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Abstract: Improving the efficiency of fluid machinery is an eternal topic, and the development of
computational fluid dynamics (CFD) technology provides an opportunity to achieve optimal design
in limited time. A multi-objective design process based on CFD and an intelligent optimization
method is proposed in this study to improve the energy transfer efficiency, using the application of
an automotive electronic pump as an example. Firstly, the three-dimensional CFD analysis of the
prototype is carried out to understand the flow loss mechanism inside the pump and establish the
numerical prediction model of pump performance. Secondly, an automatic optimization platform
including fluid domain modeling, meshing, solving, post-processing, and design of experiment (DOE)
is built based on three-dimensional parametric design method. Then, orthogonal experimental design
and the multi-island genetic algorithm (MIGA) are utilized to drive the platform for improving the
efficiency of the pump at three operating flowrates. Finally, the optimal impeller geometries are
obtained within the limited 375 h and manufactured into a prototype for verification test. The results
show that the highest efficiency of the pump increased by 4.2%, which verify the effectiveness of the
proposed method. Overall, the flow field has been improved significantly after optimization, which
is the fundamental reason for performance improvement.
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1. Introduction

Fluid machinery is an important energy conversion device, which is widely used in important
sectors of the national economy such as hydropower, chemical processes, automobiles, nuclear power,
and national defense [1,2]. With the deepening of energy saving and emission reduction, it is very
important to improve the conveying efficiency of fluid machinery. Take the automobile industry as an
example, the design of efficient cooling systems which are driven by blade pumps play an important
role in the development of new energy vehicles. The former mechanical cooling water pump is mainly
driven and coupled with the engine speed, which may either overcool or undercool. Electric water
pumps are powered by adjustable speed motors and regulate operating conditions according to the
cooling needs [3–5]. The pump unit coupled with the control program not only minimize the output
power, but also meets the needs of the electric and intelligent development of the automotive industry.
However, the efficiency of the pump is often below 40% due to unreasonable hydraulic design, leaving
space for considerable energy savings. Moreover, pump geometries are mostly calculated based
on ideal flow theory under a single flow rate using the traditional one-dimensional design method.
However, the pump usually deviates from the optimal working condition, resulting in unstable flow
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phenomena such as secondary flow and flow separation inside the flow channel during the actual
operation [6–8]. Thus, the study on the multi-objective optimization method of efficient pumps is
also very important to the designers. However, there is still a lack of theoretical support and effective
optimization tools for pump designing in the background of faster product updates.

Pump design theory has evolved from traditional one-dimensional design to three-dimensional
design. With the rapid development of computer technology, the application of computational fluid
dynamics (CFD) combined with optimization methods have become a popular and effective technique
in turbomachinery design [9]. Wu et al. [10] investigated the effects of trailing edge modification on the
performance of the mixed-flow pump through CFD analysis. Zhou et al. [11] compared the internal flow
characteristics of a new kind of three-dimensional surface return diffuser to traditional ones using steady
CFD simulation in order to improve the hydrodynamic performance of the deep-well centrifugal pump.
Osman et al. [12] numerically investigated two multistage axially split centrifugal pumps with different
channel designs between its stages, the flow losses were compared by entropy production. Wang et
al. [13] established an energy loss model (ELM) to determine the relationships among the different
types of energy losses in a multistage centrifugal pump, and a method was proposed to optimize the
pump efficiency based on the ELM and CFD. The optimal design method of pumps has been studied
extensively by many scholars. There are several methods to improve the pump performance, such as
the empirical design method, approximate model method, and optimization algorithm. Liu et al. [14]
implemented the orthogonal design with five factors and four levels to optimize a multiphase pump,
the influence of each of the factors on the pressure rise was estimated, and the optimized ranges of these
parameters were determined. The above method achieved some success but could not overcome the
influence of human factors on the optimization results because it still relies on the empirical coefficients.
In recent years, intelligent optimization algorithms have been developed rapidly, such as the genetic
algorithm, ant colony algorithm, no-no search algorithm, simulated annealing algorithm, particle
swarm algorithm, and so on [15–19]. With the optimization of pump performance, these intelligent
algorithms are gradually adopted by pump researchers. Pei et al. [20] constructed an accurate nonlinear
function between the optimization target and the pump design variables by utilizing an artificial neural
network, and the modified particle swarm algorithm was further applied to optimize the mathematical
model. Yuan et al. [21] adopted optimal Latin hypercube design, CFD simulation combined with the
Kriging model were used to achieve the sample points for space-filling and establish the approximate
optimization model, the best combination of impeller parameters were finally obtained by solving
the approximation model with a genetic algorithm. Zhang et al. [22] proposed a multi-objective
method to optimize a double suction centrifugal pump based on the Simulation Kriging Experiment
(SKE) approach. Wang et al. [23] used radial basis function neural network combined with the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) genetic algorithm to optimize a high-speed,
mixed-flow pump. However, the optimization periods of these two methods are relatively short and it
is difficult to obtain an overall optimal solution. In order to eliminate the deviation generated by the
build of the approximation model, the researchers used the natural heuristic algorithm to optimize
the performance globally. For example, Zhang et al. [24] utilized a genetic algorithm to optimize the
geometry of a spiral axial-flow mixing pump. In recent years, a lot of intelligence algorithms have been
proposed. Because there is no crossover and mutation process in the genetic algorithm, the convergence
speed is greatly accelerated [25,26]. In summary, the pump optimization methods have undergone an
improvement process from single target to multi-objective optimization, from experience to theory.
Currently, with the advance of computer technology, automation, and artificial intelligence, automatic
design methods without human intervention are being developed and applied in various fields.

