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Abstract: With the developing of high integrations in large scale systems, such as aircraft and other
industrial systems, there are new challenges in safety analysis due to the complexity of the mission
process and the more complicated coupling characteristic of multi-factors. Aiming at the evaluation of
coupled factors as well as the risk of the mission, this paper proposes a combined technology based on
the Decision Making Trial and Evaluation Laboratory (DEMATEL) model and the Bayesian network
(BN). After identifying and classifying the risk factors from the perspectives of humans, machines,
the environment, and management, the DEMATEL technique is adopted to assess their direct and/or
indirect coupling relationships to determine the importance and causality of each factor; moreover,
the relationship matrix in the DEMATEL model is used to generate the BN model, including its
parameterization. The inverse reasoning theory is then implemented to derive the probability, and
the risk of the coupled factors is evaluated by an assessment model integrating the probability and
severity. Furthermore, the key risk factors are identified based on the risk radar diagram and the
Pareto rule to support the preventive measurements. Finally, an application of the take-off process of
aircraft is provided to demonstrate the proposed method.
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1. Introduction

The risk evaluation of coupled factors throughout the system mission process has received increasing
attention in recent years due to its effectiveness in preventing hazards and ensuring system safety, which
offers a potential application in safety risk analysis. Safety analysis and risk assessment aim to eliminate
and control various hazards through design activities and preventive measures, so as to prevent accidents
that lead to casualties, equipment damage, and mission failures during the operation of the system [1,2].
With the development of science and technology, a series of analysis methods for evaluating system
failures and risk events has been developed, especially in high-risk fields such as aerospace, chemical,
nuclear, and other industrial fields. However, these methods have been found to be insufficient in a
number of safety problems caused by the coupling characteristics in complex large scale systems.

The current safety analysis methods can be divided into single-factor and multi-factor analysis
due to the differences in analysis objects [3], which have been extensively studied and have achieved
good results. Specifically, failure mode and effects analysis (FMEA), functional hazard analysis (FHA),
preliminary hazard analysis (PHA), and hazard and operability analysis (HAZOP) are effective methods
for identifying and analyzing single failure modes or risk factors. For example, Soubiran et al. realized
the safe guidance design of a train system by combining PHA and FMEA methods [4], Zhao et al.
improved the risk assessment model based on fuzzy theory and the analytic hierarchy process (AHP),
which provided a more accurate evaluation results [5,6], and Chudleigh [7] and Jagtman [8] applied
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the HAZOP method to medical diagnostic systems and road-safety measures, to identify not only
hazards but also operational problems.

Moreover, with the development of the accident cause theory, a large number of methods for
multi-factor safety analysis, such as fault tree analysis (FTA), Petri nets, Bayesian networks, etc., have
also been invented. For example, Peeters et al. [9] combined FTA and FMEA in a recursive manner
and applied it to an additive manufacturing system, so as to improve the efficiency of risk analysis.
However, there exists in the method a defect whereby the bottom events in the fault tree model need to
be independent. Gonçalves et al. [10] presented a safety assessment of unmanned aerial vehicles (UAVs)
based on Petri nets, with the operation of the system represented by Petri nets to avoid undesired events.

A Bayesian network (BN) is a directed acyclic graph (DAG) composed of nodes and arcs, and its
structure is very suitable for displaying important causal relationships among various factors, and
provides a powerful framework for the research of complex coupling relationships [11,12]. The main
advantage of a BN is to calculate the probability of occurrence of other uncertain nodes through an
effective algorithm after determining any set of nodes [13]. Xiao et al. [14] established the structure of
a BN through a simple questionnaire survey, and Constantinou et al. [15] proposed a BN modeling
method based on a health assessment survey, which provided guidance for the management of survey
data. In addition, Abimbola et al. [16] constructed a dynamic Bayesian network (DBN) by adding time
variables, so as to carry out dynamic risk analysis for deep water drilling operations. However, the
current BN modeling methods mainly have two weaknesses. The methods are effective in assessing
potential risk factors, but with little consideration about the coupling relationships, which may reduce
the completeness of these analyses. The methods also have a strong dependence on the experience of
the analysts, which may lead to the inaccuracy and inconsistency of the models.

For the reason that current safety risk analysis technology is insufficient to solve the coupling
problem among risk factors, scholars from various fields have implemented valuable explorations on
qualitative coupling mechanism analysis, and applied them to the field of safety risk analysis. For
example, Liou [17] proposed a hierarchical and structured safety assessment method, which solved the
complex relationship among many risk factors in air transportation, Liu et al. [18] studied the coupling
mechanism of safety risk in air traffic control and put forward a strategy of safety risk coupling
management, Lin et al. [19] analyzed the original causes of aviation accidents and constructed a model
of an aircraft safety management diagram based on coupling theory, and Wu et al. [20,21] studied
the coupling mechanism between failures and proposed a phased-mission system analysis method
considering common cause failures, using XML to realize automatic modeling and analysis. Moreover,
many scholars use visual models and coupling coordination theory to establish multi-factor coupling
mechanism models, which are widely used in the fields of coal mine production [22], waterway
transportation, and highway transportation [23]. However, the above safety analysis methods mainly
focused on a qualitative description and the study of coupling mechanisms, and lack the quantitative
analyses and evaluations of coupling relationships.

