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Abstract: Software systems are now ubiquitous and are used every day for automation purposes in
personal and enterprise applications; they are also essential to many safety-critical and mission-critical
systems, e.g., air traffic control systems, autonomous cars, and Supervisory Control And Data
Acquisition (SCADA) systems. With the availability of massive storage capabilities, high speed
Internet, and the advent of Internet of Things devices, modern software systems are growing in both
size and complexity. Maintaining a high quality of such complex systems while manually keeping
the error rate at a minimum is a challenge. This paper proposed a heterogeneous defect prediction
method considering class extreme imbalance problem in real software datasets. In the first stage,
Sampling with the Majority method (SWIM) based on Mahalanobis Distance is used to balance the
dataset to reduce the influence of minority samples in defect data. Due to the negative impact of
uncorrelated features on the classification algorithm, the second stage uses ensemble learning and
joint similarity measurement to select the most relevant and representative features between the
source project and the target project. The third phase realizes the transfer learning from the source
project to the target project in the Grassmann manifold space. Our experiments, conducted using nine
projects of three public domain software defect libraries and compared with four existing advanced
methods to verify the effectiveness of the proposed method in this paper. The experimental results
indicate that the proposed method is more accurate in terms of Area under curve (AUC).

Keywords: heterogeneous defect prediction; class extreme imbalance; transfer learning;
Grassmann manifold

1. Introduction

Software defect prediction (SDP) is important to identify defects in the early phases of software
development life cycle [1,2]. This early identification, and thereby removal of software defects, is crucial
to yield a cost-effective and good quality software product. It usually focuses on estimating the defect
proneness of software modules, and helps software practitioners allocate limited testing resources to
those parts which are most likely to contain defects. This effort is particularly useful when the whole
software system is too large to be tested exhaustively or the project budget is limited.

Software defect datasets are typically characterized by an imbalanced class distribution where
the defective samples are fewer than the non-defective samples [3]. The quality of data is usually
the most critical factor to determine the performance of a classification model. The class imbalance
of defect datasets will seriously affect the prediction performance, especially for extreme imbalance
data classification. The prediction model will pay more attention to the non-defect samples, which
makes the prediction model more inclined to the non-defect samples, and ignores the cost of error
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identification of the defective samples. Although the misclassification of defective samples does not
significantly reduce the global classification accuracy, the accuracy of defective samples will decline,
which is inconsistent with the goal of software defect prediction. Zhou et al. proposed a model
which combined attribute selection, sampling technologies and ensemble algorithm to solve the class
imbalance problem [4]. Huda et al. introduced a new mixed sampling strategy to generate more pseudo
samples from defective classes, and combined random oversampling, Majority Weighted Minority
Oversampling Technique, and Fuzzy-Based Feature-Instance Recovery to construct an integrated
classifier [5]. It was proven that the prediction performance of Heterogeneous Defect Prediction (HDP)
can be improved by balancing defect dataset.

At present, the research on SDP is mainly based on the defect prediction of homogeneous projects,
which uses historical data of other projects to construct prediction model. The historical data have
the same metrics as the target project, but they are distributed differently. Sufficient historical data
are provided for the project to be predicted. However, the programming languages and application
fields of different projects are often different, and the corresponding features and distribution are
various. It is very difficult to construct a model with homogeneous defect prediction method to
have good prediction performance. Therefore, how to use the historical data of other heterogeneous
projects to establish a prediction model and predict whether the target project module contains defects,
is a research hotspot in the field of software defect prediction.

HDP uses the data of other projects with different measurement standards to realize the defect
tendency prediction of the target project. However, due to the different measurement standards and
data differences between projects, it cannot be directly used for model construction. Turhan et al.
increased the data similarity between different projects by taking advantage of the common features of
source and target projects [6]. Nam and Kim et al. used feature selection and feature matching to build
the predictor with heterogeneous projects [7]. Jing et al., who combined Unified Metric Representation
(UMR) and Canonical Correlation Analysis (CCA), proposed CAA+ to make the distributions of source
and target projects similar [8]. However, these methods have three limitations. Firstly, the discarded
features may contain the discrimination information of constructing the classification model. Secondly,
if the number of common features is less, there may not be enough useful information for accurate
prediction. Thirdly, heterogeneous projects may not have common features.