This study focuses on the hydraulic optimization of automotive electronic pumps. Firstly,
numerical simulations for a given model were carried out to build the prediction process of pump
efficiency. Secondly, the target of this multi-objective optimization was established by weighting
analysis. Then, an automatic optimization platform was established including parametric design,
CFD and DOE. Orthogonal design, a kind of DOE method, was implemented in advance to estimate
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the influence of four selected factors on pump efficiency and head. The optimized ranges of these
parameters were also determined. After, one kind of DOE namely the multi-island genetic algorithm
(MIGA) was utilized to drive the platform for optimizing the weighted average efficiency under three
operating flowrates. Finally, the optimized hydraulic scheme was obtained in a limited 375 h by using a
normal desktop computer without running in parallel and was proven to improve the pump efficiency
by 4.2% through the experiment. The proposed method may provide some theoretical guidance for
hydraulic optimization of fluid machinery.

2. Optimization Design Process and Modeling Method

2.1. Optimization Process

In traditional design of fluid machinery, taking pumps for example, research procedures involve
manufacturing prototypes, performance tests, results analyses, and optimal design. The design is
mostly two-dimensional and relies on the experience of the designer. However, creating prototypes
may cost a lot of time and money. Moreover, a large number of prototype tests would inevitably cause
significant manufacturing and testing errors. The automatic design with the intelligent optimization
method of fluid machinery presented in this study is based on the combination of CFD technology
and optimization theory. An accurate CFD simulation method needs to be established first, which
could provide virtual experimental results for optimization. Meanwhile, an automatic optimization
platform including all CFD process such as fluid domain modeling, meshing, solving, post-processing,
and design of experiment (DOE) was built for future optimization processes. The modeling of the
pump geometry is based on the three-dimensional parametric design method, which means the fluid
domain could be modified by DOE arrangements. The main parameters that influence the hydraulic
performance of centrifugal pumps were screened out, and orthogonal design was applied to obtain
the spacing-filling sample points. Significance test of optimization variables was conducted based
on analysis of variance (ANOVA). Further, the MIGA optimization method was utilized to drive the
platform for improving the efficiency of the pump automatically under three flowrates. Finally, an
optimized scheme was obtained and the prototype was 3D printed to experimentally validate the
optimal results. The whole optimization process is shown in Figure 1.
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2.2. Pump Model

The electronic pumps used in a car are always single-stage, single-suction centrifugal pumps
equipped with a Direct Current (DC) brushless motor. They are characterized by simple structure,
reliable operation, and convenient speed regulation. The motor contains the stator, the rotor, and
shaft. The rotor will rotate after power-on under electromagnetic induction. Moreover, the electronic
pump is equipped with a control unit that is connected to the driving computer. The rotational
speed of the pump would be adjusted by pulse width modulation (PWM) controls according to heat
dissipation of the cooling system, which may ensure the pump operates at a constant operation area
after dimensionless processing [1].

2.2.1. Pump Geometry and Losses Analysis

The structure of automotive electronic pumps used in this study is shown in Figure 2a. The coolant
liquid is sucked into the impeller, obtains pressure head after rotating with the impeller, and enters
into the volute passage under centrifugal force. In this process, electrical energy is converted into the
pressure energy of the fluid with a lot of losses, such as mechanical loss, leakage loss, disc friction
losses, and hydraulic loss. Mechanical loss refers to the energy loss due to the mechanical friction in
the pump, including the disk friction loss, bearing loss, and shaft seal loss. Leakage loss refers to the
clearance leakage in the pump including the leakage loss at the front ring, rear ring, and balance holes.
Hydraulic loss refers to the energy loss through the flow passage, including the inlet section, outlet
section, pump cavity, impeller, and volute. The flow inside the pump passage is full 3D unsteady
turbulence flow, including flow separation, backflow, circulation, instability flow, jet-wake flow, vortex,
and even cavitation. As the most important part of energy transfer, the geometry of the impeller has a
significant effect on hydraulic losses, pumping ability, and inherent reliability. Impeller-related losses
dominate the pump efficiency. Therefore, the optimization of this study is mainly aimed at the impeller.

The pump performance characteristic curves at different rotational speeds are shown in Figure 2b.
The pump would work at point A in actual operation at design rotational speed nd because of system
resistance. Similarly, the pump would work at point A1 in actual operation at rotational speed n1

based on similarity law if Reynolds number changes within a certain range. The related losses of the
pump under different rotational speeds also follows the similar law. Thus, it is equivalent to evaluate
the pump performance only at the design rotational speed. The hydraulic parameters of the selected
model pump are as follows: design rotational speed nd is 5400 r/min, design head Hd is 7.5 m, design
flow rate Qd is 1.4 m3/h. Table 1 provides a list of the main geometric parameters of the pump. Blade
angle is relative to tangential direction. Considering the inlet pressure of the pump in the real system,
this study does not involve cavitation problems.
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Table 1. Main geometric parameters of the pump.

Description Parameter Symbol Unit Value

Impeller

Inlet diameter D1 mm 20
Outlet diameter D2 mm 47

Outlet width b2 mm 2.2
Blade inlet angle β1

◦ 20
Blade number Z - 5

Blade outlet angle β2
◦ 41

Volute
Inlet diameter D3 mm 50

Inlet width b3 mm 6
Pipe diameter D mm 17

2.2.2. Optimization Objectives

The objective of the optimization is to build the relationships between the geometrical parameters
of the impeller and the various kinds of energy losses in the pump, with the ultimate goal of minimizing
the total energy loss. Thus, the following geometric parameters of impeller were selected as optimization
variables based on the results of previous practice, such as the impeller outlet diameter D2, blade outlet
width b2, blade number Z, blade outlet angle β2, blade inlet angle β1, leading edge tangential angle t3,
trailing edge tangential angle φ, and blade thickness δ. Moreover, the electronic water pump needs
to operate under multiple working flowrates according to the working state of the cooling system.
Therefore, a multi-point optimization is necessary. To broaden the high efficiency range of the model
pump, the weighted average efficiency of three flow conditions, namely 0.8Qd, 1.0Qd, 1.25Qd, were set
as the objective function, and the design head was set as a constraint.

