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Abstract: Among the non-chemical insect control methods, biological control is one of the most
effective human and environmentally friendly alternatives. One of the main biological control
methods is the application of entomopathogenic fungi (EPF). Today, biological crop protection with
EPF plays a key role in projects for the sustainable management of insect pests. EPF have several
advantages over conventional insecticides, including cost-effectiveness, high yield, absence of harmful
side-effects for beneficial organisms, fewer chemical residues in the environment and increased
biodiversity in ecosystems. Apart from direct application as contact bioinsecticides, EPF are able to
colonize plants as endophytes acting not only as pest and disease control agents but also as plant
growth promoters. The present paper presents an outline of the biocontrol potential of several EPF,
which could be harnessed for the development of new integrated pest Management (IPM) strategies.
Emphasis is given on benefits of endophytic EPF, on issues for practical application and in fields
in need of further research. Our findings are discussed in the context of highlighting the value of
entomopathogenic fungal endophytes as an integral part of pest management programs for the
optimization of crop production.

Keywords: entomopathogenic fungi; endophytes; biological control; plant colonization

1. Introduction

Insect pests are responsible for a loss of 18–26% of worldwide annual crop production, which
corresponds to an estimated value of $470 billion [1]. The greatest part of the losses (13–16%) occurs in
the field, before harvest [1]. Furthermore, post-harvest pests constitute a major part of storage losses
of agricultural products. About 50–60% of stored grains can be lost during the storage period due
to insufficient control measures [2]. The intense use of chemicals has led to more than 500 species of
arthropod pests becoming resistant to one or more insecticide classes [2]. Additionally, environmental
and food regulations represent a barrier for the development of new insecticides, in terms of both
time and cost. Approximately 140,000 insecticidal compounds need to be screened in order to find
one successful compound that would be in line with the regulations, and it could take more than $250
million and 8–12 years before an insecticide is developed and registered [3].

Crop protection by agrochemicals has been responsible for maintaining and increasing the quality
and quantity of crop production worldwide. However, their extensive and often irresponsible use has
resulted in pest resistance, resurgence of secondary pests and a disruption or elimination of natural
enemy complexes, thus reducing the efficacy of natural control processes. These factors, coupled
with concerns about the impact on environment and human safety, have provided the momentum to
develop more environmentally safe strategies that are both cost-effective and reliable.

Integrated pest management (IPM) is a comprehensive approach to crop production, combining
a broad array of compatible techniques such as sanitation, survey and detection, use of resistant
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varieties, cultural manipulation, trap and companion cropping, and biological control, as well as
agricultural chemicals when appropriate, in order to maintain pests below economic damage levels.
This approach represents a shift from the traditional, individual, pest-centered strategies that rely
heavily on chemical pesticides to a more holistic approach, viewing the crop production system as a
whole for the management rather than eradication of pests [4,5].

Among the non-chemical pest control methods, biological control by entomopathogenic
microorganisms represents one of the most effective options [6–9]. The use of entomopathogenic fungi
(EPF) to reduce pest population density and, consequently, crop damage plays a key role in sustainable
pest management programs. EPF have several advantages when compared with conventional
insecticides, including cost-effectiveness, high yield, Absence of harmful side-effects for beneficial
organisms, fewer chemical residues in the environment and increased biodiversity in human-managed
ecosystems [10–13]. However, only a few genera have been applied as entomopathogens, including
Beauveria, Metarhizium, Isaria, Lecanicillium and Hirsutella. These are used in fungal-based products,
which have been formulated for use against a wide range of pests in forest, field and greenhouse
environments, as well as against structural, household and storage pests.

Approximately 750 EPF species have been discovered to cause infection in a wide array of insects
and mites, although individual fungal species and strains are very target specific [13]. Fungi act by
producing spores that germinate and grow on the body of the insect host. Infection is initiated when
spores attach to the insect integument, where the formation of the germinative tube and enzyme
excretion begin. Penetration of the insect’s cuticle is achieved not only by the mechanical pressure
of a specialized structure formed in the germinative tube, the apresorium, but also by the action of
degradative enzymes. Inside the insect haemocele, fungal hyphae are developed and invade tissues
and organs. The timeframe of death (between 3 and 7 days) depends on the type of fungus and number
of infecting spores. Following the death of the host, the fungus produces thousands of new spores on
the cadaver, which then disperse and multiply on new hosts. EPF occupy a significant place in the
microbial control of insect pests as virtually all insect orders are vulnerable to fungal diseases. Fungi
have several significant properties, such as high reproductivity, target-specificity, short generation
time, and a saprobic phase, all of which ensure that they survive longer even in the absence of a host.