Researchers began to focus on the common potential space between the source project and the
target project to settle a matter of great difference in features between heterogeneous projects. Li et al.
mapped the source project and the target project to the high-dimensional kernel space, and reduced the
difference of data distribution through kernel correlation alignment method [9]. Xu et al. embedded
the data from the two domains into a comparable feature space with a low dimensional, measures the
difference between the two mapped domains of data using the dictionaries learned from them with the
dictionary learning technique [10]. Xu et al. used the spectrum embedding to map the source project
and the target project from the high-dimensional space to the low-dimensional consistent space [11].

Transfer learning is introduced into HDP to reduce the problem of data difference, which no
longer requires two projects have the same feature dimension and distribution. Transfer learning is
an important branch of machine learning. Its goal is to learn knowledge from an existing domain to
solve a different but related domain problem. There are three aspects different from traditional machine
learning: (1) training and test data can be subject to different distribution. (2) Sufficient labeled data is
not required. (3) The model can be transferred between different tasks. It can be used to construct an
HDP model with good effect.

However, not all the features can improve the transfer effect in the source project. Only the
features contain important information and similar to the distribution of the target project, which are
conducive to the construction of a good HDP model. The researchers focused on data processing
before transfer learning. Yu et al. achieve feature transfer from the source project to the target project
by designing a feature matching algorithm to convert the heterogeneous features into the matched
features according to the ‘distance’ of different distributing curves [12]. Ma et al. proposed Kernel
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Canonical Correlation Analysis based transfer learning algorithm to improve the adaptive ability of
prediction model [13]. Wen et al. adopted feature selection and source selection strategies, combined
with Transfer Component Analysis to get better prediction performance [14]. Chen et al. proposed
a new heterogeneous transfer learning method based on neural network [15]. The instances were
transferred to generate quasi real instances. The high credibility quasi real instances were selected
to expand the target project data and construct the prediction model. Tong et al. found a series of
potential common kernel feature subspaces of source project and target project by combining kernel
spectral embedding, transfer learning, and ensemble learning [16]. The above approaches fully proved
that the combination of feature selection and feature transferring can improve the performance of
an HDP model.

In this paper, the main idea of the proposed approach is to generate samples from the density
curve and balance the dataset. It not only reduces the influence of imbalanced data on the classification
surface, but also avoids the generation of new samples in the dense area of non-defect samples.
Ensemble learning selects some data and establishes multiple Classification and Regression Trees
(CART) [17]. The dimensionality reduction of nonlinear data in manifold space can well maintain
the complete information of complex structure high-dimensional data, and the inverse mapping
of low-dimensional data can also maintain most of the data information [18]. The distortion and
deformation of the local feature neighborhood can be reduced by transfer learning in the manifold
space. The proposed approach is called Grassmann manifold optimal transfer defect prediction
(GMOTDP). A new sample is generated according to the relative density curve of the defective samples
of the source project, which can balance the dataset. The optimal subset of source project is constructed
by combining with the importance ordering. Joint similarity measurement is used to construct the
optimal subset of the target project. Transfer learning in the manifold space is realized by using the
optimal subsets of source and target projects. Its main contributions are as follows:

1. A new sample data is generated to balance source project. According to the hyperellipticity
density curve of the defective samples.

2. Use ensemble learning and joint similarity measure to obtain the optimal subsets of source project
and target project, respectively.

3. Map the non-linear data to Grassmann manifold space, and geodesic flow kernel (GFK) is used to
transfer the source project to the same distribution space of the target project.

2. Proposed Framework

The proposed approach framework of GMOTDP is shown in Figure 1. The algorithm
implementation includes the following three parts.
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Figure 1. The overall architecture of GMOTDP. Figure 1. The overall architecture of GMOTDP.

(1) In the oversampling phase, Sampling With the Majority (SWIM) is used to generate new
samples along the hyperelliptically dense contour of each defective sample, which is helpful to
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overcome the limitation of SMOTE, that is, to generate samples outside the convex hull formed by
defective samples, and prevents them from being generated in higher probability areas of the non-defect
class. Imbalanced source project {S,Y} are oversampled to obtain a balanced dataset {S‘,Y‘}.

