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Abstract: The prediction of the remaining life of a bearing plays a vital role in reducing the
accident-related maintenance costs of machinery and in improving the reliability of machinery and
equipment. To predict bearing remaining useful life (RUL), the abilities of statistical characteristics to
reflect the bearing degradation state differ, and the single prediction model has low generalization
ability and a poor prediction effect. An ensemble robust prediction method is proposed here to
predict bearing RUL based on the construction of a bearing degradation indicator set: the initial
bearing degradation indicator subsets were constructed using the Fast Correlation-Based Filter with
Approximate Markov Blankets (FCBF-AMB) and Maximal Information Coefficient (MIC) selection
methods. Through the cross-operation of the obtained subsets, we obtained a set of robust degradation
indicators. These selected degradation indicators were fed into the long short-term memory (LSTM)
neural network prediction model enhanced by the AdaBoost algorithm. We found through calculation
that the average prediction accuracy of the proposed method is 91.40%, 92.04%, and 93.25% at 2100,
2250, and 2400 rpm, respectively. Compared with other methods, the proposed method improves the
prediction accuracy by 1.8% to 14.87% at most. Therefore, the method proposed in this paper is more
accurate than the other methods in terms of RUL prediction.

Keywords: remaining useful life prediction; three-stage feature selection; degradation indicator;
LSTM-AdaBoost prediction model

1. Introduction

Rolling bearings are one of the key components supporting rotating shafts in rotating mechanical
equipment. Bearing failure is often considered one of the most common causes of mechanical
equipment failure [1,2]. Bearing reliability is critical for the reliability, durability, and efficiency
of mechanical equipment. Any accidental failure of a bearing may cause have various negative
effects [3,4] ranging from production downtime to casualties or even catastrophic environmental
pollution. To address these issues, online detection of bearing health is urgently required to effectively
enhance the safety of mechanical equipment operation [5–7], predict bearing remaining useful life
(RUL), and to implement an action plan to prevent catastrophic events and extend the bearing life
cycle [7]. Advances in bearing RUL prediction technology have provided increasingly powerful
technical support for intelligent bearing RUL prediction and health management [8–10]. In the past
few decades, the research has achieved theoretical results that have been widely applied. Most bearing
RUL prediction methods apply a model-based or data-driven approach [11,12].

The model-based method mainly relies on an accurate mathematical model of bearing degradation,
but bearing degradation is a complicated and difficult problem [13]. The data-driven approach uses
data mining and artificial intelligence [14] to explore the potential relationship between current bearing
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state data and RUL. Data-driven methods have become a promising approach. Data-driven analysis
methods can be used as objective and rational tools to understand the data and make decisions [15,16].
For example, in the field of life sciences [17], the data-driven approach was used to conduct
diagnosis [18,19]. In the field of engineering applications, the data-driven method has been used
to obtain information on road lighting infrastructure. Based on the feature selection technology of
supervised and unsupervised filters, the dimension of feature space was reduced to classify and identify
lamps, which was ultimately used to evaluate and optimize the performance of the street lighting at
night [20]. Some experts used ensemble data-driven statistical models to map comparative shallow
landslide susceptibility to obtain the relationship between heavy rain and shallow landslides [21].

The deep learning approach [22] has advantages for bearing RUL prediction [6], providing new
opportunities for this research field [10,23]. A typical deep learning framework consists of four
phases: data acquisition and processing, feature extraction and calculation, learning model building,
and prediction. In today’s big data era, the premise of accurate bearing RUL prediction is to
extract as much effective information as possible from massive amounts of monitoring data [24].
However, the data are increasingly complicated and high-dimensional. The irrelevant and redundant
features in these high-dimensional data increase the complexity of the learning model, and can even
reduce the prediction accuracy, which creates the problem known as “dimensional disaster” [25].
In the feature extraction and calculation stage, deep learning has some shortcomings: the time-domain
features are less able to reflect the bearing degradation process details, the frequency-domain features
are not sensitive to medium-term bearing degradation, and the time frequency-domain characteristics
of wavelets can cause information loss. These three problems usually lead to information redundancy
and increases the neural network nodes, which in turn leads to difficult training and over-fitting
of the mode [6]. In this process, the traditional algorithm mainly finds a set of features with high
contribution rate. Some authors [26–28] defined different feature types based on the contribution
of features to degradation information (DI). In this case, feature correlation is a measure of the
degradation-stage-related information.

A feature that does not contain information about the bearing DI is considered insignificant and
therefore unnecessary for the prediction task. Removing such features can improve the prediction
model and speed up the learning algorithm. Conversely, the relevant features are those that can
reflect bearing DI. To minimize the prediction error, it may not be necessary to select all relevant
features, but instead only select the feature subset with the highest contribution rate and the strongest
prediction ability. Feature subsets with these properties may not be unique due to redundancy effects.
Redundancy is usually measured by feature correlation; if the values of two features are relevant,
then they are redundant.

With the feature selection method, the representative feature subset is selected, the features with
a high contribution rate and sensitivity that are favorable for prediction are retained, and the complete
set is replaced to construct and train the learning model. Experts and scholars have studied this
field, especially based on artificial intelligence and statistical methods, using feature compression
methods or similar monotonic methods [6,10]. The optimal feature selection method should not only
reduce data dimensions, but also eliminate redundant and irrelevant features. Therefore, considering
correlations in feature selection plays a crucial role in reducing data dimensions [29]. However, in the
construction of feature subsets, only relying on a single correlation or sensitivity measurement method
will bias the calculation results to some extent, which will reduce the robustness of the feature subsets.
Therefore, we aimed to use the three-stage feature selection method to extract sensitive features and
construct a bearing degradation indicator set. Based on two different feature extraction methods,
the initial subsets of bearing degradation indicators were constructed, and the cross-operation of these
subsets was applied to obtain the robust set that can fully reflect bearing degradation information.