One way to evaluate a coupling relationship is to adopt a reasonable mathematical model to
assess the degree of mutual influence between factors, and there has been various models developed,
such as structural equation modeling (SEM), interpretative structural modeling (ISM), N-K models, etc.
Numerous studies have demonstrated that these methods are powerful and efficient. For example,
Guo et al. [24] adopted the SEM model to analyze the causal relationship between risk factors in the coal
mine safety, and the results provided guidance for practical risk assessment. Yang et al. [25] utilized
the SEM model to discuss the relationship between various variables of business performance of an
insurance company. Yin et al. [26] and Guan et al. [27] discovered the most direct and fundamental
factors through application of an ISM model. Luo et al. [28] calculated the probability of multi-factor
coupling by using an N-K model. However, the application of the above methods requires a large
amount of historical and archived data, which may result in a limitation on the use of the methods in
view of the potential lack of integrity and sample size of the data.
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On the other hand, the Decision Making Trial and Evaluation Laboratory (DEMATEL) model,
developed by the Battelle Memorial Institute [29], is a key technique in resolving problems associated
with the coupling relationship. It was initially applied to investigate complex world problems,
including racial issues, starvation, environmental protection, and energy consumption [30,31]. The
DEMATEL model can transform sophisticated systems into precise causal relationships in structure,
so that the quantified extent of direct and/or indirect causality among coupled risk factors can be
evaluated using matrix operations and mathematical theories to help find the core problem [32,33].

This paper presents a combined technology based on the DEMATEL model and a Bayesian
network, aiming at analyzing and evaluating the risk of factors considering the coupling relationship,
so as to identify the key risk factors and high-risk regions. There are two benefits to using the
proposed technology. Firstly, the structure diagram of the BN is established based on the direct-relation
matrix; secondly, the conditional probability is calculated based on the direct–indirect matrix, and the
parameterization of the Bayesian network is then completed. Inheriting the capability of the higher
uncertainty reasoning of the Bayesian network, this combination of two models provides not only the
basis for the Bayesian network based on the results of the DEMATEL model, but also an alternative
approach of the assessment of coupled risk factors.

The remainder of the paper is organized as follows. Section 2 describes the hierarchical structure
and the coupling evaluation methods of coupled risk factors. Section 3 expounds on the development
and detailed steps of the proposed analysis method. Section 4 introduces an application of the take-off

process of a carrier-based aircraft. Section 5 presents the conclusions.

2. Coupling Analysis of Risk Factors

2.1. Hierarchical Structure of Risk Factors

There are many risk factors that can result in accidents in a system, and they can be hierarchically
divided for easy analysis and management. As the degree of refinement deepens, the number of risk
factors at each level increases. When we classify the factors, a factor set that is too small will cause
risk analysis inconvenience and difficulties, while a set that is too large will be more inaccurate, so
it is effective to establish a management system of risk factors by classifying factors, so as to meet
the practical necessities of risk analysis. Based on the fact that the failure of the mission process of
a complex industrial system is usually caused by various factors, such as humans, machines, the
environment, and management, the management system of risk factors can be divided into three
levels to include the above four aspects. Specifically, the first level comprises four risk factors: human,
machine, environment, and management factors. The second level is the further refinement of the
first one; for instance, human factors can be divided further into profession skills, safety awareness,
and physical and psychological status. The third level includes concrete risk factors determined by
the analysis of the mission process, such as the various deviations obtained in the HAZOP analysis.
Moreover, the third-level factors can be incorporated into the corresponding second-level factors
through their characteristics analysis, so as to, considering their coupling relationships, quantify and
analyze the safety and risk of the system with the second-level factors. The hierarchical relationship of
risk factors is shown in Table 1.

2.2. Coupling Relationship Analysis of Risk Factors

There are inevitable interactions and/or couplings among various factors during the operation
of a system, which can engender non-negligible effects on the safe operation of the system when a
deviation occurs. Furthermore, these factors are generally attributed to one of four aspects, i.e. human,
machine, environment, and management factors. Therefore, the coupling relationship can be divided
into double-factor coupling and multi-factor coupling from these four aspects.

The couplings of double-factors and multi-factors, respectively, consider the direct and indirect
coupling effects of two or more risk factors on the basis of the single-factor hazard analysis [3].
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More precisely, the risk analysis of a single factor is a comprehensive quantitative assessment of the
probability and severity of the factor [34], which takes the second-level factors as the objects, such as
the evaluation of the impact of the professional skills of a human on the system risk.

The double-factor coupling involves two risk factors, and mainly focuses on the impacts of the
occurrence of one factor on the other, namely the direct causal level between the two factors. For
instance, the insufficient safety training may lead to the absence in the regular inspection of the machine,
which may further increase the safety risk of the system.

The multi-factor coupling focuses on three or more risk factors, mainly taking the indirect causal
effects of other risk factors into account on the basis of double-factor coupling. For instance, the
insufficient safety training may lead to the lack of safe awareness of humans, which further results in
the absence in the regular inspection of the machine.

Table 1. The hierarchical relationship of risk factors.

The First Level The Second Level The Third Level

Human F1
Professional skills F11

Concrete risk factors
Q1, Q2, · · · , Qn

Safe awareness F12
Physical and psychological status F13

Machine F2

Reliability of machine F21
Rationality of design F22

Daily maintenance status F23
Regular inspection conditionF24

Environment F3

Wave F31
Airflow F32

Terrible weather (thunder) F33
Visibility (fog) F34

Management F4
Safety training F41

Safety supervision regulations F42
Management organization F43

2.3. Coupling Relationship Assessment Method of Risk Factors

The essence of the evaluation of the coupling relationship between risk factors is to use a unified
measurement model to describe the degree of synergy within the factors, providing a direction
for solving coupling problems in management, economics, and other fields [35,36]. The analytic
hierarchy process (AHP) is a popular method for determining the contribution degree of each factor by
establishing the hierarchical structure and the judgment matrix between the factors. This method has
been widely used because of its simple operation and strong practicability, but it is difficult to solve the
indirect influence between the factors. When the indirect effects are not negligible, the results obtained
by the AHP may be out of line with the actual values.