(2) In the feature selection phase, the irrelevant features of the source project are firstly removed.
The importance of each feature is quantified by using Classification and Regression Tree (CART).
The ensemble learning is adopted. The gradient boosting algorithm is used to reduce the loss of
CART, and a new tree structure model is generated to ensure the reliability of the final decision.
The weighted average of different features in all trees determines the optimal subset of source project
to be transferred. For the objective function, the complexity of the tree model is added to the regular
term to avoid over fitting. The loss function is expanded by Taylor expansion, and the first derivative
and the second derivative are used to quickly optimize the objective. Get the optimal subset of the
source project through integration learning. Within a specified number of times, the features of the
target project are randomly sorted. By calculating the Euclidean distance of the optimal subset of
source projects to determine the similarity, the optimal subset C of the target project to be transferred is
jointly determined.

(3) In the feature transferring phase, the traditional Euclidean space measurement is difficult to be
used in the real-world nonlinear data; thus, it is necessary to introduce new hypothesis to the data
distribution. Manifolds are locally Euclidean spaces, which can find low-dimensional embeddings
hidden in high-dimensional data. From the perspective of the topologic, it is locally linear and
homeomorphic with low dimensional Euclidean space topology. From the perspective of differential
geometry, any tiny part is regarded as Euclidean space. All samples are mapped to the Grassmann
manifold. The source project is mapped to the low dimensional common space with the target project
GC by local neighborhood similarity, and the source project {GB,Y} data similar to the distribution of
the target project is obtained with Geodesic Flow Kernel (GFK). Source and target project datasets are
inversely mapped. The transformed source project data are trained, and the target project prediction is
realized by using Logistic Regression (LR).

2.1. Sampling with the Majority

Generating the samples outside the convex hull formed by the defective samples and preventing
them from generating in the dense area of the non-defect samples, SWIM makes full use of the relative
distribution information. The Mahalanobis distance (MD) of each given minority class instance
corresponds with a hyperelliptical density contour around the majority class, and the minority class is
inflated by generating synthetic samples along these contours. New samples are generated along these
density curves to expand the defective class. The MD of a sample x from the mean µ is calculated by

the inverse matrix Σ
−1

of covariance Σ as:

MD(x,µ) = (x− µ)TΣ
−1
(x− µ) (1)

Centering the data simplifies the calculation of the distances; this will be evident in a following
step, when we generate a new sample point. The mean vector µa of the defect free samples is calculated,
and the defect free samples A and B are centralized, respectively.

A = A− µa (2)

B = B− µa (3)

The MD is equivalent to the Euclidean distance in the whitened space of a distribution. Thus,
we simplify the calculations for generating samples by whitening the space. Let Σ denote the covariance
matrix of A, we whiten the centered minority class as:

Bw = (B− µa)Σ−
1
2 (4)
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Select a defective sample as the reference datum randomly, generate samples that are at the same
Euclidean distance from the mean of the defective class. For each feature f in Bw, we find its mean
µ f and standard deviation σ f . The bounds of each feature are a random number between µ f and l f .
α controls the number of standard deviations we want the bounds to be. An upper and lower bound
on its value, µ f and l f , as follows:

µ f = µ f + ασ f (5)

l f = µ f − ασ f (6)

Center the data, this implies that the new sample will have the same Euclidean norm as the
defective sample. We transform z as:

znorm = z
||x||2
||S||2

(7)

Transform each new sample to the original space, where the new sample znew will be in the same
density curve as the reference datum:

znew =
(
Σ−

1
2

)−1
znorm (8)

This process can be repeated t times, where t is the desired number of samples to be generated
based on the reference datum. SWIM is summarized as in Algorithm 1.

Algorithm 1. Sampling with the Majority

Input: imbalanced and labeled source dataset S, Sampling rate α.
Output: balanced and labeled source dataset Snew.
Method:

1. N = number of samples (undefect class A − defected class B).
2. Compute µa and covariance matrix Σ with.

3. Whiten B as Bw = (B− µa)Σ−
1
2 , compute mean µ f and standard deviation σ f for each feature f .

4. for i = 1 to t, t = α×N do
5. select a sample x randomly from B.

6. Generate new sample z, each feature z f is
(
µ f + ασ f

)
≤ z f ≤

(
µ f − ασ f

)
.