In the deep learning model establishment and prediction stage, scholars introduced a bearing
RUL prediction method based on a recurrent neural network (RNN). However, for practical problems,
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gradient disappearance occurs. Hochreiter et al. [30] proposed a long short-term memory (LSTM)
model in 1997 to overcome the RNN problem of gradient disappearance.

Some experts have proposed using the LSTM neural network to predict bearing RUL based on the
bearing degradation bottleneck feature, waveform entropy (WFE) indicator, time factor, or based on
the deep feature representation method [26,31–33]. Compared with the previous artificial intelligence
algorithms, the predictive ability of the LSTM significantly improved. The above research used a single
artificial intelligence algorithm to predict bearing RUL; however, the single artificial intelligence
algorithm has weaker generalization and low robustness. The bearing RUL cannot be predicted
well outside the sample. To address this problem, we wanted to enhance the LSTM neural network
prediction model using the AdaBoost algorithm.

To overcome the aforementioned shortcomings, we propose an ensemble robust prediction
method to predict bearing RUL based on the construction of a bearing degradation indicator set.

The main contributions of this paper are summarized as follows:

(1) To reveal the state of bearing degradation more fully, we integrated the selected high contribution
rate and sensitive features to form a more representative and robust feature set, defined as the
bearing degradation indicator set.

(2) To ensure the robustness of the constructed set of bearing degradation indicators, a new
framework for three-stage feature selection is proposed for bearing RUL prediction, which more
comprehensively considers the correlation between features and bearing degradation state.

(3) The AdaBoost algorithm is proposed to enhance the prediction ability, the prediction accuracy,
and the generalization ability of the LSTM prediction model.

The rest of the paper is organized as follows: Section 2 introduces the basic LSTM prediction model
theory and two kinds of feature selection methods. Section 3 presents the detailed implementation
process of this three-stage feature selection method that was applied to the construction of a bearing
degradation indicator set and an improved LSTM-AdaBoost prediction model. The performance of
the proposed method was verified using the XJTU-SY bearing datasets from Xi’an Jiaotong University
(XJTU, Xi’an, China) and compared with other methods in Section 4. Finally, conclusions are drawn in
Section 5.

2. Basic Theory and Algorithm

Based on the three main problems experienced: the feature correlation measurement standard
in the feature extraction and calculation process, the computational complexity in the predictive
modelling process, and the generalization ability of the prediction model, this section lists the relevant
theories that can be used to solve these problems.

First, the initial reference degradation indicator subset F∗ was screened by the fast
correlation-based filter (FCBF) solution and approximate Markov Blanket to construct an initial
subset of reference degradation feature indicators that can characterize the bearing degradation
process. Secondly, the maximum information coefficient (MIC) was used to measure the correlation
between features and features, as well as the correlation between features and bearings degradation
state, to construct the initial reference degradation indicator subset FF−R with maximum correlation
between features and real RUL and the subset FF−F with minimum redundancy between features.
Thirdly, cross-operation was adopted for the initial reference bearing degradation indicator subsets
to reduce the computation load, shorten the training time of prediction model, and reduce the
computational complexity of the prediction modelling process. The reason for choosing different
correlation measurement methods to construct the bearing degradation indicator subsets was to avoid
the single correlation measurement method being affected by outliers in the data set, resulting in bias
of the constructed bearing degradation indicator set and affecting the prediction accuracy.

The results obtained using different correlation measurement methods were cross-operated to
retain the effective indicators to the maximum extent. Finally, the AdaBoost algorithm was used to
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enhance the prediction model of LSTM neural network, and multiple weak predictors were assembled
into a strong predictor to predict the bearing remaining useful life.

2.1. LSTM

Recurrent neural network (RNN) is a type of neural network dedicated to processing time-series
data samples. Each layer of its output is output to the next layer and to a hidden state, which is used
by the current layer when processing the next sample, as shown in Figure 1. Module M of the RNN
reads the input x(t) and obtains the output h(t). Circulation is used to complete the transfer to the next
step of information from the current step.

Figure 1. Recurrent neural network (RNN) expansion structure.

The above chain network structure reveals that RNN is essentially sequence-dependent.
However, in practical applications, problems of gradient disappearance and gradient explosion occur.
To solve these problems faced by RNN, Hochreiter et al. [30] constructed a LSTM architecture that
involves a memory cell. This model resembles a standard RNN with a hidden layer. Each repeating
module has a simple tanh layer. The LSTM has the same structure, but the only difference is that
the structure inside each module is different, each node in the ordinary hidden layer is replaced by
a storage units. The specific structure [34] of the model is shown in Figure 2. This structure ensures
the RNN model has the long short-term memory in the form of weights and ephemeral activations.

Figure 2. The architecture of a long short-term memory (LSTM) memory cell.

x(t) is the input vector at the current time, h(t−1) is the hidden layer state value of the previous
time(t − 1), and the memory unit is the memory of the neuron state, which is used to record the
current time state. The forget gate in the LSTM decides what information is retained or forgotten.
The forgetting gate is calculated by the sigmoid function. The input gate decides whether to update
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the state of the LSTM using the current input; the output gate decides whether to pass on the hidden
state to the next iteration.

g(t) = tanh
(

WgXx(t) + Wghh(t−1) + bg

)
,

i(t) = σ
(

WiX
x(t) + Wih

h(t−1) + bi

)
,

f (t) = σ
(

W f X
x(t) + W f h

h(t−1) + b f

)
,

o(t) = σ
(

WoXx(t) + Wohh(t−1) + bo

)
,

s(t) = g(t) × i(t) + s(t−1) × f (t),

h(t) = tanh
(

s(t)
)
× o(t).

where W and b values are the layer weights and biases, respectively; σ and tanh represent the sigmoid
activation function and hyperbolic tangent activation function, respectively; x(t) and h(t−1) are the
input layer and hidden layer at time t, respectively; g(t), i(t), f (t), and o(t) are the output values of the
input node, the input gate, the forget gate, and the output gate, respectively; and s(t) is an internal
state at the current time.