Compared with the AHP method, DEMATEL technology is more comprehensive and effective in
evaluating the coupling relationship of risk factors. DEMATEL technology also utilizes the matrix
to evaluate the coupling relationship between factors, mainly including two matrices. One is the
direct-relation matrix to assess the direct coupling relationship between factors, and the other is the
direct–indirect matrix to represent the sum of the direct and/or indirect relationship between factors.
Therefore, the use of DEMATEL technology in the assessment of coupled risk factors is conducive to
systematically and accurately comprehending the total coupling relationships among factors, so as to
provide reasonable and credible information for risk analysis.

3. An Integrated Method Based on the Decision Making Trial and Evaluation Laboratory
(DEMATEL) Model and a Bayesian Network (BN)

3.1. The Main Process of the Method

Figure 1 describes the analysis process of the risk factors considering their coupling relationships.
There are four main stages in the process. Firstly, the HAZOP method is adopted to identify hazards
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and operational problems during the missions of the system, in which the deviations are translated
into the corresponding risk factors, namely the third-level factors shown in Table 1. The third-level
factors can be incorporated into the corresponding second-level factors through characteristic analysis
so that the classification diagram of risk factors can be obtained. Secondly, the DEMATEL model is
applied to quantify the direct–indirect coupling relationship between risk factors, through which the
importance–causality diagram is established to judge the importance and attribution degree according
to the position of each factor. The structure and the parameterization of the Bayesian network (BN) are
then accomplished based on the direct-relation matrix and the direct–indirect matrix in the DEMATEL
model, respectively. Furthermore, the inverse reasoning theory of the BN is implemented to derive
the probability of coupled risk factors, and the probability vector is obtained. Ultimately, the risk
evaluation model, considering the probability and severity of coupled risk factors, is established, and
can be used to construct a risk radar diagram. Moreover, the priority of risk factors is evaluated
based on the Pareto rule. After a detailed analysis of high-risk regions and key factors, the preventive
measurements can be proposed to control and reduce the risk level of the mission process.
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3.2. The Identification and Classification of Risk Factors Based on Hazard and Operability Analysis (HAZOP)

The HAZOP analysis is a highly organized, structured, and organized technique to identify and
analyze the hazards and operational problems in the system, in which the deviations can be regarded
as “potential risk factors inconsistent with the design intention” [3]. Thus, when applying the HAZOP
method to identify and classify the factors, the nodes are determined aiming at the mission process and
the deviations are defined as the concrete risk factors Q1, Q2, · · · , Qn, namely the third-level factors
shown in Table 1. These factors are further incorporated into the corresponding second-level factors to
support the following analysis. The improved HAZOP table is shown in Table 2, where a new column
of “risk type” is added to the table to identify the second-level risk.

Table 2. The improved hazard and operability analysis (HAZOP).

Code Event Guideword Deviation Risk Type Cause of Deviation Hazard Effect Measures

Q1
pre-take-off
preparation omission Missing

inspections F41
The negligence of

ground crew

Potential
hazards may
occur during

take-off

Strength safety
training and
inspection

3.3. Coupling Relationship Assessment Based on the DEMATEL Model

DEMATEL technology is primarily applied to quantify the direct–indirect coupling relationship
of risk factors, through which the importance–causality diagram can be established to analyze the
importance and attribution degree according to the position of each factor [36]. Moreover, the
DEMATEL model provides a reasonable basis for the Bayesian network, mainly reflected in the
following two aspects. One is to establish the structure of the BN based on the direct-relation matrix,
and the other is to parameterize the BN based on the conditional probability of factors calculated on
the direct–indirect matrix. The specific steps of DEMATEL analysis are as follows [30–33,37].

1. Define the Evaluation Scale

The degree of causality among risk factors is defined as k levels, i.e., 0, 1, 2, . . . , k − 1, where 0
represents no causal relationship, and k-1 represents the strongest causal relationship.

2. Establish a Direct-Relation Matrix

The expert scoring method is used to evaluate the degree of direct causal relationship between
two risk factors, and the direct-relation matrix M is then obtained by averaging the scores of each factor.
If there are m kinds of risk factors, a matrix of m ×m will be determined, in which the element pi, j
represents the degree of direct influence of the factor i on the occurrence of factor j. It is clear that the
diagonal elements of the matrix are 0 because we focus on the relationship between different factors.

3. Normalize the Direct-Relation Matrix

M1 = M×α = M×
1∑m

i, j=1 pi, j
. (1)

According to the theory of matrix operation, the direct-relation matrix should be normalized to
ensure the matrix convergence during the power series operation. In this paper, the sum of all matrix
elements is used to normalize the matrix.