7. transform s back into original space, znew =
(
Σ−

1
2

)−1
z ||x||2
||S||2

8. end for
9. return Snew

In order to verify the effectiveness of SWIM and produce representative results, an imbalanced
training set with 10 minority samples and 88 majority samples and a balanced test set with 300 samples
are created. The demonstration is presented in Figure 2. The left figure shows the results of
oversampling using SWIM with an imbalanced dataset. The right figure shows the classification
results of the support vector machine without oversampling. The majority class training samples
are shown as red squares with black outlines, and the corresponding test samples are shown as red
circles. The minority class training samples are shown as blue squares with white outlines, and the
corresponding test samples are shown as blue circles. The new samples by SWIM are shown as cyan
squares with white outlines. It can be seen from the Figure 1 that the samples generated by SWIM are
spread along the density curve corresponding of the minority data from the majority class. From the
decision surfaces generated by the two classifiers (represented by the shading in the plot), it can be
seen that using the information in majority class to generate samples can lead more representative
decision surface, which obtains better classification performance.
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Figure 2. (a) Shows the binary support vector classifier induced over the imbalanced training set;
(b) Shows the illustration of classifier produced by using SWIM.

In order to prove the effectiveness of this method, the classification results of the training set
without sampling and SWIM are calculated. We divided a defect dataset into a training set and test set
with a ratio of 7:3, which is classified by SVM. The average results of 10 times are shown in Table 1.
It shows that SWIM has a significant advantage when the relative and absolute imbalance is very high.

Table 1. AUC obtained by using SVM without sampling (Baseline), and with SWIM.

Project Baseline SWIM

PC3 0.7792 0.8293
PC4 0.7398 0.8231

MW1 0.8229 0.8678
EQ 0.7948 0.8730
JDT 0.9219 0.9633
LC 0.8011 0.8658

AR3 0.8472 0.8666
AR4 0.9587 0.9892
AR5 0.8752 0.9375

2.2. Feature Selection

This phase selects the optimal subset of the source and target projects for feature transfer. Quantify
the importance of each feature to select features by using the tree model. In the process of CART
construction, select the feature with the maximum gain to segment to the maximum depth, and achieve
the minimum cost of CART segmentation. When constructing the next tree using the ensemble learning,
the objective function adds complexity. The first and the second derivatives are used to reduce the loss
of cart, minimize the objective function and ensure the reliability of the final decision. All features of
all trees are weighted and averaged to determine their importance.

During the construction of cart, the idea of minimizing the objective function is as follows:

Lk =
n∑
i

l(yi, ŷi) +
∑

k

Ω(pk) (9)

Ω(p) = γT +
1
2
λ||ω||2 (10)

Here, l is a differentiable convex loss function, which is used to measure the difference between
the prediction ŷi and the target yi. The second term Ω penalizes the complexity of the model, which
helps to smooth the final learning weights to avoid over-fitting. T is the number of leaf nodes, ||ω|| is



Appl. Sci. 2020, 10, 396 7 of 15

the magnitude of leaf node vector, γ represents the difficulty of sharding a node, and λ represents the
L2 regularization coefficient.

Lk =
n∑
i

l
(
yi, ŷi(k−1) + pk(xi)

)
+ Ω(pk) (11)

pk(xi) = ωq(xi)
(12)

where ŷi(k) is the prediction of the i-th sample at the k-th iteration. q(xi) is the structure function of
each tree that maps an example to the corresponding leaf index. The objective function greedily adds
pk(xi). Each pk(xi) corresponds to an independent tree structure q(xi) and leaf weights w.

Lk =
n∑

i = 1

[
l
(
yi, ŷi(k−1)

)
+ gipk +

1
2

hip2
k

]
+ Ω(pk) (13)

Second-Order approximation optimizes the target quickly, where gi = ∂ŷi(k−1)
l
(
yi, ŷi(k−1)

)
and

hi = ∂2
ŷi(k−1)

l
(
yi, ŷi(k−1)

)
are the first and the second order gradient statistics of the loss function, and

removes the constant term of the objective function.