In general, the time of optimization with the intelligent method will be increased with both
the number of parameters and the range of each parameter. In this study, exactly four parameters,
impeller outlet diameter D2, blade outlet width b2, blade number Z, blade outlet angle β2, were selected
for the orthogonal experiment at the first step. These four parameters are considered to play most
important roles in the comprehensive performance of centrifugal pumps [6,13]. Local optimization
can be achieved, and then the range of parameters can be reduced in this step. However, because
the optimization is also a multi-objective problem, it is necessary to establish the model with the
highest weighted average efficiency under three working flowrates. The optimization problem can be
formulated as:

Solve X = [D2, b2, Z, β2]T make:

f (X) =

3∑
i=1

ωi·ηi(X)

3∑
i=1

ωi

→ max, (1)

subject to
X ∈ R

Hd ≥ 7.5m
, (2)

where X is a vector of all design variables, R is the set of variable ranges, η1, η2, η3 represent the
efficiency of 0.8Qd, 1.0Qd, and 1.25Qd, respectively. Accordingly, ωi represents the weighting factors.

Analytic hierarchy process (AHP) was developed in the late 1970s by Saaty [27]. Due to its
simplicity, ease of use, and great flexibility, this technique has been widely used as a decision model to
deal with multi-criteria evaluation. However, AHP does not take into account the inherent uncertainty
and imprecision. Moreover, the comparison matrices used in AHP are combined with crisp scales.
To deal with the uncertainty or vagueness of data, fuzzy analytic hierarchy process (FAHP) was utilized
to derive the weight of every objective [28,29]. In FAHP, the importance of factor A to factor B is
obtained and the fuzzy judgment matrix is generated after comparing different factors. This study use
FAHP with the following steps.
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Firstly, build and construct a fuzzy complementary judgment matrix. The pairwise comparison
among factors is made to determine the importance of one factor relative to the other factors, and then
the judgment matrix is generated:

A =
(
ai j

)
N×N

, (3)

where ai j represents the evaluation of the relative importance of the factor i to the factor j, aj i = 1/aij.
Secondly, calculate weight vector:

ω∗i = (b1, b2, . . . , bN)
T, (4)

where i = 1, 2, 3, . . . , N; bi = N√ai1·ai2· . . . aiN
Thirdly, calculate the normalized weight value for each weight vector obtained from Equation (4):

ωi = bi/
N∑

i=1

bi. (5)

Fourthly, sum the elements in each column:

Si =

 N∑
j=1

a1 j,
N∑

j=1

a2 j, . . .
N∑

j=1

aN j


T

. (6)

Fifthly, calculate the maximum eigenvalue of the matrix. It would be used to calculate the
following consistency index.

λmax =
N∑

i=1

Ωi·Si, (7)

where Ωi = (ω1,ω2, . . . ,ωN)

Sixthly, consistency test. A consistency ratio (CR) is obtained in addition to the corresponding
principal eigenvector when using FAHP for criteria weighting. It represents the priority vector which
is integrated by the intended weights. The consistency ratio is used to measure if this eigenvector
estimates the weight vector well. It is obtained by division of the consistency index (CI) and the
appropriate average random consistency index (RI):

CR =
CI
RI

, (8)

CI =
λmax −N

N − 1
, (9)

where λmax is the maximum eigenvalue of the comparison matrix, and N is the order of objective
matrix. The value of the RI is related to N, which can be obtained from Table 2. If CR is greater than
0.1, the comparison matrix is inconsistent and should be revised.

Table 2. Random consistency index (RI).

N 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.9 1.12 1.24 1.34 1.41 1.45 1.49 1.51

The second step for the optimization is to use the intelligent method. The impeller parameters
mentioned before, the impeller outlet diameter D2, blade outlet width b2, blade number Z, blade outlet
angle β2, blade inlet angle β1, leading edge tangential angle t3, trailing edge tangential angle φ, and
blade thickness δ, are used for variable parameters to find the optimal combination at this step. Batch
command is used to drive the following cycle of the numerical simulation process.
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2.3. Numerical Method

The key to intelligent optimization is to build a numerical calculation platform which runs
automatically. So, the reliability of the numerical calculation process is particularly important.

2.3.1. Establishing the Calculation Domain

The hydraulic performance of the model pump is predicted by means of a CFD process in this
study. The computational domain of the original pump is shown in Figure 3, which is comprised of
four components, namely the inlet, impeller, pump chamber, and volute. In order to consider the full
development of turbulence, the inlet and volute outlet pipes are properly extended. The inlet domain
is directly connected to the impeller domain with a rotor-stator interface. The impeller domain is also
directly connected to the chamber domain with a rotor-stator interface.
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2.3.2. Mesh Sensitivity Analysis

The calculation domains should be discretized by meshes before simulation. Due to the strong
adaptability to complex geometry, tetrahedral unstructured grids generated by software Ansys
ICEM14.1 are adopt in this study. The meshes of all computational flow domains are displayed in
Figure 4.
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The number of mesh elements can significantly influence the simulation results. Seven sets of
meshes are used for grid independence analysis, with elements rising from 34 × 104 to 251 × 104. Grid
convergence study is done at design flowrate using the Reynolds-averaged Navier-Stokes equations
(RANS) method and boundary conditions described below. The Reynolds number value is about
6.2 × 105 based on the formula Re = u2·D2/2v. u2 represents the tangential velocity of the flow at the
blade tip clearance under rated rotational speed 5400 r/min. v represents the kinematic viscosity of
the fluid. So, it is reasonable to perform the following simulations in the framework of RANS. Seen
from Figure 5, the overall difference of pump head is within 1% when the number of mesh elements
exceed 1.68 million, which means the grid number has little effect on the calculation results. In order to
balance the computational accuracy and the total calculation time, meshes with 168 million elements
are employed for the following investigation.
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2.3.3. Governing Equations and Boundary Conditions

The three-dimensional turbulent flow inside the pump is basically controlled by the law of mass
and momentum conservation. For steady and incompressible flow, the control equations can be
formulated as:

∇·
→

V = 0 (10)

d
→

V
dt

=
→

F −
1
ρ
∇p + ν∇2

→

V, (11)
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where
→

V represents the velocity vector, p represents pressure,
→

F represents mass force, ν represents
kinematic viscosity, ρ represents the fluid density.