4. Calculate the Direct–Indirect Matrix

The direct–indirect matrix takes all the indirect effects among factors into account, and these
indirect effects can be represented by the state transition process in the theory of absorbing a Markov
chain matrix; moreover, the degree of the effect will decrease as the number of state transitions increases.
During matrix operating based on the above theory, M1 represents the direct-relation matrix, M12

represents the secondary-relation matrix, indicating the causal effect of risk factor Fi on F j considering
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the indirect effect of one risk factor, as shown in Figure 2a, M13 represents the cubic-relation matrix,
indicating that the causal effect of risk factor Fi on F j considering the indirect effect of two risk factors,
as shown in Figure 2b, and so on. M1x thus represents the xth relation matrix.
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The direct–indirect matrix M2 can be calculated through a synthesis operation of the direct and
indirect causal relationships according to Equation (2), and the element p′′i, j in M2 can be used to
evaluate the causal effect of risk factor Fi on F j considering the indirect effects of all the risk factors.

M2 = lim
x→∞

(
M1 + M12 + M13 + · · ·+ M1x

)
= M1(I −M1)−1 (2)

M2 =


p′′1,1 · · · p′′1,m

...
. . .

...
p′′m,1 · · · p′′m,m

. (3)

5. Draw the Importance-Causality Diagram

The row sum of the matrix M2 is defined as Ai, which is called the influence degree, representing
the synthetic effect of the factor Fi on all other factors. The column sum is defined as Bi, which is called
the influenced degree, representing the synthetic effect of all other factors on the factor Fi. The sum of
Ai and Bi is called importance, representing the importance degree of factor i in the system safety risk,
and the difference between Ai and Bi is called causality, representing the attributable causal level of
factor i, with a positive value suggesting that the factor belongs to the cause category, and a negative
value suggesting that the factor is in the result category.

Importance and causality are taken as the horizontal-axis and vertical-axis, respectively, and the
factors are divided into four regions according to their positions. The meanings of these regions are
shown in Figure 3.Appl. Sci. 2020, 10, 317 8 of 19 
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3.4. Probability Assessment of the Coupled Risk Factors Based on the BN

The Bayesian network is mainly applied to evaluate the probability of the occurrence of coupled
risk factors, with the specific process as follows.

1. BN modeling Based on the Direct-Relation Matrix in the DEMATEL Model

Although a BN utilizes a directed graph, while DEMATEL technology uses a direct-relation
matrix, they are both effective tools for describing the direct causal relationship between factors. The
direct-relation matrix can be utilized to construct the initial causal diagram, in which the possible
circulations can be eliminated to obtain the modified BN diagram.

A threshold value for the direct-relation matrix is determined based on expert judgment, and
the elements that are greater than the threshold value in the direct-relation matrix can be converted
as valid nodes and arcs in the initial causal diagram [12]. In view of the possible circulations in the
initial causal diagram, it is necessary to identify and eliminate the circulations based on the following
principles in order to transform it to a BN.

(1) The BN should reflect not only the causal relationship between factors, but also the directions.
There may be circulations in the initial causal diagram due to vague concepts of correlation and
causality. For instance, there is a strong causal relation in α→ β , but with no relation in β→ α .

(2) Since the BN mainly represents the direct causal relationship, there may be circulations in the
initial causal diagram due to the indirect causality.

(3) There may be circulations in the initial causal diagram because of time or other variables that
exert an influence on the causal relationship between factors.

The above principles are adopted to check the bidirectional arc and closed loop arc in the initial
causal diagram, so as to identify and eliminate the cycle arcs to obtain a Bayesian network diagram.

2. The Parameterization of BN

The diagrams of the Bayesian network are visual descriptions of the factorization of joint probability
distributions [38], where nodes represent risk factors, and arcs represent probability dependencies
between factors. For the reason that a diagram can depict the structure of a probability domain but
cannot supply numerical characteristics, the conditional probability table (CPT) of each node needs
to be established to parameterize the BN. When two nodes α and β are directly connected, such as
α→ β , α and β are viewed as parent node and child node, respectively. When performing the risk
assessment based on a BN, the obtained risk factors as well as a “risk” event are defined as nodes with
two states of occurrence and non-occurrence. The prior probability of all nodes and the conditional
probability under the combination of all of the states of these nodes and their parent nodes are input
into the CPT to complete the parameterization. The calculation of the prior probability and conditional
probability of each node is as follows.

According to the classification of risk factors in Section 3.2, each node in the Bayesian network is a
set of multiple concrete risk factors. If the node F f contains risk factors Q1, Q2 · · ·Qt, the probability of

each factor is P1, P2 · · ·Pt. The prior probability of node F f is defined as P
(
F f

)
, and the formula is as

follows on the assumption that the factors are independent of each other.

P
(
F f

)
=

∑t

i=1
Pi −

∑t

i=2
P1Pi −

∑t

i=3
P2Pi − · · · − Pt−1Pt. (4)

When the node Fi is conditional on its parent node Fd, the probability is defined as P(Fi|Fd),
representing the probability of the occurrence of node Fi when the parent node Fd occurs. Thus, the
problem of calculating the conditional probability can be converted to evaluate the contribution of the
parent node Fd to the node Fi. Based on the analysis in Section 3.3, the direct–indirect matrix obtained
by the DEMATEL model can be used to quantitatively evaluate the degree of causal influence between
factors. The column of node Fi in the direct–indirect matrix indicates the causal effect of other nodes
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on node Fi, with p′′d,i representing the causal effect of node Fd on node Fi. Therefore, the calculation of
the contribution of the node Fd to the node Fi is as follows.