2.2. Feature Selection

To reduce the computational burden and improve the prediction accuracy, it is necessary to
select the sensitive features of the bearing degradation indicators that clearly represent the bearing
degradation state information, and eliminate the irrelevant or redundant features that are useless or
even affect the prediction accuracy of bearing RUL [35]. In this paper, we propose a three-stage feature
selection method based on FCBF-AMB and MIC, which reduces feature redundancy and reduces
feature data dimension based on the bearing degradation indicator subsets fusion method.

2.2.1. FCBF Feature Selection Method and Markov Blanket

The fast correlation-based filter (FCBF) solution feature selection method is based on the idea
of significance and adopts the backward sequential search strategy to find the feature subset quickly
and effectively. Symmetrical uncertainty (SU) was used as a correlation metric to select symmetrical
features and remove redundant features [36].

Calculate the symmetric uncertainty of each feature:

SU( fi, R) = 2
[

IG(R | fi )

H (R) + H ( fi)

]
,

where H(R) and H( fi) represent the information entropy of the real RUL value R and feature fi,
respectively [37]; IG(R| fi) represents the information gain (IG) and measures the reduction in
uncertainty about the real RUL value R given the value of feature fi.

Given a threshold value λ, if SU( fi, R) ≥ λ, fi is a strongly correlated feature for the real RUL
value R, it should be retained or deleted otherwise.

In this paper, symmetric uncertainty SU in the FCBF feature selection method is adopted as the
metric standard to approximate the Markov Blanket. We applied approximate Markov blanket [25,36]
to identify and delete redundant features. Feature redundancy can be determined using the Markov
blankets [38] concept. Formally, it is defined as:

Definition 1 (Markov Blankets). In the feature set F, for a given feature fi ∈ F, if there is fi ⊥ {F−Mi −
{ fi}, R} | Mi, the feature subset Mi ⊂ F ( fi /∈ Mi) is the Markov Blanket of fi.
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In the above definition, ⊥ denotes independent and |Mi denotes conditional on Mi. In other
words, the Markov Blanket condition in the definition states, where the feature set F is divided
into three mutually exclusive parts: feature fi, feature subset Mi, and feature subset F−Mi − { fi}.
These three subsets have no intersection, and the union is the feature set F. If feature subset Mi is
given, the feature fi is independent of the feature subset F−Mi − { fi} and the real RUL value R.

Definition 2 (Approximate Markov Blankets). For the two features fi and f j(i 6= j), the condition of fi
being the approximate Markov blanket of f j is: SU( fi, R) > SU( f j, R) and SU( fi, R) < SU( fi, f j).

The approximate Markov Blanket (AMB) is computed by comparing the correlation between
feature fi and feature f j, and the SU value of fi and the real RUL value R. If the correlation SU between
different features is large, then f j is an AMB.

Definition 3 (Predominant feature). A feature fi is a predominant feature of F if it does not have any
approximate Markov blanket in F. Predominant features are not removed at any stage.

The process of using the AMB feature selection method to find and delete redundant features is
as follows:

FCBF consists of two stages: obtaining the subset of relevant features and selecting the
predominant features from the subset. A relevant feature fi is predominant if no other relevant
feature f j exists, such that f j is an AMB for fi. The feature subset composed of all predominant
features is the initial bearing degradation indicator subset F∗, which represents the degradation state
of bearings.

2.2.2. Maximum Information Coefficient (MIC)

Reshef et al. [39] proposed the MIC theory and solution method, focusing on the linear and
nonlinear metric relationships between variables, and further exploring the non-function dependencies
between variables through this metric relationship. The MIC mainly uses mutual information
as an indicator of the degree of correlation between variables and meshing methods are used
for calculation.

Given variable A = {ai, i = 1, 2, · · · n} and variable B = {bi, i = 1, 2, · · · n}, where n is the number
of samples, the mutual information (MI) is defined as follows:

MI(A, B) = ∑
a∈A

∑
b∈B

p(a, b) log
p(a, b)

p(a)p(b)
,

where P(a, b) is the joint probability density of A and B, and P(a) and P(b) are the boundary probability
densities of A and B, respectively.

Suppose set D = {(ai, bi) , i = 1, 2, · · · n} is a set of finite ordered pairs. It defines a division G,
which is used to divide the value range of variable A into x segments and divide the value range
of variable B into y segments. G is a grid with a size of x× y. Calculate MI(A, B) within each grid
partition obtained, since the same grid can be divided several ways. The maximum value of MI(A, B)
under different division methods is chosen as the MI value of a division G.

The maximum mutual information formula of D under a division is defined as MI∗(D, x, y) =
max MI (D |G ), where D|G denotes data D are divided by G. The maximum information coefficient
(MIC) uses MI to indicate the quality of the grid; a feature matrix is formed by maximum normalized
MI values under different divisions. The feature matrix is defined as M(D)x,y and the formula is

M(D)x,y = MI∗(D,x,y)
log min{x,y} .

MIC is defined as: MIC(D) = maxxy<B(n){M(D)x,y}, where n is the sample size of the sample
and B(n) is a function of sample size and represents the upper limit of the grid x× y. Generally, ω (1) ≤
B (n) ≤ o

(
n1−ε

)
, 0 < ε < 1. We set B (n) = n0.6 in the experiment [39].
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Suppose feature set F = { f1, f2, · · · , fm, R}. The number of features is m and the real RUL
values are R. MIC is used to define the correlation between feature fi and real RUL values R as
MIC( fi, R). Similarly, MIC is used to define the correlation between feature fi and feature f j as
MIC( fi, f j). We prefer to select larger MIC( fi, R) and smaller MIC( fi, f j) features to form a set of
bearing degradation indicators.

To reduce the dimension of the bearing degradation indicator set feature data, we propose the
following three-stage bearing degradation indicator set construction framework based on feature
subsets fusion method.