Due to different turbulence models influencing the calculation results of specific flow problems,
selecting the suitable turbulence model can improve the calculation accuracy. In the present study,
the fluid medium is set as water at 25 ◦C. The simulation is conducted by ANSYS CFX14.1 solver,
which provides a number of turbulence models. Among the turbulence models, k-ε and k-ω are known
in engineering applications. The ε equation of the standard k-ε model must use a wall function to
solve the terms, and the simulation results are not accurate in the case of severe flow separation.
The standard k-ω model is improved for a low Reynolds number and shear flow. Moreover, the Shear
Stress Transfer (SST) k-ω turbulence model uses a hybrid function which acts as a standard k-ω model
on the near wall and the standard k-ε model on the far wall area to correct the turbulent viscosity
formula, while taking into account the turbulent shear stress. It has been proven to be more suitable for
rotating machinery because it provides a better solution to the boundary layer [30]. The internal flow
of the rotating pumps is three-dimensional turbulence flow, with strong flow separation, rotor-stator
interaction, backflow, and so on. In addition, the electronic water pump has a high speed, and its flow
losses mainly appear near the wall surface. Therefore, the SST k-ω turbulence model is adopted in this
study to simulate the internal flow of the model pump based on the finite volume method.

The boundary conditions consist of an imposed stable total pressure with a turbulence intensity
of 5% at the inlet and flow rates at outlet. All physical surfaces are set as no-slip walls. Considering the
rotational characteristic, the rotating coordinate system is applied in impeller domain. The interfaces
between the rotational domain and stationary ones are set as frozen rotor for steady simulation.
The root mean square (RMS) residual error is used to judge whether the calculation is converged,
setting values as 10−5.

2.3.4. Experiment Validation

According to the Bernoulli equation, the pump head H is formulated as:

H =
p2 − p1

ρg
+

v2
2
− v1

2

2g
+ (z2 − z1), (12)

where p1 and p2 imply the inlet static pressure and outlet static pressure respectively; v1 and v2 denote
the average velocities of the inlet and outlet section respectively; z1 and z2 are the heights in vertical
direction at the inlet and outlet of the model pump; ρ denotes the fluid density, 997 kg/m3; g denotes
the local acceleration of gravity, 9.8 m/s2.

The efficiency of centrifugal pump is the ratio of useful power to input power, defined as follows:

η =
ρgQH

Pe
, (13)

where Pe denotes the shaft power calculated by the input power and motor efficiency. The way to
obtain the value of Pe in an experiment is different from the simulation because the torque T acting on
the rotor is easy to obtain in CFD. Pe is equal to nd·T/9550.

In order to validate the accuracy of the CFD results, a test rig as shown in Figure 6 was set up to
measure the pump performance. The model pump is connected to the rigid pipes by two rubber hoses.
The flow rate is obtained by a LWGY-MIK-DN20 liquid turbine flowmeter with a range of 0.8–8 m3/h
and accuracy of 0.5%. The head of the pump is measured by a CYG1204F type differential pressure
transmitter with an uncertainty of 0.1% and range of 0–200 kPa. The PSW 30–36 programmable DC
power is used to drive the pump. The output voltage range of the power is 0–30 V, and the maximum
output current is 36 A. The data acquisition system consists of LabVIEW acquisition program and
NI6343 data acquisition card. The estimated uncertainty of head and efficiency measurement is below
0.32%, and the random uncertainty is no more than ±0.1%.
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The obtained pump hydraulic performance curves from CFD and experiment are compared,
as shown in Figure 7. The pump efficiency obtained from the test has been converted into the
hydraulic one by removing motor efficiency, bearing efficiency, and leakage efficiency. As seen from
the results, the numerical ones are always consistent with the changing trends of the experimental
curves. Both head and hydraulic efficiency of the simulation results are higher than the experimental
values, which might be because the material roughness is not considered in the numerical simulation.
The deviations of head at 0.8Qd, 1.0Qd, 1.25Qd are 4.9%, 4.3%, 1.7%, respectively. The deviations of
efficiency at 0.8Qd, 1.0Qd, 1.25Qd are 3.6%, 4.9%, 4.8%, respectively. Therefore, it can be stated that the
employed numerical method is reliable for the optimization at three selected flowrates.
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3. Automatic Intelligent Optimization

3.1. Construction of Automatic Optimization Platform

In order to reduce manual intervention and save optimization time, an automatic optimization
platform for CFD is established. The platform integrates a 3D parametric design module, mesh division
module, pre-processing module, solver, and post-processing module with computer batch processing
commands, which can automatically realize the combination of parametric design, grid generation,
pre-process for CFD, simulation, and post-process for CFD. The operation process of this optimization
platform is shown in Figure 8. The numerical optimization algorithm scheme is set in the DOE part.
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A computer-aided optimization platform, namely Isight, has been widely used in multidisciplinary
design and optimization. Its rich component library and algorithm library, visualization of the running
process, and powerful data analysis functions are useful for optimization design in many fields [31].
This study uses this software to realize the integration between 3D modeling software CFturbo
and numerical simulation software Ansys CFX14.1. Thus, an intelligent optimization platform for
multi-conditions of automotive electronic water pumps is built, as shown in Figure 9.
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3.2. Orthogonal Design Optimization

DOE is one of the most important methods in today’s product development and performance
optimization. Its function is similar to the mathematical arrangement, which makes a large number
of data reasonably and orderly arranged. It provides a scientific experimental scheme for designers.
The two main concepts in the experimental design are factors (input variables in the design) and levels
(the number of values in each variable). In this study, three levels are selected for each factor, as shown
in Table 3.