P(Fi|Fd) =
p′′d,i∑m

z=1 p′′z,i
. (5)

3. The Probability Assessment Based on the Inverse Reasoning Theory

The input of virtual evidence, one of the basic operations of the probability model, is to set a
new state probability distribution for the unobservable variables in the model, so as to query the new
posterior probability distribution of other variables. When conducting a risk assessment based on the
BN, the BN is firstly structured and parameterized, and the inverse reasoning theory is then introduced
to derive the posterior probability of other nodes (each risk factor) by setting the virtual evidence of
the probability distribution of all states of the node “Risk,” which is regarded as the probability of
occurrence P(Fi)

′ of each risk factor considering the coupling relationship. The calculation formula is
as follows.

P(Fi|Risk) × P(Risk) = P(Risk|Fi) × P(Fi) (6)

P(Fi)
′ =

P(Fi|Risk) × P(Risk)′

P(Risk|Fi)
. (7)

3.5. Risk Assessment and Analysis of Coupled Risk Factors

3.5.1. Construction of a Risk Evaluation Model

Risk is a comprehensive means to quantify the effects of various factors in the process of transferring
dangers to accidents [34], and system safety analysis based on risk has been widely applied to the
mission process of complex industrial systems. Similar to the traditional quantification methods
from two perspectives of risk, i.e., the probability of occurrence and the severity of consequence, the
evaluation model considering the coupling relationship in this paper is also based on the probability
and severity of the coupled risk factors, but these two perspectives are integrated into one value.

The risk index matrix is established by qualitative analysis of probability and consequence, in
which probability and consequence are classified into m levels and h levels, respectively. Thus, the
dimension of the matrix is v× h, with the elements representing the risk values at the corresponding
probability and severity levels. The improved Euclidean distance formula is introduced as the risk
evaluation model, as shown in Equation (8), in which the parameters X, Y, Z represent the probability,
the severity, and the risk evaluation values in the risk index matrix, respectively. a, b are the preference
corrections, and can be calculated by fitting using the historical data of the parameters X, Y, Z.

Z =
2
√
(a ∗X)2 + (b ∗Y)2. (8)

To evaluate the coupling effects between risk factors, the parameters in the above formula should
be amended further to obtain Equation (9), in which the parameters Ri, P(Fi)

′, Si
′ represent the risk

values, the probability, and the severity of the coupled risk factors, respectively.

Ri =
2
√
[a ∗ P(Fi)

′]
2
+ (b ∗ Si

′)2 . (9)

3.5.2. Calculation of the Risk of Coupled Factors

The risk of coupled factors can be evaluated using Equation (9) after the probability and severity
considering the coupling relationship are calculated. The probability P(Fi)

′ of each risk factor can be
obtained based on the results in Section 3.4. Therefore, the following mainly focuses on the assessment
of severity Si

′ of coupled risk factors.
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It can be known from the above that the degree of severity is classified into h levels, where the
first level indicates that the consequences of risk factors are extremely weak, and the hth level indicates
the strongest consequence. We can define the range of value as being from 0 to n, so the interval length
of each severity level is n

h . The expert scoring method is used to evaluate the consequence degree of
a single risk factor from 0 to n, and the initial severity vector S =

(
S1 · · · Sm

)
is obtained after

taking the average.
Furthermore, the coupling effects between risk factors are considered to amend the severity. The

weight vector W, obtained from the operation of Ai and Bi based on the DEMATEL model, can be used
to modify the vector S and acquire the final vector S′.

wi =
Ai + Bi∑m

i=1(Ai + Bi)
(10)

W = (w1 · · · wm) (11)

S′ = diag
(
ST
×W

)
(12)

S′ = (S1
′
· · · Sm

′) =
(

S1 ×w1 · · · Sm ×wm
)
. (13)

The risk of each factor considering the coupling relationship can be calculated by substituting
P(Fi)

′ and Si
′ into Equation (9).

3.5.3. Risk Analysis Based on the Risk Radar Diagram and Pareto Rule

The calculated risk values can be used to establish a risk radar diagram, which is divided into
five regions based on risk levels, i.e. highest risk, high risk, medium risk, low risk, and lowest risk.
According to the Pareto rule [39,40], it can be concluded that 80% of the accidents are originated from
20% of the hazards. Therefore, the risk considering the coupling effect are sorted in descending order,
in which the top 20% are regarded as the key risk factors. Aimed at the high risk region and key risk
factors, the causal relationship was further researched to propose preventive measurements, so as to
reduce the risk level and improve system safety.

4. Application and Discussion

The proposed method was applied to the ski-jump take-off process of a carrier-based aircraft for
illustration and validation purposes.

4.1. HAZOP Analysis

The take-off process can be divided into four mission stages, namely, pre-take-off preparation,
horizontal acceleration running, ramp acceleration running, and aerial crawling [41], which includes
21 risk factors according to analysis. The classification diagram of risk factors and the analysis of
HAZOP, as shown in Figure 4 and Table A1, respectively, are obtained based on the method proposed
in Section 3.2.
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4.2. Assessment of the Coupling Relationship Based on the DEMATEL Model

1. Establishment of the Evaluation Scale and the Direct-Relation Matrix

The evaluation scale established for the degree of causal relationship of risk factors is defined
as 5 levels, i.e. 0, 1, 2, 3, and 4, where 0 represents no causality and 4 represents strongest causality.
There are 14 kinds of risk factors based on the classification of 21 risk factors, and the degree of direct
causal relationship will, based on expert judgment, be evaluated through pair-wise comparison, and
the direct-relation matrix M will be obtained after averaging.

2. Normalization of the Direct-Relation Matrix

M1 = M×α = M×
1

142.1
(14)

The normalization of the direct-relation matrix M is based on the formula 14, with the results
shown in Table 3.