3. Methodology

3.1. Proposed Degradation Indicator Set

The structure of the proposed bearing RUL prediction model is shown in Figure 3. The original
data used for bearing RUL prediction include the bearing vibration signal. First, different features
are extracted from the vibration signal data, including time-domain features and frequency-domain
features. Secondly, a three-stage feature selection method is used to extract and reduce the sensitive
features of the feature data to construct the indicator set for bearing degradation. Then, the most
sensitive features selected in the degradation indicator set are input into LSTM-AdaBoost for
RUL prediction.

This section describes the procedure for construction of the proposed bearing degradation
indicator set. As shown in Figure 3, the procedure is mainly composed of three stages: feature
extraction, selection of sensitive features, and construction of the degradation indicator set.

Figure 3. A flowchart of the proposed bearing degradation indicator set.

The characteristics of several subsets in a given data set can produce predictive models with similar
performance, but the predictive power may be different. According to the algorithm’s search strategy
or sample bias, some features can be selected [40]. In general, features extracted by different feature
extraction methods with similar performance are highly correlated. We assumed that the relevant
features are separately calculated and extracted to ensure their independence in the search process.

FCBF is a selection algorithm that uses correlation fast filter features. The feature ranking method
is adopted to delete irrelevant or weakly correlated features. This method has low time complexity,
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but it cannot remove redundant features. Some experts and scholars addressed this problem by using
an approximate Markov blanket de-redundancy method based on the FCBF feature selection result
using the MIC as the measurement standard [25].

In this study, the FCBF-AMB feature selection method [40] was used to construct the initial
bearings degradation indicator subset. To ensure the independence of the initial bearing degradation
indicator subsets, we used FCBF-AMB and the MIC algorithm to extract features and form different
initial bearings degradation indicator subsets, respectively. First, the subset of relevant features is
obtained and arranged in descending order to identify and delete the weak correlations with irrelevant
features, and to add strong correlation features to the initial feature set F′ according to their SU with
respect to the real RUL. The predominant feature fi is selected from the feature set F and placed into
subset F′. Next, let feature fi become the first feature in this subset F′. By definition, feature fi is
a predominant feature for each of the remaining relevant features f j. Check whether fi is an AMB for
f j. If so, f j is removed from the subset F′. Then, repeat the process until no predominant features
remain in the feature set F′. Construct the initial bearings degradation indicator subset F∗. The details
are outlined in Algorithm 1.

Algorithm 1 FCBF-AMB feature selection method.

Input: Original feature set F = { f1, f2, · · · , fm, R}, real RUL values R , SU threshold value λ.
Output: Initial bearing degradation indicator subset F∗.

1: for fi ∈ F do
2: Calculate the symmetric uncertainty SU( fi, R) between the features and real RUL values R,
3: if SU( fi, R) > λ then,
4: Add feature fi to feature subset F′ and rank it in descending order,
5: end if
6: end for
7: for fi ∈ F′ do
8: for f j ∈ F′\{ fi} do
9: if fi is an AMB for f j, then

10: Add fi to F∗, break;
11: end if
12: end for
13: Remove predominant feature fi from F′.
14: end for

Steps 1–6 include the process for removing the irrelevant and weakly correlated features using
the symmetric uncertainty feature ordering method, to finally obtain a feature subset F′ with strong
correlation with the bearing degradation state. F′ contains many redundant features that will be
deleted in the approximate Markov blanket method in steps 7–14. The predominant feature fi is
selected from feature subset F′ and deleted; predominant feature fi is added to the initial bearing
degradation indicator subset. The above process is repeated until feature subset F′ is an empty subset.

After the first stage of processing obtains a smaller subset of bearing degradation indicators,
two subsets of bearing degradation indicator based on the MIC feature selection method are
constructed in the second stage.

Calculate the correlation MIC( fi, f j) between features, the correlation MIC( fi, R) between
features and real RUL values. MIC− FF refers to the matrix that can measure the correlation between
features, whereas MIC− FR refers to the matrix that can measure the correlation between features
and real RUL values.

We find the minimum values for each column in the MIC − FF matrix and combine these
minimum values into a set minFF = {minFF0, minFF1, · · · , minFF24}, where each column corresponds
to one feature, and there are 25 columns in this matrix. We find the maximum value as the FF −
threshold. Then, we count the number of elements in each column that are less than the threshold
value, and combine the numbers into a set NumFF = {NumFF0, NumFF1, · · · , NumFF24}, and sort
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the numbers to find the median. If the number of values is greater than the median, the features
corresponding to this column are weakly correlated, the more likely to be selected, they will be the
elements of the bearings degradation indicator subset FF−F as strong irrelevance features.

Similarly, the MIC( fi, R) values are sorted in descending order to find the median of the FR−
threshold value in the MIC − FR matrix. Then, the values greater than the threshold, will be the
elements of the bearing degradation indicator subset FF−R as strongly relevant features. In the process
of feature extraction for the bearing training sets, we found that the median value of MIC( fi, R) was
0.5 and the maximum value of minFFi in the set minFF was 0.1. We set the features’ maximum value
FR− threshold to 0.5 and the minimum value FF− threshold to 0.1.

The steps for obtaining the bearing degradation indicator subsets are shown in Algorithm 2.

Algorithm 2 MIC feature selection method.

Input: Original data set D, original feature set F = { f1, f2, · · · , fm, R}, real RUL value R.
Output: Initial bearing degradation indicator subset FF−F, subset FF−R.