Lk =
n∑
i

l
(
yi, ŷi(k−1) + pk

)
+ Ω(pk)

=
n∑
i

l
(
yi, ŷi(k−1) + pk

)
+ γT + 1

2λ
T∑

j=1
w2

j

=
∑T

j=1

[(∑
i∈I j

gi

)
ω j +

1
2

(∑
i∈I j

hi + λ
)
ω2

j

]
+ γT

(14)

The weight w j of each leaf in each tree is obtained, which is used to calculate the feature importance:

w j = −

∑
i∈I j

gi∑
i∈I j

hi + λ
(15)

Las Vegas is a typical randomization method, namely, one of probability algorithms. It has the
characteristics of probability algorithm, which allows the algorithm to randomly select the next step
in the process of execution. In many cases, when the algorithm is faced with a choice in the process
of execution, the randomness choice spends less time than the optimal choice, thus, the probability
algorithm can greatly reduce the complexity of the algorithm. In this paper, Las Vegas is used to
randomly sort the features of the target project, and calculate the Euclidean distance with the source
project to measure the similarity. In a certain number of times, the subset with the highest distribution
similarity is selected as the optimal subset of the target project for subsequent transfer learning. Feature
selection is summarized as in Algorithm 2.
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Algorithm 2. Feature Selection

1. Input: feature f (i) ∈ Snew, label y(i) ∈ Snew, i = 1 · · · n, the number and depth of CART K, D.
imbalanced and unlabeled source dataset XT, random number R

Output: Similar dataset XS−sim, XT−sim
Method:

2. for k = 1 to K, do
3. for d = 1 to D, do
4. sampling(Snew × 0.4)
5. fi→(gain( fi))
6. select maxGain( fi) to split
7. end for
8. prediction label: ŷi, complex index: pk, feature weight, ω( fi)

9. Lk =
n∑
i

l
(
yi, ŷi(k−1) + pk

)
+ Ω(pk)

10. second-order approximation Lk =
n∑

i = 1

[
gipk +

1
2 hip2

k

]
+ Ω(pk)

11. gi = ∂ŷi(k−1) l
(
yi, ŷi(k−1)

)
, hi = ∂2

ŷi(k−1)
l
(
yi, ŷi(k−1)

)
.

12. end for
13. avg(ωk( fi), w j(k))→sort( fi)→Simp

14. for r = 1 to R, do
15. shuffle(XT, col)
16. select dataset XT−rand, col(XT−rand) = col(XS−imp)
17. euclidean(XT−rand, XS−imp)
18. end for
19. XS−sim, XT−sim by min(euclidean(XT−rand, XS−imp))

2.3. Transfer Learning in Manifold Space

Manifold is homeomorphic spaces in local and Euclidean spaces. It uses Euclidean distance to
calculate the distance, which overcomes the feature distortion of transfer learning in original space.
The Grassmann manifold can take the original d-dimensional subspace as the basic element to help
learning classifier. It usually has an effective numerical form in feature transformation, which can be
very efficient representation and solution in the transfer learning problem. In addition, the transfer of
source project to target project, or the transfer of source and target projects to a common space are
two main methods of feature-based transfer learning. Li et al. found that the performance of the
transfer of source project to target project is better than the latter [19]. In this paper, the optimal subset
of source and target projects are transformed into the Grassmann manifold. Geodesic Flow Kernel
(GFK) method is used to construct geodesic flow to make the source domain close to the target domain.
It integrates the space function of the manifold where these two points are located of the source project
with the same distribution as the target project is obtained.

As shown in the Figure 3, GFK tries to embed the D× d dimension subspace Ps, PT ∈ RD×d after
dimensionless reduction of the source domain and target domain into the manifold G. φ(0) is the source
domain representation of manifold G, φ(1) is the target domain representation of manifold G, and
the geodesic flow between φ(0) and φ(1) is equivalent to transforming the original feature space into
an infinite dimension space, reducing the drift phenomenon between domains. The parameterization
is shown as follows:

Φ : t ∈ [0, 1]→ Φ : t ∈ G(d, D)

PS = Φ(0), PT = Φ(1)
(16)
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Φ(t) is represented as follows, where U1, U2 are orthogonal matrices obtained by SVD.