Appl. Sci. 2020, 10, 317 12 of 20

Table 3. The results of the matrix M1.

F11 F12 F13 F21 F22 F23 F24 F31 F32 F33 F34 F41 F42 F43

F11 0 0.8 0 4 4.2 3 3 0 0 0 0 0 0 0
F12 0.5 0 0 3 1.5 4.3 4.5 0 0 0 0 0 0 0
F13 1.3 0.8 0 1 0.5 1.5 1.5 0 0 0 0 0 0 0
F21 0 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0
F22 0 0 0 4 0 0.2 0.2 0 0 0 0 0 0 0
F23 0 0 0 3.5 0 0 0.5 0 0 0 0 0 0 0
F24 0 0 0 2 0 3.5 0 0 0 0 0 0 0 0
F31 0.5 0 2 0 0 0 0 0 2 0.5 4 0 0 0
F32 0.5 0 2 0 0 0 0 3 0 0.5 2 0 0 0
F33 0.8 0 3 0 0 0 0 4 4 0 4.2 0 0 0
F34 1.5 0 3 0 0 0 0 0.5 0.5 0.5 0 0 0 0
F41 3.5 4 1 0.5 1 3 3 0 0 0 0 0 0.5 0.6
F42 1.2 4 1 2.5 2 3.5 4 0 0 0 0 3 0 0.6
F43 0.5 1.5 2 0 0.5 2 1.5 0 0 0 0 3.5 3 0

3. Calculation of the Direct–Indirect Matrix

The calculation of the direct-indirect matrix is based on the formula 2, with the results shown in
Table 4.

Table 4. The results of the matrix M2
(
×10−4

)
.

F11 F12 F13 F21 F22 F23 F24 F31 F32 F33 F34 F41 F42 F43

F11 0 56 0 299 296 219 215 0 0 0 0 0 0 0
F12 35 0 0 227 107 312 319 0 0 0 0 0 0 0
F13 92 57 0 80 38 112 110 0 0 0 0 0 0 0
F21 0 0 0 0 0 14 14 0 0 0 0 0 0 0
F22 0 0 0 282 0 15 15 0 0 0 0 0 0 0
F23 0 0 0 247 0 1.22 36 0 0 0 0 0 0 0
F24 0 0 0 147 0 247 1.07 0 0 0 0 0 0 0
F31 40 1.07 150 2.36 1.73 2.53 2.48 5.05 143 37 285 0 0 0
F32 39 1.05 148 2.30 1.69 2.48 2.43 213 4.54 36 148 0 0 0
F33 64 1.63 226 3.64 2.69 3.88 3.80 289 287 3.11 308 0 0 0
F34 108 1.81 213 4.87 3.96 4.71 4.61 37 37 35 2.61 0 0 0
F41 248 285 71 61 82 233 229 0 0 0 0 1.81 36 42
F42 92 289 72 201 148 271 300 0 0 0 0 212 1.66 43
F43 45 120 144 16 43 161 124 0 0 0 0 251 212 1.95

4. Construction of the Importance–Causality Diagram

The construction of the importance–causality diagram is based on the calculations of the matrix
M2, as shown in Table 5.

Table 5. The calculations of the matrix M2.

Factors Ai Bi Ai+Bi Ai−Bi Factors Ai Bi Ai+Bi Ai−Bi

F11 0.1086 0.0763 0.1849 0.0323 F31 0.0669 0.0543 0.1212 0.0126
F12 0.1000 0.0812 0.1812 0.0188 F32 0.0598 0.0471 0.1069 0.0127
F13 0.0488 0.1024 0.1512 −0.0536 F33 0.1191 0.0112 0.1303 0.1079
F21 0.0029 0.1574 0.1603 −0.1545 F34 0.0453 0.0743 0.1196 −0.0290
F22 0.0311 0.0724 0.1035 −0.0413 F41 0.1289 0.0465 0.1754 0.0824
F23 0.0284 0.1598 0.1882 −0.1314 F42 0.1630 0.0250 0.1880 0.1380
F24 0.0394 0.1374 0.1768 −0.098 F43 0.1117 0.0087 0.1204 0.1030
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The initial conclusions that can be drawn from Figure 5 are as follows:

• High importance, cause category: F11, F12, F41, and F42 belong to the cause category, which have a
great impact on other risk factors and are less susceptible, but vary in the degree of relationship,
with a strong relation on F41 and F42 and a weak relation on F11 and F12. All of them are important
factors in the mission.

• High importance, result category: F23 and F24 are more important than F13 and F21 throughout
the mission, all of which belong to the result category, showing that the factors are vulnerable to
other factors.

• Low importance, cause category: F31, F32, F33 and F43 belong to the cause category with a low
value of F31 and F32, which indicates less impact on other factors. The above factors are less
important throughout the mission.

• Low importance, result category: F22 and F34 belong to the result category with a low value, which
indicates less causality and less importance throughout the mission.
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4.3. Probability Assessment of the Coupled Risk Factors Based on the BN

1. BN Modeling Based on the Direct-Relation Matrix in the DEMATEL Model

The direct-relation matrix in the DEMATEL model can be utilized to construct the Bayesian
network, in which the numerical relationship in the matrix can be transformed into the structural
relationship of the network because of the arcs in the BN representing the direct causal relationship.
The possible circulations can be eliminated to obtain a modified BN diagram. In order to reduce the
analysis work, a threshold of 2.5 is determined based on expert experience. The relationship of matrix
elements above the threshold is regarded as a valid arc in the Bayesian network, so as to obtain the
initial causal diagram. Based on the three principles described in Section 3.4, the initial casual diagram
is checked and revised to eliminate the possible circulations to obtain the modified BN diagram, as
shown in Figure 6.
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2. The Parameterization of BN

The prior probability of each node is calculated according to Equation (4) based on the classification
diagram of the risk factors obtained in Section 4.1. The results are shown in Table 6.