1: for fi ∈ F do,
2: Calculate maximum information coefficient MIC( fi, f j), obtaining the MIC− FF matrix,
3: for Every value in every column of the MIC− FF matrix do,
4: Find the minimum values and obtain the set minFF = {minFF0, minFF1, · · · , minFF24},
5: end for
6: end for
7: for Every minFFi in set minFF do,
8: Find the maximum values in in set minFF as the FF− threshold,
9: end for

10: for Every column in MIC− FF matrix do,
11: Count the number of elements in each column that are less than the FF− threshold, obtain the

set NumFF = {NumFF0, NumFF1, · · · , NumFF24},
12: end for
13: for NumFFi in set NumFF do,
14: Find the median number Nummed in set NumFF,
15: if NumFFi >Nummed then,
16: Select the features corresponding to the feature columns and form the feature subset FF−F,
17: end if
18: end for
19: for fi ∈ F do
20: Calculate maximum information coefficient MIC( fi, R), obtaining the MIC− FR matrix,
21: for Every value in every row of the MIC− FR matrix do
22: Rank the values and find the median value FRmed as the FR− threshold,
23: if MIC( fi, R)>FRmed then,
24: Select the features to form a subset FF−R.
25: end if
26: end for
27: end for

The third stage is called the feature subsets fusion method. The bearing degradation indicator
subset F∗ constructed in the first stage based on FCBF-AMB, and the bearing degradation indicator
subset FF−F and subset FF−R constructed in the second stage, are cross-operated to construct the
optimal indicator set Fopt, which characterizes the bearings degradation state.

In the above stages, three subsets of bearing degradation indicators are obtained. Subset F∗ is
an initial subset of degradation indicator with strong correlation and low redundancy. Subset FF−F is
a strongly uncorrelated subset composed of features with low redundancy. Subset FF−R is a strongly
correlated subset that consists of features that have strong correlations with failure modes.
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3.2. LSTM-AdaBoost Ensemble Learning and Prediction Model

After constructing the LSTM neural network model mentioned in Section 2.1, the prediction
ability of the model did not meet the requirements for robust prediction. AdaBoost is an iterative
algorithm that was originally mainly used in classification problems, and it is sensitive to abnormal
features. We considered using the AdaBoost algorithm to enhance the LSTM network model and
achieve robust prediction.

Suppose we want to make the m-step ahead prediction for a time-series. The iterative prediction
strategy is implemented in this paper, which can be expressed as: x̂t+m = f (xt, xt−1, · · · , xt−(p−1)),
where x̂ is the predicted value, xt is the actual value in period t, and p denotes the lag orders.

In this study, the AdaBoost algorithm was introduced to integrate a set of LSTM predictors.
The proposed LSTM-AdaBoost ensemble learning approach consists of seven steps as shown in
Algorithm 3.

Algorithm 3 LSTM-Adaboost Algorithm.

Input: Training data set: S = {(xt1 , x̂t1), (xt2 , x̂t2), · · · , (xtN , x̂tN )}, LSTM weak predictor.
Output: Strong predictor P(x)

1: Initialize the weight vector. The weight distribution of the training data is initialized to: W =

( 1
N , 1

N , · · · , 1
N ), k = 1, 2, · · · , K,

2: Suppose the weight distribution is Wk, the prediction error of the predictor Pk on the training data
set is calculated by εi

k = |Pk (xi)− yi| /Ek, where Ek = sup
i

(|Pk (xi)− yi|), the output interval of

the function is [0, 1],
3: Calculate the total error of training sample sets: εk =

n
∑

i=1
Wi

kεi
k,

4: Calculate the weights of the current predictor ak =
1
2 ln

(
1
βi

)
, βi =

εk
1−εk

,

5: Update the distribution of weights of training datasets as follows: Wi
k+1 =

Wi
k ·β
−εi
k

Z(k) , where Z(k) =
N
∑

i=1
Wi

k,

6: Repeat steps 1–5 until all the LSTM predictors are obtained. Record the connection weight of the
LSTM predictors W = (w1, w2, · · ·wK), where wi =

ai
∑K

i=1 ai
,

7: Build the final predictor and integrate the above trained predictors according to the connection
weights to obtain the final strong predictor.

P (x) = w1P1 (x) + w2P2 (x) + · · ·wKPK (x) .

Through the LSTM-AdaBoost ensemble learning approach, multiple weak predictors are
integrated into a strong predictor and the features of the degradation indicator set are predicted
by the strong predictor. Finally, the prediction results are ensembled to obtain the remaining useful life
of the bearings in the next moment. The main steps are as follows:

First, the feature extraction method proposed above is used to construct the indicator set of
bearings degradation Fopt. Next, for each feature of the bearing degradation indicator set Fopt,
the LSTM-AdaBoost ensemble learning approach is adopted to obtain the predicted remaining useful
life value f̂i,(t+1) corresponding to each feature at moment t + 1.

Finally, the above prediction results are ensembled to obtain the predicted value ˆRUL,t+1 of useful
bearing life at t + 1. That is ˆRUL,t+1 = ∑n

i=1 f̂i ,t+1.
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4. Experiment and Analysis

The run-to-failure data acquired from accelerated degradation tests of rolling element bearings
were used to demonstrate the effectiveness of the proposed prediction approach. The proposed
approach was compared with other two features selected methods.

4.1. Data Description

The bearings testbed is shown in Figure 4. These faults occurred accidentally in accelerated
degradation experiments. XJTU-SY bearing datasets were provided by the Institute of Design Science
and Basic Component at Xi’an Jiaotong University (XJTU), Shaanxi, China, and the Changxing
Sumyoung Technology Co., Ltd. (SY), Zhejiang, China. The data sets contained complete run-to-failure
data of 15 rolling element bearings that were acquired by conducting many accelerated degradation
experiments. This testbed was designed to conduct the accelerated degradation tests of rolling element
bearings under different operating conditions (different radial forces and rotating speeds). The tested
bearings were type LDK UER204.

This platform can conduct accelerated degradation tests of bearings to provide real experimental
data that characterize the degradation of bearings during their whole operating life.

To acquire the run-to-failure data of the tested bearings, two type PCB 352C33 accelerometers were
horizontally and vertically mounted on the bearing to monitor its vibration. The sampling frequency
was set to 25.6 kHz. As shown in Figure 5, a total of 32,768 data points (i.e., 1.28 s) were recorded
for each sampling, and the sampling period was 1 min. Detailed information about the platform and
experiments can be found in [41].