Φ(t) = PSU1Γ(t) −RSU2Σ(t) (17)

PT
S PT = U1Γ(t)VT, RT

S PT = −U2Σ(t)VT (18)

z∞ =
[
Φ(0)Tx, . . . , Φ(t)Tx, . . . , Φ(1)Tx

]
is the feature of manifold space, the inner product of

transformed features gives rise to positive semidefinite geodesic flow kernel:

〈z∞i , z∞j 〉 =

∫ 1

0
(Φ(t)Txi)

T
(Φ(t)Tx j)dt = xT

i Gx j (19)

Thus, the features in the original space can be transformed into the Grassmann manifold with
z =

√
Gx. G can be effectively calculated by singular value decomposition.

G = [PSU1 RSU2]

[
Λ1 Λ2

Λ2 Λ3

][
UT

1 PT
S

UT
2 RT

S

]
(20)

Logistic regression is used as classifier to train the source project with the same distribution as the
target project, and use the model to distinguish the defect type of the target item module.
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3. Experimental Results and Analysis

3.1. Datasets Description

The experimental data are from three open databases in the field of software defect prediction:
NASA [20], AEEEM [21], SOFTLAB [22]. Table 1 lists the details of the datasets used in the experiment.
Each dataset represents a software system or subsystem, including the static code indicators and
corresponding fault data of each component module. Although these three databases have different
number of features, some databases have common features. Table 2 shows the situation of common
features between databases. NASA comes from NASA’s space system related software, which is
written in C language. Its features include the number of lines of code, software complexity, and
software readability. AEEEM is collected by D’Ambros and written in Java language. Its features
include change entropy measurement and source code measurement. SOFTLAB comes from Turkish
software company and is written in C language. Both SOFTLAB and NASA used in the experiments are
obtained from PROMISE [22], and there are 28 common features between them. There are redundant
samples and features in NASA, and we choose the clean-up version NASA MDP. Projects of MW1 and
LC, and so on, are all extreme imbalance datasets.
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Table 2. Details of projects used in the comparison experiments.

Company Project Language Description Metrics Instance Defective (%)

NASA
PC3 C Flight Software for Each

Orbiting Satellite 37 1077 134 (12.44%)

PC4 C Flight Software for Each
Orbiting Satellite 37 1458 178 (12.21%)

MW1 C A Zero Gravity Experiment
about Combustion 37 253 27 (10.67%)

AEEEM
EQ Java OSGi Framework 61 324 129 (39.81%)
JDT Java IDE Development 61 997 206 (20.66%)
LC Java Text Search Engine Library 61 691 64 (9.26%)

SOFTLAB
AR3 C Embedded Controller of The

Washing Machine 29 63 8 (12.7%)

AR4 C Embedded Controller of The
Dishwasher 29 107 20 (18.69%)

AR5 C Embedded Controller of The
Refrigerator 29 36 8 (22.22%)

3.2. Experimental Results

Experiments used the Bob under Linux as the backend. Python the multi-paradigm programming
language with rich data science packages has been selected. The information of hardware is CPU:
Intel® Core™ i7-9750H, Video card: NVIDIA Geforce RTX 2060.

In order to investigate the performance of the proposed algorithm in this paper, GMOTDP is
compared with the existing state-of-the-art defect prediction methods, such as TCA+ [23], CCA+ [8],
KCAA+ [13], and KSETE [16]. TCA+ and CCA+ are benchmark comparison methods for heterogeneous
defect prediction. KCAA+ and KSETE are new heterogeneous defect prediction methods in 2017
and 2019. All methods use logistic regression as the classifier. In the experiments, one project was
selected as the target project, and the projects in different datasets were used as the source project
for heterogeneous prediction. The area under the working characteristic curve (AUC) of the subjects
was used as the evaluation index of the prediction model. The value of AUC ranged from 0 to 1,
which is larger, the classification effect of the model is better. For example, six forecasting cases can
be carried out for a given SOFTLAB database, when AR3 is selected as the target project. They are
called PC3 ≥ AR3, PC4 ≥ AR3, MW1 ≥ AR3, EQ ≥ AR3, JDT ≥ AR3, LC ≥ AR3. Because GMOTDP
involves randomness when dealing with class imbalance and feature selection, the average results
of 50 repeated experiments were counted for each case to reduce the influence of randomness on the
experimental results.

