Host-to-Site Scenarios. arXiv 2019, arXiv:1907.03593.

7. Hanemann, A.; Boote, J.; Boyd, E.; Durand, J.; Kudarimoti, L.; Lapacz, R.; Swany, M.; Trocha, S.; Zurawski,
J. PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring. In Proceedings
of the Third International Conference, Amsterdam, The Netherlands, 12–15 December 2005; Volume 3826,
pp. 241–254. [CrossRef]

8. Gawanmeh, A. Automatic Verification of Security Policies in Firewalls with Dynamic Rule Sequence.
In Proceedings of the 2014 Eleventh International Conference on Information Technology: New Generations
(ITNG), Las Vegas, NV, USA, 7–9 April 2014; pp. 279–284. [CrossRef]

9. Wang, B.; Lu, K.; Chang, P. Design and implementation of Linux firewall based on the frame of
Netfilter/IPtable. In Proceedings of the 2016 11th International Conference on Computer Science Education
(ICCSE), Nagoya, Japan, 23–25 August 2016; pp. 949–953. [CrossRef]

http://dx.doi.org/10.1109/TASE.2015.8
http://dx.doi.org/10.1109/MSP.2018.1331033
http://dx.doi.org/10.1007/978-3-319-67693-7_2
http://dx.doi.org/10.1109/ACCESS.2018.2833211
http://dx.doi.org/10.1007/11596141_19
http://dx.doi.org/10.1109/ITNG.2014.29
http://dx.doi.org/10.1109/ICCSE.2016.7581711

Appl. Sci. 2020, 10, 409 22 of 22

10. Thomas, Y.; Xylomenos, G.; Tsilopoulos, C.; Polyzos, G.C. Multi-Flow Congestion Control with Network
Assistance. In Proceedings of the 2016 IFIP Networking Conference (IFIP Networking) and Workshops,
Vienna, Austria, 17–19 May 2016; pp. 440–448. [CrossRef]

11. Wang, H.; He, D.; Wang, H. Comparison of high-performance packet processing frameworks on NUMA.
In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science
(ICSESS), Beijing, China, 26–28 August 2016.

12. Pandey, V.C.; Peddoju, S.K.; Deshpande, P.S. A statistical and distributed packet filter against DDoS attacks
in Cloud environment. Sādhanā 2018, 43, 32. [CrossRef]

13. Zhu, H.; Liao, X.; de Laat, C.; Grosso, P. Joint flow routing-scheduling for energy efficient software defined
data center networks: A prototype of energy-aware network management platform. J. Netw. Comput. Appl.
2016, 63, 110–124. [CrossRef]

14. Sajjadi, D.; Ruby, R.; Tanha, M.; Pan, J. Fine-grained Access Provisioning via Joint Gateway Selection and
Flow Routing on SDN-aware Wi-Fi Mesh Networks. In Proceedings of the 2017 IEEE 13th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy,
9–11 October 2017. [CrossRef]

15. Sajjadi, D.; Ruby, R.; Tanha, M.; Pan, J. Fine-Grained Traffic Engineering on SDN-Aware Wi-Fi Mesh
Networks. IEEE Trans. Veh. Technol. 2018, 67, 7593–7607. [CrossRef]

16. Iizawa, Y.; Suzuki, K. Multi-layer and multi-domain network orchestration by ODENOS. In Proceedings of
the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March
2016; pp. 1–3.

17. Li, K.; Ou, Q.; Chen, H.; Zou, B. Controller Cluster-Based Interconnecting for Multi-domain SDN
Networks. In Proceedings of the 2017 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), Nanjing, China, 12–14 October 2017; pp. 482–485. [CrossRef]

18. Min, L.J.; Lu, H.H. A Policy Generation Method for Control Systems in an Open Environment.
CN106547248A, 29 March 2017.

19. Hager, S.; John, P.; Dietzel, S.; Scheuermann, B. RuleBender: Tree-based policy transformations for practical
packet classification systems. Comput. Netw. 2018, 135, 253–265. [CrossRef]

20. Pisharody, S.; Natarajan, J.; Chowdhary, A.; Alshalan, A.; Huang, D. Brew: A Security Policy Analysis
Framework for Distributed SDN-Based Cloud Environments. IEEE Trans. Dependable Secur. Comput. 2018,
16, 1011–1025. [CrossRef]

21. Khelf, R.; Ghoualmi, N. Intra and inter policy Conflicts Dynamic Detection Algorithm. In Proceedings
of the 2017 Seminar on Detection Systems Architectures and Technologies (DAT), Algiers, Algeria,
20–22 February 2017; pp. 1–6. [CrossRef]

22. Liu, J.K.; Au, M.H.; Huang, X.; Lu, R.; Li, J. Fine-Grained Two-Factor Access Control for Web-Based Cloud
Computing Services. IEEE Trans. Inf. Forensics Secur. 2016, 11, 484–497. [CrossRef]

23. Pei, X.; Yu, H.; Fan, G. Fine-Grained Access Control via XACML Policy Optimization in Cloud Computing.
Int. J. Softw. Eng. Knowl. Eng. 2015, 25, 1709–1714. [CrossRef]

24. Merindol, P.; David, P.; Pansiot, J.J.; Clad, F.; Vissicchio, S. A Fine-Grained Multi-Source Measurement
Platform Correlating Routing Transitions with Packet Losses. Comput. Commun. 2018, 129, 166–183.
[CrossRef]

25. Bispo, J.; Sourdis, I.; M.P.Cardoso, J.; Vassiliadis, S. Regular expression matching for reconfigurable packet
inspection. In Proceedings of the 2006 IEEE International Conference on Field Programmable Technology,
Bangkok, Thailand, 13–15 December 2006; pp. 119–126. [CrossRef]

26. Kimura, B.Y.L.; Loureiro, A.A.F. MPTCP Linux Kernel Congestion Controls. arXiv 2018, arXiv:1812.03210.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/IFIPNetworking.2016.7497200
http://dx.doi.org/10.1007/s12046-018-0800-7
http://dx.doi.org/10.1016/j.jnca.2015.10.017
http://dx.doi.org/10.1109/WiMOB.2017.8115747
http://dx.doi.org/10.1109/TVT.2018.2832010
http://dx.doi.org/10.1109/CyberC.2017.41
http://dx.doi.org/10.1016/j.comnet.2018.02.019
http://dx.doi.org/10.1109/TDSC.2017.2726066
http://dx.doi.org/10.1109/DAT.2017.7889181
http://dx.doi.org/10.1109/TIFS.2015.2493983
http://dx.doi.org/10.1142/S0218194015710047
http://dx.doi.org/10.1016/j.comcom.2018.07.032
http://dx.doi.org/10.1109/FPT.2006.270302
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Our Work

	Framework
	Security Policy
	Security Rule
	Execution of Packet Filter
	Map

	Implementation
	Security Policy Grammar
	Security Rule Grammar
	Map Policies to Rules
	Match Tree Building of Packet Filter

	Security of System
	Map Security
	Semantic Security
	Optimization

	Performance
	Conclusions
	Future Research Work
	References