Table 6. The results of the prior probability.

Node (Fi)
Included
Factors

∑t
i = 1Pi P (Fi) Node (Fi)

Included
Factors

∑t
i = 1Pi P (Fi)

F11 Q3 Q13 Q17 0.64 0.5055 F31 Q9 0.35 0.35
F12 Q19 0.23 0.23 F32 Q11 Q16 0.70 0.5775
F13 Q4 0.19 0.19 F33 Q20 0.15 0.15
F21 Q2 Q8 0.33 0.31 F34 Q18 0.22 0.22
F22 Q7 Q10 0.48 0.426 F41 Q1 0.31 0.31
F23 Q14 0.23 0.23 F42 Q15 Q21 0.37 0.3364
F24 Q5 Q12 0.29 0.278 F43 Q6 0.05 0.05

The conditional probability of each node with its parent node is calculated according to Equation
(5) based on the direct–indirect matrix obtained by the DEMATEL model, and the results are shown in
Table 7.
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Table 7. The results of the conditional probability.

Fi Fj p”
j,i(10−4) P(Fi|Fj) Fi Fj p”

i,j(10−4) P(Fi|Fj)

F11 F41 248 0.325

F23

F12 312 0.195

F12
F41 285 0.351 F24 247 0.1546
F42 289 0.356 F41 233 0.146

F13
F33 226 0.221 F42 271 0.170
F34 213 0.208

F24

F11 215 0.156

F21

F11 299 0.190 F12 319 0.232
F12 227 0.144 F41 229 0.167
F22 282 0.179 F42 300 0.218
F23 247 0.157 F31

F32 213 0.392
F22 F11 296 0.409 F33 289 0.532
F32 F33 287 0.609 F34

F31 285 0.384

F41
F42 212 0.456 F33 308 0.415
F43 251 0.540

3. The Probability Assessment Based on the Inverse Reasoning Theory

Based on the results of Tables 6 and 7, the parameterization of the Bayesian network is completed.
Moreover, virtual evidence is set for the node “Risk” to define the probability distribution of “occurrence”
and “non-occurrence.” As a result, the probability of occurrence of other risk factors considering the
coupling relationship is obtained, as shown in Figure 7.
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4.4. Risk Assessment of the Coupled Risk Factors

4.4.1. The Probability of the Occurrence of Coupled Risk Factors

The probability of occurrence of coupled factors can be obtained based on the results in Figure 7,
as shown in Table 8.

Table 8. The probability of the occurrence of coupled factors.

P(F11)
′

P(F12)
′

P(F13)
′

P(F21)
′

P(F22)
′

P(F23)
′

P(F24)
′

P(F31)
′

P(F32)
′

P(F33)
′

P(F34)
′

P(F41)
′

P(F42)
′

P(F43)
′

0.44 0.36 0.22 0.30 0.42 0.30 0.33 0.43 0.58 0.15 0.35 0.38 0.34 0.05

4.4.2. The Severity of Coupled Risk Factors

The degree of severity is classified into five levels, where the range of value is from 0 to 10, and
the interval length of each severity level is 2. The first level [0, 2] indicates that the consequences of
risk factors are extremely weak, and the fifth level [8, 10] indicates the strongest consequence. The
expert scoring method is used to obtain the initial vector S, based on which the final vector S′ is further
acquired using the method proposed in Section 3.5, with the results shown in Table 9.

Table 9. The calculation of the severity.

F11 F12 F13 F21 F22 F23 F24 F31 F32 F33 F34 F41 F42 F43

S 6.7 6.9 7.1 6.8 4.6 3.8 3.8 4.1 4.3 4.9 4.3 2.9 3.7 2.6
W 8.7% 8.6% 7.1% 7.6% 4.9% 8.9% 8.4% 5.7% 5.1% 6.2% 5.7% 8.3% 8.9% 5.7%
S′ 0.58 0.59 0.50 0.52 0.23 0.34 0.32 0.23 0.22 0.30 0.25 0.24 0.33 0.15

4.4.3. Risk Calculation of Coupled Risk Factors

The probability and consequence are classified into four levels and five levels, respectively, and
the risk index matrix is established based on the historical risk values of all their state combinations;
for instance, the historical risk is 19 when both levels are the highest [42]. Moreover, Equation (9) is
fitted based on the method in Section 3.5 to determine the preference corrections a = 2.2, b = 3.3. The
amended risk evaluation model is shown in Equation (15).

Ri =
2
√
[2.2 ∗ P(Fi)

′]
2
+ (3.3 ∗ Si

′)2 . (15)

The risk of each factor considering the coupling relationship can be calculated by introducing
P(Fi)

′ and Si
′ to Equation (15), with the result shown in Table 10.

Table 10. The risk of the coupled risk factors.

F11 F12 F13 F21 F22 F23 F24 F31 F32 F33 F34 F41 F42 F43

R 2.15 2.11 1.73 1.83 1.19 1.30 1.28 1.22 1.47 1.06 1.12 1.15 1.13 0.50

Some conclusions can be drawn from Figure 8:

• The top 20% of factors belong to the key risk factors according to the Pareto rule, so the risk
factors F11 and F12 have a higher risk level, which needs to be further analyzed to propose the
preventive measurements.