Apart from their use as biological insecticides, there is growing evidence that many EPF species
can colonize the tissues of certain plants [14,15]. Although only a few EPF species have been reported
as naturally occurring endophytes, there have been many successful attempts to artificially introduce
EPF into plants using different techniques [14,15]. This natural or artificial colonization could be
beneficial for the plant as it has been reported to improve plant growth and reduce pest infestation in
numerous economic crops [16–21].

Endophytic fungi may have significantly longer periods of efficacy than non-endophytic organisms
since many are able to survive at least for the whole growing season of an annual crop [22,23]. Fungal
endophytic strains, which colonize trees, may settle in the shoots, roots, or stems of perennial plants [24,25].
Fungi directly affect plants more than most chemical pesticides. EPF endophytes have been identified in
hundreds of plants, including several important agricultural crops such as wheat, bananas, soybeans and
tomatoes [26–31] as plant growth promoters [18,28,32–36] and beneficial rhizosphere colonizers [37–40].
However, the multifaceted roles played by fungal entomopathogens could also be used indirectly and
cost-effectively in sustainable agriculture, for instance, as biofertilizers [18,29,33,36], vertically-transmitted
fungal endophytes [41,42] and microbial control agents against both plant diseases and arthropod
pests [11,28,43–45].

The present review provides a summary of the information available on the extent to which EPF
colonize different crop plants. It also examines the insecticidal effect of such colonization on major
plant insect pests, the potential for effective pest control, case studies, problems, limitations and future
prospects of the application of these endophytic EPF within IPM strategies.
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2. Ecology and Mechanisms of EPF as Endophytes

The term endophyte includes fungi and bacteria that develop within plant tissues without causing
any noticeable symptoms of disease in the plant [46]. It is worth noting that endophytic fungi are
abundant in plant species, while the characteristics and the level of the endophytic colonization differ
depending on the plant tissue.

The ecological functions of these fungi, which are related to their endophytic behavior and their
competence in the rhizosphere, may hold enormous significance for crop protection and agronomy [47].
Numerous investigations revealed that EPF are not only effective against insect and mite pests but they
also improve the plant’s response to other biotic stresses. The latter happens through the induction
of systemic resistance or through the production of compounds such as insecticides, antifungals,
herbicides and antivirals, during multiple biocide activities. The benefits of these processes involve the
promotion of plant growth [32,48–50], plant nutrition [51,52], root development [14,53,54], and relief
from abiotic stresses such as salinity [55] or Fe deficiency [15,32].

Reduced plant damage is achieved by endophytic EPF through many mechanisms. The most
common cases that have been recorded are the retardation of the developmental rate of the pest [16,56,57],
inhibition of insect food consumption rate [58–61], reduction of larval survival [62–64] and decreased
reproduction rate [65,66]. However, it should be mentioned that many hidden and unexplored
mechanisms may exist in these complicated tritrophic (EPF-plant-insect) interactions.

Endophytic EPF colonization is not an incidental opportunity given that, upon colonization,
specific chemicals are secreted by both the host plant and the endophytes. Various types of secondary
metabolites, including alkaloids, flavonoids, phenolics and others, are produced by plants as a defense
mechanism against pathogen infections, as well as in response to probable endophytic colonization,
which is perceived, at least in its early stages, as a potential pathogenic threat [67]. Secondary metabolites
thus represent obstacles for the colonization of endophytic fungi. To overcome this, endophytic fungi
produce detoxification and degradation enzymes, including β-1,3-glucanases, chitinases, amylases,
laccases, and cellulases. In addition, fungal metabolites play an important role in pathogenicity-related
and other interactions between the fungus and its insect host. They mediate inter- or intraspecific
communicative functions or aid in mitigating abiotic and biotic stresses [10].