As tabulated in Table 1, 15 rolling element bearings were tested under three different operating
conditions. Among them, the first two bearings in every operating condition were regarded as
a training set and the others were used as a testing set. Figure 6 shows the vibration signal
of test bearing 1-1 during its whole life cycle. The amplitude of vibration signal increases
with time, which indicates that vibration signal plays an important role in bearing performance
degradation assessment.

Figure 4. Bearing testbed.

Figure 5. Sampling setting for vibration signals.
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Table 1. Operating Conditions of the Tested Bearings.

Operating
Condition

Rotating Speed
(rpm)

Radial Force
(KN) Bearings Dataset

Condition A 2100 12 Bearing1_1 Bearing1_2 Bearing1_3 Bearing1_4 Bearing1_5
Condition B 2250 11 Bearing2_1 Bearing2_2 Bearing2_3 Bearing2_4 Bearing2_5
Condition C 2400 10 Bearing3_1 Bearing3_2 Bearing3_3 Bearing3_4 Bearing3_5

Figure 6. Typical vertical vibration signals.

4.2. Experiment

4.2.1. Data Preprocessing and Feature Extraction

Because the vibration signal collected by the sensor contains important degradation information,
appropriate transformation of the vibration signal can reflect the degradation state of the bearings.
To avoid information loss, multiple features in the time and frequency domains are extracted to form
feature set for selection. In addition, to accelerate the convergence of the prediction model and improve
the prediction accuracy, all the features are normalized. The data preprocessing details are as shown in
Algorithm 4.

Algorithm 4 Data preprocessing

Input: Data sample S = {s1, s2, · · · , sn}, n is the number of samples.
Output: Original feature set F after data preprocessing.

1: for siinS do
2: Calculate each feature in the time and frequency domains, the calculated features are

normalized and set between [0,1] to form the original feature set F = { f1, f2, · · · , fm}, and m
is the number of features.

3: end for

When the bearings in mechanical equipment fail, the amplitude and probability distribution of the
time-domain signal change. Signal frequency components, energy of different frequency components,
and the position of the main energy spectrum of the spectrum change, which can effectively characterize
the state of bearing health, provide the information about the noise in the bearing vibration signal [6,42].
Some features are useless, so choosing the appropriate time-domain and frequency-domain features is
the key to effectively predicting the bearing RUL. To obtain more DI and fully reflect the running state
of bearings, the feature parameters in the time and frequency-domain are comprehensively used here.

Each of these vibration signals is processed to extract 12 time-domain features, such as mean,
variance, and kurtosis. A total of 13 frequency-domain features characterize the degradation of bearing
performance, as shown in Table 2. In this study, the time-domain feature and frequency-domain
features were calculated using the feature parameters listed in Table 2 [43].
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Table 2. The feature parameters.

Feature Time-Domain Feature Parameters Feature Frequency-Domain Feature Parameters

F0 f0 = ∑N
n=1 x(n)

N F12 f12 =

K
∑

k=1
s(k)

K

F1 f1 =

√
∑N

n=1 (x(n)− f0)
2

N−1 F13 f13 = ∑K
k=1 (s(k)− f12)

2

K−1

F2 f2 =

(
∑N

n=1

√
|x(n)|

N

)2

F14 f14 = ∑K
k=1 (s(k)− f12)

3

K
(√

f13

)3

F3 f3 =

√
∑N

n=1 (x(n))2

N F15 f15 = ∑K
k=1 (s(k)− f12)

4

K( f13)
2

F4 f4 = max |x (n)| F16 f16 =

K
∑

k=1
f̃ks(k)

∑K
k=1 s(k)

F5 f5 = ∑N
n=1 (x(n)− f1)

3

(N−1) f 3
2

F17 f17 =

√
∑K

k=1 ( f̃k− f16)
2
s(k)

K

F6 f6 = ∑N
n=1 (x(n)− f0)

4

(N−1) f 4
1

F18 f18 =

√
∑K

k=1 f̃ 2
k s(k)

∑K
k=1 s(k)

F7 f7 =
f4
f3

F19 f19 =

√
∑K

k=1 f̃ 4
k s(k)

∑K
k=1 f̃ 2

k s(k)

F8 f8 =
f4
f2

F20 f20 = ∑K
k=1 f̃ 2

k s(k)√
∑K

k=1 s(k)∑K
k=1 f̃ 4

k s(k)

F9 f9 =
f3

1
N ∑N

n=1 |x(n)|
F21 f21 =

f17
f16

F10 f10 =
f4

1
N ∑N

n=1 |x(n)|
F22 f22 =

∑K
k=1 ( f̃k− f16)

3
s(k)

K f17
3

F11 f11 = ∑N
n=1 |x (n)|

2
F23 f23 =

∑K
k=1 ( f̃k− f16)

4
s(k)

K f17
4

F24 f24 =
∑K

k=1 ( f̃k− f16)
1
2 s(k)

K
√

f17

where x(n) is the time-domain signal series,
for n = 1, 2, · · · , N,

N is the number of each sample points.

where s(k) is the frequency-domain signal series,
for k = 1, 2, · · · , K,

K is the number of spectral lines.
f̃k is the frequency value of the k-th spectral line.

4.2.2. Construction of Bearing Degradation Indicator Set

The features mentioned above represent bearings degradation from the different perspective.
However, if all these features have been taken as input parameters to the model, then it may result into
model over-fitting. Thus, before using these features as input parameters to the model, it is desirable
to select the most sensitive features from the feature set and remove the less indicative features to
improve the model accuracy [44].