• It can be concluded that the factors F21 and F13 belong to the medium risk region, and the risk
level of the factor F43 is the lowest.

• According to the location distribution of risk factors in each category, the average risk level of
human factors is the highest.
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risk factors are extremely weak, and the fifth level [8,10] indicates the strongest consequence. The 
expert scoring method is used to obtain the initial vector 𝑆, based on which the final vector 𝑆′ is 
further acquired using the method proposed in Section 3.5, with the results shown in Table 9. 
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4.4.3. Risk Calculation of Coupled Risk Factors 

The probability and consequence are classified into four levels and five levels, respectively, and 
the risk index matrix is established based on the historical risk values of all their state combinations; 
for instance, the historical risk is 19 when both levels are the highest [42]. Moreover, Equation (9) is 
fitted based on the method in Section 3.5 to determine the preference corrections 𝑎 = 2.2, 𝑏 = 3.3. 
The amended risk evaluation model is shown in Equation (15). 𝑅௜ = ඥ[2.2 ∗ 𝑃(𝐹௜)′]ଶ + (3.3 ∗ 𝑆௜′)ଶ మ . (15) 

The risk of each factor considering the coupling relationship can be calculated by introducing P(𝐹௜)ᇱ and 𝑆௜′ to Equation (15), with the result shown in Table 10. 
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 𝑭𝟏𝟏 𝑭𝟏𝟐 𝑭𝟏𝟑 𝑭𝟐𝟏 𝑭𝟐𝟐 𝑭𝟐𝟑 𝑭𝟐𝟒 𝑭𝟑𝟏 𝑭𝟑𝟐 𝑭𝟑𝟑 𝑭𝟑𝟒 𝑭𝟒𝟏 𝑭𝟒𝟐 𝑭𝟒𝟑 𝑅 2.15 2.11 1.73 1.83 1.19 1.30 1.28 1.22 1.47 1.06 1.12 1.15 1.13 0.50 

Some conclusions can be drawn from Figure 8: 

• The top 20% of factors belong to the key risk factors according to the Pareto rule, so the risk 
factors 𝐹ଵଵ and 𝐹ଵଶ have a higher risk level, which needs to be further analyzed to propose the 
preventive measurements. 

• It can be concluded that the factors 𝐹ଶଵ and 𝐹ଵଷ belong to the medium risk region, and the risk 
level of the factor 𝐹ସଷ is the lowest. 

• According to the location distribution of risk factors in each category, the average risk level of 
human factors is the highest. 
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Based on the above analysis, it can be concluded that both F11 and F12 occupy high importance
throughout the mission and belong to the cause category. They have a great impact on other risk
factors and are less susceptible. Moreover, F41 and F42, respectively, have the greatest impact on F11

and F12. Therefore, the essence of reducing the risk level of human factors is to reduce the risk level of
management factors. It is necessary to further strengthen the safety training and safety supervision
system in order to enhance professional skills and safety awareness, so as to ensure the safety of the
mission process of the system.

5. Conclusions

Aiming at the insufficiency of traditional safety risk analysis technology to solve the coupling
problems between risk factors, this study proposes combined technology based on the DEMATEL
model and the Bayesian network, aiming to analyze and evaluate the risk of factors considering the
coupling of multi-factors in the mission process of complex industrial systems. The method can be
summarized as the following four steps. Firstly, the risk factors are identified by the HAZOP method
and classified according to the hierarchical structure. Secondly, the DEMATEL model is applied to
quantify the direct–indirect coupling relationship between risk factors, through which the importance
and attribution degree of each factor are acquired. The structure and parameterization of the Bayesian
network are then accomplished to derive the probability of the coupled factors based on the results
of the DEMATEL model. Ultimately, the risks of the coupled factors are calculated according to the
established risk evaluation model. Furthermore, the key risk factors and the high-risk region are
identified through the Pareto rule and risk radar diagram. Considering the take-off process of a
shipboard aircraft as a case, the results indicate that F11 (professional skills) and F12 (safety awareness)
occupy high importance throughout the mission, and the average risk level of the human factors is the
highest, which provides a theoretical basis for putting forward preventive measures, so as to ensure
and improve system safety. Compared with the current technologies, the method proposed in this
paper mainly displays the advantages of the two aspects. Firstly, the construction and parameterization
of the BN by adopting the DEMATEL model not only improve the analysis efficiency but also reduce
the skill requirement for analysts. At the same time, it provides a feasible approach for the evaluation
of the risk of coupled factors, which is the core judgment criterion for identifying key risk factors and
of significance to ensure system safety.
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Appendix A

Table A1. The improved HAZOP analysis (in part).

Code Event Guidewords Deviation Risk Type Cause of
Deviation Hazard Effect Measures

Q1

pre-take-off
preparation

omission Missing
inspections F41

The
negligence of
ground crew

Potential
hazards may
occur during
take-off

Strength safety
training and
inspection

Q2 deficiency
Lack of
status
information

F21

The failure in
the display
equipment or
the power
input

Pilots can’t
judge the right
position and
status.

Change
equipment
regularly and
check power
supply

Q3 late
Late for
lifting the
deflector

F11

The incorrect
operation of
the pilots

High
temperature
flame results
in the damage
of the deck.

Set up
emergency
equipment
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