Table 3. Levels of factors in orthogonal experiments.

Levels
Factors

A
D2/mm

B
b2/mm

C
Z

D
β2/(◦)

1 44 3 4 30
2 45 3.2 5 33
3 46 3.5 6 35

As is listed in Table 4, a pair-wise comparison square matrix was made from the comparison factors
based on experience, the diagonal elements of the matrix are always 1 because the same factors have
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the same weightage. The weight value (ωi) of each objective is then calculated based on Equation (8).
As seen from Table 4, CR is less than 0.1, which means the values of ωi listed in the last column can be
applied in this multi-objective problem.

Table 4. Evaluation results and weight factors. CR, consistency ratio.

Objective η1 η2 η3 ωi

η1 1 2/3 10/11 0.2786
η2 3/2 1 5/4 0.4059
η3 11/10 4/5 1 0.3155
CR 0.000725

Theoretically, there are 81 (calculated by 34) kinds of schemes, while nine kinds use orthogonal
arrays to have the same effect. Orthogonal arrays are compiled into a standardized table using the
mathematical “orthogonality” principle to arrange the experimental program scientifically. This method
was first applied to engineering design by Plackett and Burman [32]. A notational scheme to characterize
the orthogonal table, as Equation (14) represents:

Lm(np), (14)

where, n is the number of levels; p is the number of factors; m is the number of schemes.
In this study, L9 (34) orthogonal table is applied to obtain the space-filling samples. Four factors

and three levels are reasonably divided into nine groups of experimental schemes. The evaluation
indexes results f (X) are shown in Table 5, which are calculated according to Equation (1) based on the
CFD method.

Table 5. Test schemes.

Number
Levels Corresponding Parameters Results

A B C D D2 b2 Z β2 f (X)

1 A1 B1 C1 D1 44 3 4 30 46.11
2 A1 B2 C2 D2 44 3.2 5 33 50.92
3 A1 B3 C3 D3 44 3.5 6 35 50.81
4 A2 B1 C2 D3 45 3 5 35 50.89
5 A2 B2 C3 D1 45 3.2 6 30 51.21
6 A2 B3 C1 D2 45 3.5 4 33 48.35
7 A3 B1 C3 D2 46 3 6 33 51.53
8 A3 B2 C1 D3 46 3.2 4 35 49.73
9 A3 B3 C2 D1 46 3.5 5 30 51.64

3.2.1. Range and Sensitivity Analysis

The range analysis was performed to evaluate the influence of different factors on the evaluation
index. The factor with the largest range was considered as the most sensitive factor, which had the
greatest impact on the evaluation index. First of all, the comprehensive average value of t at the
same level of each factor was obtained by Equation (15) On this basis, the range of each influencing
factor was obtained by Equation (16), subtracting the minimum value from the maximum value of t at
different levels of each factors. The results are shown in Table 6.

ti =
Ti
r

, (15)

R = max(t1, t2, t3) −min(t1, t2, t3), (16)

where Ti represents the sum of all test target values at the i level; r is the number of different factor
levels; ti denotes the average of the test target values and R is the range.
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Table 6. Range analysis.

Target f(X) %

A B C D

t1 49.28 49.51 48.06 49.65
t2 50.15 50.62 51.15 50.27
t3 50.97 50.27 51.18 50.48
R 1.69 1.11 3.12 0.83

In order to visually reflect the impact size and trend of each factor on the evaluation target, the
average value and factor level of the test target are drawn as a factors and indicators trend graph, as is
shown in Figure 10. As seen from the range value analysis, the order of importance on efficiency is C,
A, B, and D. The primary and secondary order of influence of each factor on the target is: Z > D2 > b2

> β2. The blade number Z has the greatest impact on pump efficiency, followed by the factor A. As
the blade number Z and impeller outlet diameter D2 increase, the hydraulic performance improves
significantly. Generally, the effect of impeller outlet width b2 on efficiency is relatively small.
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Analysis of variance (ANOVA) is an effective method to determine the significance of controllable
factors on the research results [33]. It tests the variables by mean squaring and estimates experimental
errors at specific levels. F-test is always used in ANOVA to analyze whether a particular design has
any significant change in quality standards. In analyzing the parameters, the F-test tool based on ratio
of mean square and residual error is used to find the significance of a factor. It is evaluated by using
the equations below.

The sum of squared total deviation SST and total degrees of freedom fT are defined as:

SST =
m∑

j=1
f 2
j (x) −

T2

m ( j = 1, 2, . . . , m)

fT = m− 1
(17)

where m is the number of simples, m = 9 in this study. T is the sum of the nine scheme results. The
sum of square SSk and degrees of freedom of each factor fk are defined as follows:

SSk =
1
n

n∑
k=1

T2
k −

T2

m (k = 1, 2, . . . , n)

fk = n− 1
(18)
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where k = 1, 2, 3, 4 represents the factors A, B, C, D, respectively, n = 4.
The sum of the square SSE and degree of freedom of the deviations fE are defined as follows:

SSE = SST −
n∑

k=1
SSk

fE = fT −
n∑

k=1
fk

(19)

The final Fk value for significance level is defined by the Equation (20).

Fk =
SSk/ fk
SSE/ fE

. (20)

In general, the F value for significance level α (usually α = 0.05 or α = 0.1) should always be used
as quantile points to judge if the factor k plays important role in effecting the results. Values of Fα could
be obtained from the F distribution table. Comparing Fk obtained by calculating the F value to Fα from
the F-table [32]: if Fk > F0.05, the factor k is considered to have a highly significant effect on the test
result; if Fk > F0.1, the factor k is considered to have a significant influence on the test result; otherwise,
it can be assumed that factor k has little effect on the results. The calculation results of ANOVA for all
factors are shown in Table 7. From the common F-test table, F0.05(2, 2) = 19 and F0.1(2, 2) = 9 for the
given degree of freedom shown in Table 7.