In this paper, the three-stage feature selection method is used to select the sensitive features
that can characterize bearings degradation state, which is used to construct the bearings degradation
indicator set. Taking operating condition A as an example, the construction process of degradation
indicator set is described in detail as follows. Figure 7 shows the sensitive features extracted by the
first-stage FCBF feature extraction method. The reference value symmetric uncertainty SU is sorted in
descending order, the threshold λ given in this paper is 0.1, i.e., the feature with the SU value greater
than 0.1 is selected to be placed in the feature subset F′, then, an AMB de-redundancy method is used
to de-redundant the features in feature subset F′, construct the feature subset in Figure 8 as the initial
bearings degradation indicator subset F∗.
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Figure 7. The sensitive features were extracted and sorted in descending order in the feature subset F′.

Figure 8. Initial bearing degradation indicator subset F∗.

In the second stage, the MIC method mentioned above is used to measure the correlation between
features and failure modes, features and features, and construct a strong subset FF−R with strong
correlations between features and failure modes, and a strongly uncorrelated subset FF−F consisting of
less redundant features. The two subsets of bearing degradation indicators are shown in Figure 9a,b.

(a) Subset FF−R (b) Subset FF−F

Figure 9. Initial bearings degradation indicator (a) subset FF−R and (b) subset FF−F.

In the third stage, the above three bearing degradation indicator subsets, F∗, FF−R, and FF−F,
are cross-operated based on the fusion method to obtain a strong correlation and low redundancy
optimal degradation indicator set Fopt. The final bearings degradation indicator set consists of eight
features shown in Figure 10, which will be applied to the bearing remaining useful life prediction as
the degradation indicators of the bearing.

Figure 10. Optimal degradation indicator set Fopt of operating condition A.
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According to the proposed feature selection method, features selected by the proposed method
are shown in Figure 11.

Figure 11. Features selected by the proposed method.

4.2.3. Train Prediction Model

After obtaining the optimal degradation indicator set revealing the state of bearing degradation,
the prediction model is trained. The model is trained by LSTM network, and the AdaBoost algorithm
is used to optimize the LSTM prediction model to form a strong predictor. The input of the model is
the degradation indicators of the optimal set, the output is the RUL of the bearings. After the training
process, the trained model is used to predict the bearing RUL.

4.3. Results and Analysis

To reflect the advantages of constructing the bearing degradation indicator set by using the
three-stage feature selection method proposed in this paper, different bearings selection methods were
applied to the bearings under three different working conditions to construct the bearing degradation
indicator set. Each bearing in the test set was run 10 times; we obtained the average prediction accuracy
of three bearings under the same operating conditions. Figure 12a–c depict the average prediction
accuracy and feature selection of operating condition A, operating condition B, and operating condition
C, respectively. There were three bearings in each condition. As shown in Figure 12, the proposed
method extracts fewer features than the other two feature selection methods, and has relatively high
accuracy. This is mainly because the proposed method conducts cross-operation on different subsets of
degradation indicators, ensuring the robustness of the set of degradation indicators based on reducing
feature dimensions.
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(a) (b)

(c)

Figure 12. Average prediction accuracy and number of features selected under three
operating conditions. (a) average prediction accuracy and the number of features selected under
condition A, (b) average prediction accuracy and the number of features selected under condition B, (c)
average prediction accuracy and the number of features selected under condition C.

The feature selection method proposed in this paper is based on the correlation and redundancy
measurement, aiming to reduce the complexity of the model and ensure the sensitivity and high
contribution rate of the features. mRMR is a method based on the correlation and redundancy
measurement. Principal component analysis (PCA) is a dimensionality reduction method that also
has a significant effect on reducing the data dimension, and FCBF+Markov Blanket has also been
applied [36]. Therefore, these methods were compared with the proposed method in this study. Based
on the bearings degradation indicator set constructed above, we used the LSTM neural network and
LSTM-AdaBoost ensemble algorithm to predict the RUL of bearing 1_3, bearing 2_3, and bearing 3_3
under three operating conditions.

Figure 13a,b reveal the results of predicting the RUL of bearing 1_3 using different feature selection
methods and prediction models. The figure shows that in the early stage of prediction, the prediction
result of all the three methods deviate considerably. The prediction results of the non-feature selection
method deviates more from the real RUL value, indicating that feature selection is necessary for
RUL prediction. The proposed method is the first to fit near the real curve. By comparing the
prediction effects of different prediction models, we conclude that AdaBoost algorithm plays a role
in improving the prediction accuracy. The prediction results of the other two bearings are shown in
Figure 13c–f. The prediction results of the RUL of these two bearings are similar to those of bearing 1_3,
further demonstrating that the method proposed in this paper is more robust and produces a better
prediction effect under different operating conditions and degradation stages. The effectiveness of this
method has been proven.
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(a) RUL Prediction results from LSTM. (b) RUL Prediction results from LSTM-AdaBoost.

(c) RUL Prediction results from LSTM. (d) RUL Prediction results from LSTM-AdaBoost.

(e) RUL Prediction results from LSTM. (f) RUL Prediction results from LSTM-AdaBoost.

Figure 13. RUL prediction resultsusing three different features selection methods for three bearings.

The accuracy of model prediction is measured using the mean square error (MSE). Table 3 shows
the comparison results of the MSE between no feature selection, PCA, mRMR method, FCBF + Markov
Blanket method, and the proposed method. We predicted the bearings under different operating
conditions in the test set 10 times, and calculated the mean value of the MSE of the three bearings
under each operating condition to represent the predicted results under different operating conditions.
To more clearly determine the prediction effects of different methods, taking bearing 1_3 as an example,
we selected the prediction results for 12 moments of the bearing, which was the average values
obtained by the prediction model running 10 times. We compared the different methods and list the
absolute error= |Predicted RUL− Real RUL|. Table 4 provides the details of the predicted results.