The number of common features between projects of different companies is shown in Table 3.
In this paper, two sets of experiments are designed to verify the predictive performance of GMOTDP,
which is not affected by whether the source and target projects have common features or not. When
there are common features between two projects, the projects of NASA and SOFTLAB are used as the
source projects and the target projects, respectively, for comparison experiments. When two projects
have not common features, the projects of AEEEM and SOFTLAB are used as the source projects and
the target projects, respectively, for comparison experiments.

Table 3. The number of common features between projects of different companies.

Company A ∩ Company B NASA ∩ SOFTLAB AEEEM ∩ SOFTLAB NASA ∩ AEEEM

Number 28 0 0

Table 4 shows the AUC values of GMOTDP compared with the other four methods when the
source and target projects have common features. We selected datasets from NASA and SOFTLAB
as source and target projects, respectively. Figure 4 graphically displays Table 4 for a more intuitive
display and comparison of the predicted results. It can be seen from Figure 4 and Table 4 that the
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performance of GMOTDP is better than other methods, and the AUC average value of the prediction
results of the other four methods is improved by 0.1981, 0.2305, 0.1331, and 0.1106, respectively. It can
be seen that the prediction effect of GMOTDP is better than the other four methods from the boxplot
representation of Figure 5.

Table 4. Mean AUC results for source and target projects with common features using different methods.

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP

PC3
AR3 0.6399 0.6232 0.7689 0.7474 0.8297
AR4 0.7151 0.6462 0.7389 0.7743 0.9014
AR5 0.6249 0.6692 0.7516 0.8242 0.9330

PC4
AR3 0.6920 0.6769 0.7310 0.7846 0.8079
AR4 0.6930 0.6462 0.7371 0.7047 0.9252
AR5 0.7214 0.6492 0.7229 0.7728 0.8460

MW1
AR3 0.6696 0.6464 0.7089 0.6398 0.8170
AR4 0.6860 0.6923 0.8259 0.7964 0.8682
AR5 0.6429 0.5462 0.6850 0.8286 0.9397

mean 0.6761 0.6437 0.7411 0.7636 0.8742
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Table 5 shows the AUC values of GMOTDP compared with the other four methods when there
are no common features between the source project and the target project. We selected datasets from
AEEEM and SOFTLAB as source and target projects, respectively. In Figure 6, the results of Table 5
are shown graphically, the various colored columns indicate the same as above. It can be seen from
Table 5 and Figure 6, the mean value of GMOTDP is 0.8690, while the mean values of other methods
are 0.5747, 0.6093, 0.6772, and 0.7352, respectively. The boxplot representation in Figure 7 shows that
the prediction effect of GMOTDP is better than other methods.

Table 5. Mean AUC results for source and target projects without common features using different methods.

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP

EQ
AR3 0.5504 0.5846 0.7043 0.7129 0.8382
AR4 0.5559 0.6462 0.7784 0.7850 0.9145
AR5 0.5795 0.6923 0.6830 0.6654 0.9397

JDT
AR3 0.5625 0.5692 0.6572 0.6806 0.8326
AR4 0.5640 0.6462 0.7528 0.7469 0.9236
AR5 0.6429 0.5692 0.5931 0.7849 0.7515

LC
AR3 0.5982 0.5846 0.7188 0.7294 0.8065
AR4 0.5530 0.6077 0.5545 0.7367 0.9031
AR5 0.5661 0.6154 0.6524 0.7754 0.9115

mean 0.5747 0.6093 0.6772 0.7352 0.8690
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When Tables 4 and 5 are compared, it can be seen that the prediction performance of GMOTDP is
not affected by whether there are common features. TCA+, CCA+, and KCCA methods have different
degrees of decrease in predictive performance between source and target projects without a common
feature. The reason for this situation is that PCA is used to extract the principal components of source
and target projects when constructing manifold space, and the reconstructed features can retain most
of the relevant information characteristics. GMOTDP does not lose the important information related
to defects in data processing, which ensures the effectiveness and universality.

The non-parametric test does not assume that the population distribution must conform
to the normal distribution. It can infer that the population distribution directly from samples.
The Kruskal-Wallis test is carried out under significance level α = 0.05, and TCA+, CCA+, KCCA+,
KSETE, and GMOTDP are compared in pairs. The null hypothesis for each row in Table 6 show that the
Method 1 and Method 2 distributions are the same. In order to reveal which of these groups differ from
each other, we conduct a post hoc test with the Holm-Bonferroni correction. We use SPSS software
to obtain adjusted p-value, which is directly compared with 0.05, and the difference is considered
statistically significant if it is less than 0.05. The last column of the Table 6 clearly shows that there is
a significant difference between GMOTDP and TCA+, CCA+, and KCCA+, but there is no significant
difference between GMOTDP and KSETE.