Table 7. Analysis of variance.

Source of Variance
f(X) %

A B C D

Sum of squared deviation SST 4.269 1.929 19.263 1.098
Degree of freedom fT 2 2 2 2

Mean square error SSE 1.1 1.1 1.1 1.1
Statistics value Fk 3.888 1.757 17.544 1

Significance Insignificant Insignificant Significant Insignificant

Level α = 0.1, that is Fα (2, 2) = 9, was used to judge the significance of the factor in this study.
It can be concluded from Table 7 that the factor C has significant influence to pump performance,
and the factors’ order of importance is C, A, B, and D, which is consistent with the trend of the range
analysis results. By comparing the ti value, it can be determined that the superior levels of each factor
are A3, B2, C3, and D3. According to the sensitivity analysis, the final optimized combination is
A3B2C3D3 (scheme 2), and the specific parameters are impeller outlet diameter D2 = 46 mm, blade
outlet width b2 = 3.2 mm, blade number Z = 6, blade outlet angle β2 = 35◦. The impeller used this
optimization scheme compares with the original scheme, while numerical simulations were carried
out using the same CFD process.

3.2.2. Analysis of Optimization Results

The comparison results of the optimized scheme 2 with the original scheme 1 is shown in
Table 8. As seen from it, the heads of each assessment point are improved after optimization, in detail,
the efficiency at design flowrate is increased by 3.66%, and the weighted average efficiency of the
optimization scheme is increased by 3.29%.

Figure 11 shows the comparison of the external characteristic curves obtained from the CFD.
It is clear that the head of the optimized pump is higher than the model pump, and the head curve
is shifted to the direction of large flow. It can be seen from the η–Q curve that the flow rate at best
efficiency point increased slightly. The efficiency improvement under large flow conditions is very
obvious. Thus, the high efficiency region is effectively broadened.
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Table 8. Comparison of the performances under specified conditions.

Operation Points H/m η/% Weighted Average Efficiency %

Original Optimal Original Optimal Original Optimal

0.8Qd 7.6 7.9 50.1 52.17
49.93 53.221.0Qd 6.7 7.3 51.4 55.06

1.25Qd 5.35 6.15 47.97 51.8
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Figure 11. Comparison of external characteristic curves between origin and optimization scheme:
(a) Head; (b) Efficiency.

Figure 12 shows the comparison of pressure distribution at mid-span of the impeller under three
flowrates. Figure 12a–c represent the results of the original scheme and Figure 12d–f represent the
results of the optimized scheme. As seen from them, the pressure inside the impeller passage increases
from leading edge to trailing edge under all three different flowrates and appears largest near the
impeller outlet. The pressure on the blade working surface is greater than the pressure on the back
side of the corresponding position, and the low-pressure area appears on the suction side of the
blade near the impeller inlet. As the flow rate increases, the area of the low-pressure area gradually
expands. Under 1.25Qd, a reverse pressure gradient appears on the inlet part in the optimized impeller.
The pressure distribution in the optimized pump impeller is more uniform than in the original one, and
a relatively less obvious pressure gradient is present inside the impeller flow-path than the original one.
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efficiency point increased slightly. The efficiency improvement under large flow conditions is very 
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Figure 12 shows the comparison of pressure distribution at mid-span of the impeller under three 
flowrates. Figure 12a–c represent the results of the original scheme and Figure 12d–f represent the 
results of the optimized scheme. As seen from them, the pressure inside the impeller passage 
increases from leading edge to trailing edge under all three different flowrates and appears largest 
near the impeller outlet. The pressure on the blade working surface is greater than the pressure on 
the back side of the corresponding position, and the low-pressure area appears on the suction side of 
the blade near the impeller inlet. As the flow rate increases, the area of the low-pressure area 
gradually expands. Under 1.25Qd, a reverse pressure gradient appears on the inlet part in the 
optimized impeller. The pressure distribution in the optimized pump impeller is more uniform than 
in the original one, and a relatively less obvious pressure gradient is present inside the impeller flow-
path than the original one. 
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Figure 12. Comparison of pressure distribution in impeller for the two schemes: (a) origin, 0.8Qd;
(b) origin, 1.0Qd; (c) origin, 1.25Qd; (d) optimization, 0.8Qd; (e) optimization, 1.0Qd; (f) optimization,
1.25Qd.

Figure 13 illustrates the distribution of the turbulence kinetic energy at mid-span of the impeller
under three flowrates. Figure 13a–c represent the original scheme, Figure 13d–f represent the optimized
scheme. It can be concluded that the maximum turbulence kinetic energy is prone to appear on the
suction side of the blade. As the flow rate increases, the turbulence kinetic energy in the impeller
gradually increases for both schemes. The turbulence kinetic energy of the optimized pump is smaller
than the original one. Under 1.0Qd, the distribution of turbulence kinetic energy in the flow-path is the
most uniform both before and after optimization. Under 1.25Qd, the kinetic energy distribution of the
optimized pump is more even. Overall, the flow field has been improved after optimization.
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Figure 14 shows the comparison of the streamline in the volute at mid-span under three flowrates.
Figure 14a–c represent the original scheme, Figure 14d–f represent the optimized scheme. It can be
concluded that there is obvious flow separation in the volute outlet area accompanied by a large zone
with low speed in the original scheme. Under the condition of 1.25Qd, a large low-speed vortex region
appears in the volute outlet, and the flow state is very disordered, which generates large displacement
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to the mainstream. Under the 0.8Qd and 1.0Qd conditions, there are almost no obvious low-speed
region and flow separation region in the outlet part of the optimized pump volute, and the flow velocity
distribution is relatively uniform, indicating that the flow loss is small. Under 1.25Qd, flow separation
phenomenon also occurs in the outlet part of the optimized pump. However, the size of the low-speed
vortex region in the optimized pump is smaller than the original one, the velocity distribution in the
spiral flow-path is more uniform, and the overall flow loss is greatly reduced. The optimized impeller
improves the influence of rotor-stator interaction between the impeller and the volute tongue.
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3.3. Automatic Optimization with Intelligent Method

