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Featured Application: This mini-review presents a case study about the research performed on
zeolite synthesis with imidazolium derivatives as OSDAs at the Molecular Sieves Laboratory
(LABPEMOL, Federal University of Rio Grande do Norte-UFRN). To do so, we first describe a
quick overview of imidazolium derivatives and what is being done in other laboratories, after
which we summarize the main results obtained at LABPEMOL. Readers will find a bibliography
to deepen their knowledge of synthesis and characterization techniques and to help design new
projects involving the synthesis or application of the obtained materials based on the know-how
reviewed here.

Abstract: Imidazolium-derivative cations are very interesting molecules used as organic
structure-directing agents (OSDAs) for zeolite synthesis, widening the possibilities of new
materials and applications in this research area. In this review, the studies performed at
LABPEMOL using this kind of compound are presented after a quick overview on imidazolium
derivatives. The first zeolite synthesis results that started this research study were obtained
with 1-butyl-3-methylimidazolium chloride. Then, the design of new OSDAs based on the
imidazolium cation, such as 1,2,3-triethylimidazolium, 2-ethyl-1,3-dimethylimidazolium and
1,2,3-triethyl-4-methylimidazolium, is reported. Afterwards, the structure-direction effect caused by
the introduction of heteroatoms with already-published imidazolium derivatives (for example, the
Al3+ insertion into zeolite frameworks with two different OSDAs and the silicoaluminophosphate
(SAPO) synthesis using 2-ethyl-1,3,4 trimethylimidazolium cations) is discussed. Finally, we also
present a quick overview of some achievements of other laboratories.
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1. Introduction

The first synthetic zeolite obtained marked a milestone in the study of porous materials [1,2].
Since then, scientists have attempted to design quick and reliable routes for synthesizing analogues
of the existing natural zeolitic topologies [3,4]. However, this scientific marathon did not end here,
as another ongoing major effort has been made to find new structures [5–7]. The question this poses
is how this challenge is faced. To answer this question, we need to go back to that first synthesis
procedure performed with hydrothermal technology [3]. This procedure uses a mixture of silicon and
aluminum sources that are dissolved in an aqueous medium (hydro, the solvent) to later undergo a
high temperature treatment (thermal). These reagents were (and are) difficult to dissolve in water,
which is the reason for alkali and alkaline-earth metal hydroxides addition, giving rise to the need for a
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mineralizing agent and basic media to synthesize zeolites. In addition, different combinations of these
reagents were tested, and different zeolitic topologies were obtained [1,8]. At the same time, zeolitic
scientists observed that changing the cation of the hydroxide in the same synthesis (e.g., replacing
sodium hydroxide with potassium hydroxide) forced variations in the crystal parameters of the final
material, even to the point of synthesizing a completely different topology. This behavior justified the
incorporation of the concepts templates, structure-directing agents (SDAs), and pore-fillers, which were
differentiated based on the type of interactions present in the structure [9].

Over time, scientists began to study the addition of organic compounds to the synthesis
procedure [10–14]. However, what popularized these organic compounds was the synthesis with HF
(hydrofluoric media) to replace the hydroxides. Zeolites such as pure silica sodalite, ZSM-5, silicalite-1,
and silicalite-2 were obtained. Since then and until now, these compounds have been studied for
synthesis applications.

A very interesting type of organic compound is ionic liquids. These molecules are characterized by
a low melting temperature and low vapor pressure [15]. It is precisely these properties that justify their
application for synthesizing zeolites. Ionic liquids can act as an SDA and solvent. Then, we can use
ionic liquids in hydrothermal synthesis with water as the solvent and, also, in a new type of synthesis
method, the ionothermal, in which the ionic liquid role is twofold, an SDA and a solvent [16,17].
This mini-review is focused on that first situation, but we recommend reading other reviews or book
chapters, such as those from the Morris group, regarding the second type of synthesis [18,19].