Table 6. Kruskal-Wallis H and Holm-Bonferroni correction.

Method 1 Method 2 p-Value Holm-Bonferroni Correction

TCA+ CCA+ 0.949 1.000
TCA+ KCCA+ 0.005 0.054
TCA+ KSETE <0.001 0.001
TCA+ GMOTDP <0.001 <0.001
CCA+ KCCA+ 0.007 0.066
CCA+ KSETE <0.001 0.001
CCA+ GMOTDP <0.001 <0.001

KCCA+ KSETE 0.238 1.000
KCCA+ GMOTDP <0.001 0.001
KSETE GMOTDP 0.006 0.064

For the imbalanced datasets, G-mean was used to compare the performance of each prediction
method again. G−mean =

√
TNR×Recall, TNR and Recall denotes specificity and sensitivity of the

classifier, respectively. G-mean comprehensive considers the classification performance of minority
class and majority class. When the classification accuracy of minority class and majority class is closer,
we can get the best G-mean value. It can be found from Tables 7 and 8 that the prediction effect of
GMOTDP is better.

Table 7. Mean G-mean results for source and target projects with common features using different methods.

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP

PC3
AR3 0.5835 0.6618 0.7090 0.7129 0.7800
AR4 0.5796 0.6208 0.6790 0.6924 0.7630
AR5 0.5909 0.6092 0.5909 0.7334 0.8018

PC4
AR3 0.5998 0.6196 0.7049 0.6882 0.7951
AR4 0.5043 0.6167 0.6898 0.6764 0.7734
AR5 0.5797 0.5912 0.6008 0.7369 0.7823

MW1
AR3 0.5687 0.6366 0.6144 0.6939 0.7796
AR4 0.5454 0.6466 0.6544 0.7206 0.8148
AR5 0.6891 0.6723 0.6009 0.7341 0.7622

mean 0.5823 0.6305 0.6493 0.7099 0.7836
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Table 8. Mean G-mean results for source and target projects without common features using
different methods.

Source Target TCA+ CCA+ KCCA+ KSETE GMOTDP

EQ
AR3 0.5977 0.6344 0.6593 0.6847 0.7922
AR4 0.5527 0.5890 0.6096 0.6836 0.7710
AR5 0.5345 0.6396 0.6793 0.7188 0.7662

JDT
AR3 0.5955 0.6207 0.6269 0.7358 0.8158
AR4 0.6736 0.6213 0.6096 0.7297 0.7766
AR5 0.5924 0.6065 0.6669 0.7306 0.7393

LC
AR3 0.5797 0.6355 0.6519 0.7312 0.7834
AR4 0.6145 0.6044 0.5929 0.7351 0.7710
AR5 0.5671 0.6421 0.6308 0.7275 0.7902

mean 0.5897 0.6215 0.6363 0.7197 0.7784

4. Conclusions

This paper proposes a three-phase heterogeneous software prediction method-GMOTDP, which
includes SWIM oversampling, feature selection and transfer learning. New minority samples are
generated to balance the source project dataset based on Mahalanobis distance. CART-based ensemble
learning is used to determine the optimal subset of source project. The joint similarity measure is
used to obtain the optimal subset of the target project. According to the transfer of optimal subsets
in manifold space, the source project with the same distribution as the target project are obtained,
which reaches the condition of traditional classification and predicts the defect tendency of the target
project module.

A lot of experiments were designed to validate the propose scheme using nine projects of
three public domain software defect datasets. Compared with several representative software defect
prediction methods, the proposed GMOTDP has better prediction effect. AUC results show that our
method performs better usually than other four methods.

In the future, we will study how to combine other supervised learning methods with the sample
level and algorithm level methods, and investigate the influence of extreme class imbalance in
semi-supervised software defect predictor on more datasets. This is an interesting issue to be explored,
which might shed light on the design of more powerful supervised learning algorithms.
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