Moreover, endophytes produce various secondary metabolites, which have a unique
species-specific bioactive structure (i.e., benzopyranones, phenolic acids, quinones, and steroids) [53],
and which are widely applied as agrochemicals, antibiotics, antiparasitics, and antioxidants [54].
The production of metabolites in host plants creates opportunities for the production of plant-based
drugs. Although this has given a new impetus to natural-product-based drug discoveries, no endophyte
has thus far been used as an alternative source of plant metabolites, as their production by the
fungi rapidly diminishes in vitro. Studying the interaction between endophytes, and plant hosts
and endophytes, would aid the sustained production of plant metabolites by endophytes, thereby
alleviating the dependence on plants for such bioactive compounds [19,40].

Initially, the conidia of EPF form germ tubes, which gradually become hyphae. EPF enter the
plants either through natural openings or directly through the epidermal cell walls with the help of
enzymes and/or mechanical pressure. Upon entering the plant, the hyphae grow in the space between
the parenchyma cells or even in the xylem vessels.

In most cases, evidence of endophyte-host mutualism has not been conclusive. Nevertheless, plant
communities would likely not overcome many environmental stresses without this symbiosis. During
the last decade, research has identified several benefits of endophytic microorganisms for plant growth
and development. The fact that some entomopathogens have been isolated from surface-sterilized
plant materials points to their ability to have an endophytic phase in their life cycle. However,
although entomopathogenic endophytes might not be ubiquitous in specific plant species, some, like
B. bassiana, have a wide range of plant hosts. Moreover, the fact that EPF can be found as natural
endophytes suggests that these fungi have complex life cycles that can be completed in plants, soil, or
invertebrates [43,45,57,60,61,63,65].
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3. Artificial Plant Inoculation with Endophytic EPF

The artificial establishment of EPF in plants for endophytic colonization has also been examined
for pest control [3,68,69]. More specifically, endophytic colonization can offer systemic plant protection
against pests as the latter are negatively affected by the chemical changes triggered in the plant by the
endophyte as well as by the secondary chemicals secreted by the fungus [56,70,71]. However, not all
fungi are able to colonize plants—at least not for their whole life cycle—because they cannot adapt to
the nutrient content inside the plant [72]. Nevertheless, a transient fungal/plant association can exist for
a few days following a spray application because of the abundance of propagule on the leaves [44,73].

Endophytic EPF colonization in plants is influenced not only by soil microorganisms but also by
environmental factors such as temperature and relative humidity [74]. Other factors that have been
proven to play a vital role in the inoculation of EPF into plant tissues are the age and species of the
plant, the growth medium, the conidial density and species of the EPF and the applied inoculation
method [74–79].

Various methods and experimental protocols have been used to artificially inoculate endophytic
EPF into crop plants. These methods can be categorized as: (a) spraying leaves with conidial suspension,
(b) soaking seeds in conidial suspension, (c) injecting fungi inoculum into stems, (d) dipping of seedling
roots in conidial suspension, and (e) soil drenching with conidial suspension. Table A1 in Appendix A
summarizes previous studies where EPF have been successfully inoculated into the plant tissues of
major crop plants.

The foliar application is the most common method, with many promising results (Table A1).
However, certain drawbacks have been reported and must be taken into serious consideration. The foliar
endophytes can reduce the insect population by producing alkaloids that are toxic [53,54]. The major
concern of this method is the extremely localized colonization that is often limited to the foliar parts
of the plant, with EPF being absent from stems and roots [77,80]. Apart from that, poor efficiency
of hyphal penetration into leaf tissues has been reported [76,79], possibly due to the low density of
stomata (natural entries for fungal infection), leaf surface structure and specific cuticular components.

Soaking seeds in conidial suspension before propagation is another inoculation method that has
been successfully applied to many major crops (Table A1). However, there have been reports where
inoculation through the seed resulted in some or no colonization of the stem or leaf [77,81]. This was
attributed to the negative effect of soil microorganisms that may act antagonistically toward the EPF.

Stem injection has also been evaluated as an inoculation method of EPF on various plants [74,76].
When B. bassiana was inoculated with this method, the highest post-inoculation recovery was yielded
in coffee seedlings, compared with foliar spraying or soil drenching [76], and efficient H. armigera
control was provided for tomato plants [81].

Dipping roots in conidial suspension has proven an effective inoculation method, although
results were often contradictory when compared with other methods such as foliar application or
seed treatment [79,82]. The success of this method has been reported to be greatly dependent on the
plant species.