In Tables 3 and 4, the MSE and absolute error of non-feature selection method were the largest
because irrelevant and redundant data existed in the original data set, even noise. If no feature
selection process or filtering process is applied, some outliers also contribute to the prediction model,
which leads to significant deviation of the prediction model and reduces the prediction accuracy.
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This further proves that feature selection is critical during bearing RUL prediction process. The
two tables show that PCA and mRMR do not perform well either because, at the initial stage of
bearing degradation, the prediction model learning the degradation characteristics is not complete,
resulting in a large error. When the prediction model learns the degradation characteristics, it is
affected by the low indicators or weak contribution rate of degradation characteristics to some extent.
The prediction error of the method based on FCBF + Markov Blanket is higher than our proposed
method. This shows that the more comprehensive the comprehensive features, the more accurate the
prediction results. Compared with the results of the two prediction models, the error is significantly
reduced for the proposed model, which proves that the LSTM-AdaBoost ensemble prediction method
provides improved prediction accuracy.

The proposed method can approximate the real RUL curve of bearings because the method is
more robust and avoids the single feature selection method, which may lead to feature sensitivity bias
and make the contribution rate of some features larger or smaller under certain measurement standards.
The AdaBoost algorithm is a robust lifting algorithm that further guarantees the generalization ability
of the prediction model. The experimental results showed that the proposed method has good practical
value for bearing RUL prediction.

Table 3. Comparison of prediction accuracy of LSTM and LSTM-AdaBoost at motor speeds of 2100,
2250, and 2400 rpm using different feature selection methods.

Operating Condition Feature Selection Method Prediction Results (MSE)

LSTM LSTM-AdaBoost

Condition A 2100 rpm

No feature selection
PCA

mRMR
FCBF + Markov Blanket

Proposed method

471.28
359.44
221.64
82.96
19.68

317.43
244.06
162.90
67.09
10.02

Condition B 2250 rpm

No feature selection
PCA

mRMR
FCBF + Markov Blanket

Proposed method

322.81
206.92
186.46
46.62
13.29

263.26
141.32
127.24
41.18
7.06

Condition A 2400 rpm

No feature selection
PCA

mRMR
FCBF + Markov Blanket

Proposed method

419.36
143.52
193.77
64.27
21.49

179.02
97.21
102.06
28.64
15.06
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Table 4. Comparison of prediction results of bearing 1_3 using different methods.

Moment Real RUL
No Feature Selection PCA mRMR FCBF + Markov Blanket Proposed Method

LSTM LSTM-AdaBoost LSTM LSTM-AdaBoost LSTM LSTM-AdaBoost LSTM LSTM-AdaBoost LSTM LSTM-AdaBoost

(Min) (Min)
Predicted Absolute Predicted Absolute Predicted Absolute Predicted Absolute Predicted Absolute Predicted Absolute Predicted Absolute Predicted Absolute Predicted Absolute Predicted Absolute

RUL Error RUL Error RUL Error RUL Error RUL Error RUL Error RUL Error RUL Error RUL Error RUL Error

45 113 102.43 10.57 124.7 11.7 122.27 9.27 119.3 6.3 99.35 13.65 118.92 5.92 119 6 110.32 2.68 107 6 116.61 3.61
55 103 113.7 10.7 108.23 5.23 98.3 4.7 98.11 4.89 95.87 7.13 111.4 8.4 99.3 3.7 105.25 2.25 105 2 101 2
65 93 101.09 8.09 99.64 6.64 105 12 97.04 4.04 88.3 4.7 98.18 5.18 89.6 3.4 95.77 2.77 95.9 2.9 95.28 2.28
75 83 92.14 9.14 89.96 6.96 86.6 3.6 78.15 4.85 79.17 3.83 90.96 7.96 90.2 7.2 87.13 4.13 86.5 3.5 81.32 1.68
85 73 68.22 4.78 67.8 5.2 79.1 6.1 69.32 3.68 77 4 75.82 2.82 76.31 3.31 74.29 1.29 75.13 2.13 72.91 0.09
95 63 67.04 4.04 58.39 4.61 69.4 6.4 65.51 2.51 60.4 2.6 59.79 3.21 61.4 1.6 64.6 1.6 64.02 1.02 63.29 0.29

105 53 42.93 10.07 56.77 3.77 55.8 2.8 54.91 1.91 47.2 5.8 57.03 4.03 56 3 54.94 1.94 54.72 1.72 54.41 1.41
115 43 37.91 5.09 46.47 3.47 47 4 46.76 3.76 40.8 2.2 45.19 2.19 42.11 0.89 45.79 2.79 42.09 0.91 43.55 0.55
125 33 36.25 3.25 38.06 5.06 30.58 2.42 31.77 1.23 30.2 2.8 35.27 2.27 36.5 3.5 34.18 1.18 35.2 2.2 34.29 1.29
135 23 28.03 5.03 26.48 3.48 24.9 1.9 25.73 2.73 24.6 1.6 22.39 0.61 26.17 3.17 22.16 0.84 24.8 1.8 23.53 0.53
145 13 15.23 2.23 15.5 2.5 15.02 2.02 14.7 1.7 14.37 1.37 15.91 2.91 15.41 2.41 12.4 0.6 14.33 1.33 13.6 0.6
155 3 4.29 1.29 3.73 0.73 4.02 1.02 3.79 0.79 3.77 0.77 3.72 0.72 3.68 0.68 2.49 0.51 2.63 0.37 2.87 0.13
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5. Conclusions

The bearing RUL prediction accuracy largely depends on the performance of the degradation
indicator set. This paper proposes an ensemble learning method to improve the prediction accuracy of
bearing RUL. We mainly studied the feature extraction phase and prediction modelling phase in the
process of bearing RUL prediction. For the feature extraction phase, a three-stage feature selection
method was proposed to construct the bearing degradation indicator set; for the prediction modelling
phase, AdaBoost algorithm was used to enhance the LSTM neural network. Finally, the features
of the bearing degradation indicators set were input into the LSTM-AdaBoost prediction model for
ensemble learning and robust prediction. Through experimental verification, the proposed method
was applied to the XJTU-SY bearing datasets, and the method was compared with different feature
selection methods and different prediction modelling methods. The results showed that the method
can effectively predict bearing RUL.
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