There is a complex multi-peak nonlinear relationship between the optimization objective and
geometric parameters. Orthogonal design can only obtain a local optimal solution with fewer variables
in discrete space. To further optimize the model pump in overall range quickly and efficiently, an
intelligent algorithm program based on an automatic operation platform is needed [34]. Based on
the analysis in the previous section, the selected optimization variables and the ranges are shown in
Table 9, which includes the impeller diameter D2, the width of impeller outlet b2, inlet blade angle
β1, outlet blade angle β2, leading edge tangential angle t3, trailing edge tangential angle φ, and blade
thickness δ. The variables did not include the parameter of Z at this step because this parameter plays
the most important role in influencing the pump performance. Moreover, the F value of Z is much
greater than the other three factors from Table 7, which means Z has significant influence. So, seven
optimization variables with limited ranges in Table 9 were chosen to process the next optimization by
intelligent method in order to reduce the scheme numbers.

Table 9. Ranges of optimization variables.

Parameters Ranges

D2(mm) (45, 47)
b2(mm) (2.5, 3.5)
β1(◦) (20, 30)
β2(◦) (30, 40)
t3 (◦) (0, 25)
φ (◦) (100, 120)
δ (mm) (2, 6)
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The genetic algorithm (GA), introduced by John Holland (1971), is a stochastic search technique
based on natural selection and natural genetics mechanism to imitate living beings [35]. It has
advantages in solving difficult optimization problems with high complexity and undesirable structure,
which has been successfully used in fields of production planning and process optimization. The genetic
process mainly includes selection, combination of crossover, and mutation. However, the robustness of
the GA is not good enough to avoid premature convergence, which will lead to getting a local optimal
solution instead of global one. In this study, an improved algorithm named the multi-island genetic
algorithm (MIGA) is applied to solve this problem. The main feature of MIGA that distinguishes it from
the traditional genetic algorithm is it divides each population of individuals into several subpopulations,
namely ‘islands’. All operations of the standard GA (selection, crossover, and mutation) are performed
on each island separately. The used migration scheme is random ring, which means that the destination
subpopulations are randomly chosen at every migration under the constraint that the migration is
performed in sequential order between the subpopulations [36]. The structure and process of the
MIGA optimization method is illustrated in Figure 15. MIGA selects individuals on each island to
regularly migrate into other islands, and then continues with standard GA operations. The migration
operation in the multi-island genetic algorithm keeps the diversity of knowledge, improves the chance
of including the global optimal solution, and can suppress the occurrence of precocity. In that case, the
MIGA is less likely to fall into local optimal than the GA method.
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Figure 15. The structure and process of the multi-island genetic algorithm (MIGA) optimization
method: (a) Structure, (b) Process.

Normally, parameters such as subpopulation size, number of islands, generations, crossover rate,
migration rate, mutation rate have to be chosen appropriately. The main parameters of the selected
MIGA are shown in Table 10. Total population size equal to the result of the subpopulation size
multiplied by the number of islands, which is equal to 100 in this study (generally between 20 and 200).
Because there are many optimization variables, the number of generations is set to 10, and then the
necessary iteration for this optimization is 1000 steps. In order to improve the creating speed of the
new individuals, the crossover rate is set to 0.9, and the mutation rate is set to 0.01 for maintaining the
diversity of the population. The migration rate refers to the ratio of individual exchanges between
each island, and the default value 0.01 in the software Isight is adopted. The interval of migration is
also set to 5 by default.
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Table 10. Optimization parameters adopted in MIGA.

Parameters Numerical Value

Generations 10
Subpopulation Size 10
Number of Islands 10

Crossover rate 0.9
Migration rate 0.01

Interval of Migration 5
Mutation Rate 0.01

3.3.1. Optimization Results

Optimization based on the MIGA method was processed to obtain the global optimized scheme.
Figure 16 shows the variation of the optimization target with the increase of iteration steps. The
influence of the optimization variables on the efficiency of the automotive electronic water pump is
complicated. The value of the optimization target fluctuates significantly with the increase of the
iteration steps, and there are many schemes that do not satisfy the constraint conditions. As the
iteration steps increase, the fluctuation value of the target becomes small. It means the multi-island
genetic algorithm gradually locates the optimal solution region after a period of searching. The optimal
solution (scheme 3) occurred at 798 iteration steps. All the calculations of the optimization works were
done by using a normal desktop computer (Dell 7060MT) without running in parallel. The optimized
hydraulic scheme was obtained within the limited 375 h.
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Figure 16. The iteration process of optimization.

Table 11 illustrates the comparison of geometric parameters between scheme 2 and scheme 3.
As seen from the table, the outlet width of scheme 3 increases, the blade outlet angle and wrap angle
both decrease slightly, and the impeller diameter becomes smaller. Figure 17 shows a comparison of
the three-dimensional model of the two pump impellers.
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Table 11. Comparison of geometric parameters between scheme 2 and scheme 3.

Parameters Symbols Unit Scheme 2 Scheme 3

Outlet diameter D2 mm 46 45
Outlet width b2 mm 3.2 3.4

Blade number Z - 6 6
Blade outlet angle β1

◦ 22 26
Blade outlet angle β2

◦ 35 33
Leading edge tangential angle t3

◦ 0 8
Trailing edge tangential angle φ ◦ 100 115

Blade thickness δ mm 2 2.4
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Figure 17. Comparison of impeller model: (a) scheme 1; (b) scheme 3.

Table 12 shows the head and efficiency of the optimized scheme 3 under three flowrates. It is clear
that the head under the design flowrate has significantly improved compared with the original one.
The weighted average efficiency under the three flowrates is 55.24%. The maximum efficiency of the
pump is increased by 2%, the efficiency of the large flow condition is increased by 3.09%.