The soil drenching technique includes the watering of seedlings with conidial suspension. Similar
to root dipping, the low colonization rate that is often recorded with this method has been linked to the
interaction between EPF and other competing soil microorganisms. The use of sterile growth media
instead of non-sterile soil significantly enhanced the success of this method [77].

4. Endophytic EPF as Biocontrol Agents

EPF endophytes have been recorded to provide effective protection to host plants against
pest infestation and have been evaluated as biocontrol agents in numerous studies (Appendix A
Table A2). Many commonly applied EPF species, such as Beauveria bassiana, Isaria fumosorosea and
Metarhizium anisopliae, naturally occurring as endophytes, have been recorded to provide effective
protection against herbivores [16,17,57–60,62–65,71–74,83–106].
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The best-studied EPF, B. bassiana, was reported to colonize numerous crops, such as corn, wheat,
cotton, soybean, tomato, grapevine, sorghum, and citrus, and to reduce infestation by serious pests,
mainly moth larvae and aphids. The presence of endophytic EPF resulted in the significant reduction
of both pest population and plant damage in most cases. However, there have been reports of poor
performance, indicating the complexity of these EPF insect–plant interactions [17,56,88,91].

The combination of endophytic EPF with other biocontrol agents, such as predators and parasitoids,
has been proposed in previous studies [16,57,65,66]. For instance, a study was recently carried out to
explore the effectiveness of the combined use of B. bassiana, M. brunneum, and the aphid endoparasitoid
Aphidius colemani Viereck (Hymenoptera: Braconidae) against the green peach aphid Myzus persicae
Sulzer (Homoptera: Aphididae) in sweet pepper [53]. Similar research has documented successful
combinations of endophytic EPF species with entomophagous insects against leafminers in beans [16].

5. Future Prospects

The present article reviewed the literature currently available on the endophytic EPF colonization
of different host plants and provided an overview of the colonization effects against insect pests known
to date. It also addressed the possible ways in which endophytic fungal entomopathogens contribute to
the protection of the plant, and discussed the potential use of these fungi as control agents against insect
pests. Future research should explore entomopathogenic fungi in terms of their role as endophytes.
The development of novel EPF-based biological control methods is anchored in comprehending the
interactions between fungal endophytes and plants. To this end, it is crucial that several aspects are
investigated, i.e., (a) the physiological mechanisms endophytes use to colonize the plant and whether
these mechanisms differ according to the entry point in the plant; (b) whether some fungal isolates
are more successful as endophytes than others and the degree to which their strain determines their
survival rate inside the plant; (c) how endophytic fungi travel to the plant, be it via seeds, soil conidia,
etc.; (d) the ways plants and feeding insects are affected by endophytes; and (e) the ways endophytes
benefit from plants.

Moreover, the practical implementation of EPF into the IPM programs demands an in-depth
understanding of the abiotic and biotic factors that influence the insecticidal action of EPF and their
endophytic behavior. Apart from this, the evaluation of inoculation methods for extended colonization
is crucial in order to develop effective management strategies. Although foliar and stem applications
are often more effective than root or seed treatments, identifying the soil characteristics that enhance or
inhibit EPF endophytic action will help improve the efficiency of EPF applications in the soil.

Despite the numerous studies on endophytic EPF, it is true that only very few species have been
studied. It is strongly believed that there are still thousands of unexplored endophytes due to limited
research in this field. Therefore, there is an urgent need to discover and evaluate these unknown
endophytic strains of EPF.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A

Table A1. Successful cases of artificial plant inoculation with endophytic EPF in major crop plants.

EPF Endophytic Species Plant Species Inoculation Method Ref

Beauveria bassiana

sorghum FA [73,77]

SD [77]

tobacco

FA [82]

ST [82]

RD [82]

wheat

FA [82,94]

SD [96,97]

ST [94]

RD [82]

soybean FA [82]

corn FA [95]

maize

FA [74,84,98]

SI [74]

RD [82]

ST [32]

potato FA [99]

coffee

FA [76,100]

SI [76]

SD [76]

tomato

FA [81,101]

SD [17,27,34,103]

SI [104]

RD [81]

ST [103,104,107]

grapevine FA [31,90]

banana
SI [108]

RD [108]

fava bean ST [56]

common bean
ST [16]

SD [78]

cotton ST [27,70]

soybean RD [82]

cassava SD [109]

sweet pepper SD [57]

rice FA [110]
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Table A1. Cont.

EPF Endophytic Species Plant Species Inoculation Method Ref

Metarhizium anisopliae

maize ST [33]

tomato
ST [27]

SD [34]

cassava SD [109]

common bean ST [111]

sorghum FA [73]

Metarhizium brunneum
sweet pepper SD [57]

wheat SD [96]

Metarhizium pingshaense maize ST [105]

Metarhizium robertsii

cowpea ST [106]

wheat SD [96]

sorghum FA [73]

Purpureocillium lilacinum cotton ST [72]

Isaria fumosorosea sorghum FA [73]

FA: foliar application, SI: stem injection, ST: seed treatment, RD: root dipping, SD: soil drenching.

Table A2. Entomopathogenic fungal endophytes evaluated as biocontrol agents against insect pests on
various plants.

EPF Endophytic
Species Plant Species Target Pest Conclusion Ref

Beauveria. bassiana

coffee Hypothenemus hampei Pathogenic action verified [14]

maize
Ostrinia nubilalis Suppression of pest population [74]

Sesamia calamistis Reduction of larval tunneling [83,84]

banana Cosmopolites sordidus Reduction of larval survival [85]

tomato
Helicoverpa zea Insignificant effect on larval mortality [17,102]

Helicoverpa armigera Reduced infestation [81]

sorghum Chilo partellus Reduction of larval tunneling [86]

Sesamia nonagrioides Reduced infestation [45,73]

opium poppy Iraella luteipes Reduction of larval survival [62]

cotton

Aphis gossypii Reduced reproduction [70,71,89]

Chortoicetes terminifera Reduced growth rate [71]

Rachiplusia nu Reduced larval feeding [58]

melon Aphis gossypii Reduced reproduction, no effect on
natural enemies [65,66]

fava bean

Helicoverpa armigera Reduction of larval survival [63]

Liriomyza huidobrensis Reduced population [16]

Acyrthosiphon pisum Reduced population [56]

Aphis fabae Reduced population [56]

Increased population [91]

common bean
Helicoverpa armigera Reduction of larval survival [63]

Liriomyza huidobrensis Reduced population [16]
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Table A2. Cont.

white jute Apion corchori Reduced infestation [87]

Soybean Aphis glycines Insignificant effect on pest population [88]

Helicoverpa gelotopoeon Decreased larval food consumption [59]

grapevine Planococcus ficus Reduced infestation [90]

Empoasca vitis Reduced infestation [90]

pepper Myzus persicae Increased pest mortality [44]

Reduced development and fecundity [57]

strawberry Myzus persicae Reduced feeding [60]

cauliflower Bemisia tabaci Reduced pest survival [93]

pecan Melanocallis caryaefoliae Reduced pest population [94]
Monellia caryella

lemon Diaphorina citri Reduced reproduction and survival [112]

Lecanicillium lecanii cotton Aphis gossypii Reduced reproduction [71,89]

Lecanicillium
muscarium cauliflower Plutella xylostella Increased larval mortality [92]

Aspergillus
parasiticus cotton Chortoicetes terminifera Reduced growth rate [71]

Metarhizium
anisopliae

fava bean Acyrthosiphon pisum Insignificant effect on pest population [56]

pepper Myzus persicae Increased pest mortality [44]

rapeseed Aphis fabae Reduction of larval survival [64]

Plutella xylostella Reduction of larval survival [64]

strawberry Myzus persicae Reduced feeding [60]

Metarhizium
brunneum

soybean Aphis glycines Increase of pest population [88]

cauliflower Bemisia tabaci Reduced pest survival [93]

melon Aphis gossypii Reduced reproduction and survival [66]

Metarhizium
robertsii sorghum Sesamia nonagrioides Reduced infestation [45,73]

Clonostachys rosea coffee Hypothenemus hampei Pathogenic action verified [14]

Purpureocillium
lilacinum cotton Aphis gossypii Reduced reproduction [70]

Isaria fumosorosea

sorghum Sesamia nonagrioides Reduced infestation [45,73]

pepper Myzus persicae Increased pest mortality [44]

lemon Diaphorina citri Reduced reproduction and survival [112]
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