Table 12. Performance of optimized scheme (scheme 3).

0.8Qd 1.0Qd 1.25Qd

Head/m 8.57 8.15 6.86

Efficiency/% 52.98 57.06 54.89

F(X)/% 55.24

3.3.2. Comparison of External Characteristic

Figure 18 shows the pump performance curve of the automotive electronic water pump obtained
from the CFD. As seen from it, the head and efficiency of the optimized pump are obviously improved.
The head curve of the optimized scheme 3 is always higher than the original head curve, and the
efficiency don’t improve much under small flow conditions. However, at the design flowrate, the
efficiency is significantly improved, and also under the large flow rate. The efficiency is almost the
same for the two schemes under small flow rate. It can be seen that the region with higher efficient
working condition of the pump has been broadened for scheme 3, which means the area with high
efficiency value located on the Q–η curve is further broadened after optimization.
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4. Optimization Verification

4.1. Comparison of Internal Flow Field

In this section, the flow characteristics of the cylindrical unfolding surface at different spans of
the impeller are compared between the original scheme 1 and optimal scheme 3. The dimensionless
distance of the impeller blade from hub to shroud is defined as:

span =
r− rh
rt − rh

× 100%, (21)

where rt is the radius of shroud; rh is the radius of hub; r is the radius of the cylindrical surface.
Figure 19 shows the comparison of velocity streamline at different spans under the design flowrate.

It is obvious that a large area of flow separation occurs in the flow passages for scheme 1, large-scale
separation vortices appear in the suction side, and the flow state becomes disordered, which seriously
affects the performance of the pump. After optimization, the flow in the impeller passage shows a
uniform state. The large-scale separation vortex disappears in the flow passages. Thus, the flow loss is
reduced, which improves the performance of the pump.
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From the above analysis, the optimization scheme is superior to the original scheme in terms of 
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(b) Origin scheme 1, span = 50%; (c) Origin scheme 1, span = 90%; (d) Optimal scheme 3, span = 10%;
(e) Optimal scheme 3, span = 50%; (f) Optimal scheme 3, span = 90%.

Figure 20 shows the comparison of the pressure distribution at span = 50% under three flowrates.
From the graph, the pressure distribution of the blade is lower at the wheel hub, the pressure at trailing
edge location is higher. As the flow rate increases, the static pressure decreases. Under the same flow
rate, the optimized pressure distribution diagram becomes more uniform than that before optimization.
The pressure is gradually increased from the wheel hub to the rim, and the pressure at the front edge
of the blade is effectively reduced.
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Figure 20. Pressure comparison at span = 90% under different working conditions: (a) Origin, 0.8Qd;
(b) Origin,1.0Qd; (c) Origin, 1.25Qd; (d) Optimal, 0.8Qd; (e) Optimal, 1.0Qd; (f) Optimal, 1.25Qd.

From the above analysis, the optimization scheme is superior to the original scheme in terms of
internal flow.
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4.2. Test Verification

In order to verify the reliability of the optimization results, the optimized impeller model (scheme
3) was 3D printed into a prototype for pump characteristic measurement. The test and the pump
performance result curves compared with the original scheme are shown in Figure 21.
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The efficiency obtained by the test of the automobile electronic water pump is the total efficiency of
the pump system. As seen from Figure 21b, it is obvious that the head curve of the optimal scheme 3
is basically higher than the original scheme 1, and the downward trend is slower. The efficiency of the
optimization is significantly improved by 4.3%. The efficiency curve of optimal scheme 3 declines slowly
under a large flow rate, and the working range with high efficiency of the pump is broadened. The test
results are basically consistent with the numerical simulation results, indicating that the optimization
method in this study can be applied to the hydraulic optimization design of automotive electronic pumps.

5. Conclusions

A multi-point design process based on CFD and intelligent optimization method is proposed
in this study to improve the energy transfer efficiency, taking the application of an automotive
electronic pump as an example. Firstly, the three-dimensional CFD analysis of the prototype is
carried out to understand the flow loss mechanism inside the pump and establish the numerical
prediction model of pump performance. Secondly, an automatic optimization platform including
fluid domain modeling, meshing, solving, post-processing, and design of experiment (DOE) is built
based on the three-dimensional parametric design method. Then, orthogonal experimental design
and the multi-island genetic algorithm (MIGA) were utilized to drive the platform for improving the
efficiency of the pump at three flowrates. Finally, the optimal impeller geometries were obtained and
manufactured into a prototype for verification. The conclusions are as follows.

(1) After orthogonal optimization, the heads of each working point are significantly improved.
The weighted average efficiency of the optimization scheme 2 is improved by 3.29%. The number
of impeller blades has the most important effects on pump performance improvement. After the
intelligent optimization, the high-efficiency region of the automotive electronic water pump is further
widened. The efficiency weighted average recorded 55.24% under three working conditions. The
optimal efficiency at design flowrate is increased by 4.3% after optimization from the experiment test.

(2) There is almost no obvious low-speed region under the optimal conditions and small flow
conditions after orthogonal optimization. The flow loss is greatly reduced in the impeller and
volute flow-path, the number of separation vortices and their area under a large flowrate are
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smaller than the original model pump. The pressure distribution in the impeller flow-path of the
optimized pump is more uniform, and the pressure gradient becomes smaller inside the impeller
flow-path. the overall turbulence energy is significantly reduced after optimization. All of the
above is the root cause of the efficiency improvement.

(3) The automatic optimization platform built in this study combined with intelligent MIGA algorithm
could obtain the global optimization scheme among the selected parameter range. The hydraulic
performance of automotive electronic water pumps under three multiple operating conditions have
significant improvement, realizing the integration of “design-simulation-optimization” in limited
time, which means this method has great potential in the application of fluid machinery design.
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