Among the various ionic liquids there are the imidazolium derivatives, which are usually
synthesized via the quaternization of one of the Ns of the corresponding imidazole derivative [20,21].
These compounds have a certain degree of hydrophobicity, which helps to explain the role they
represent in synthesis, as for example described in the articles by Rojas et al. and Variani et al. [22,23].
Ionic liquids are also easy to use and possible to recycle. Ionic liquids possess diverse possible
substituents and, as a consequence, wide synthetic possibilities [24–26]. In the first example, an ionic
liquid was used to synthesize an extra-large pore zeolite by adjusting the supramolecular chemistry,
possibly thanks to the use of imidazolium derivatives. Subsequently, the second example showed
how an imidazolium derivative helped produce a high silica zeolite Y thanks to the interactions of the
OSDA-framework. The last example described a fast ZSM-22 synthesis procedure. For these reasons,
great interest has been generated.

The use of ionic liquids in the synthesis of zeolites began with the group of Prof. Dr. Morris,
and they currently continue to carry out studies in this regard [27,28]. Ultimately, these materials
led to the synthesis of more germanosilicates using imidazolium derivatives, as reported by
Prof. Dr. Davis’s group and Prof. Dr. Corma and collaborators [6,29,30], and in turn, these
ionic liquids were studied by Prof. Dr. Morris’ group to achieve a new synthesis route: ADOR
(assembly-disassembly-organization-reassembly) [31,32]. Through this process, some of the hypothetical
structures that were once called unfeasible have been synthesized, which was not possible through
traditional methodologies [33].

Returning to the pure silica composition, we find that Prof. Dr. Camblor’s group also excels in
this type of synthesis, managing to stabilize the chiral topology of STW, which is also thanks to the
use of the hydrofluoric medium [7]. Afterwards, we will describe a study on introducing aluminum
into this structure, which was performed at LABPEMOL [34]. Note that further studies about the
germanosilicate STW zeolite were published by Prof. Dr. Camblor’s group [35,36]. Furthermore, this
topology led to a major breakthrough in zeolite synthesis by the enantiomeric resolution achieved by
Prof Dr. Davis’s group [37].

Another study that have also helped to understand the performance of imidazolium derivatives
(and other OSDAs) used in synthesis was that conducted by Prof. Dr. Pérez-Pariente’s group. Through
computational experiments, this group was able to predict dimeric OSDA aggregates formed in
the course of the zeolite synthesis by helping to direct toward one or another topology [23,38,39].
We interject here to highlight the importance of computational studies in the field of zeolites [40].
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Computational studies have been applied to try to predict and/or explain some of the behaviors
found during synthesis and in applications. There are studies that model nucleation and template
mechanisms [41,42], template interactions that occur when forming dimers [39], and adsorption
isotherms [43]. It is worth noting there are studies that predict new structures, such as those used to
collect the database of hypothetical structures, as mentioned previously [44]. Finally, the latest attempt
to explain interzeolitic transformations and intergrowth has recently been published by Schwalbe-Koda
et al. using graph theory [45]. In short, these types of studies are important to explain behaviors and
help define new experiments.

There are several other groups working with imidazolium derivatives [46–49], but still, there is
much more to do. Due to the results obtained with this kind of compound, Prof. Dr. Corma and
collaborators proceeded to study P-containing [50–52] and As-containing [53] OSDAs and initiated
new lines of study that have much to offer.

Thus, in this review, we will describe a case study about the establishment of a research line on
using imidazolium derivatives for synthesizing zeolites at LABPEMOL. Without elaborating on the
general aspects of these compounds, which was previously described in a general review from our
laboratory [54], we will carry out a comparative description of our work to help the reader, whether
they belong to a university or industry, to develop research on the synthesis with and/or application of
these compounds.

2. LABPEMOL Case Study: First Synthesis Method Using Imidazolium Derivatives

The first attempt to synthesize zeolites with compounds derived from the imidazolium cation
culminated in the publication of an article in 2009 in collaboration with the Porto Alegre (Brazil) group
led by Dr. Roberto F. de Souza and Dr. Katia Bernando-Gusmão [55]. This article described the use of
1-butyl-3 methylimidazole chloride (Figure 1) as the OSDA and basic media as the mineralizing agent.
The ZSM-5 zeolite belonging to the MFI topology, possessing an interesting spherical morphology
(Figure 2) and was synthesized in 3 days using a high Si/Al ratio (SAR, 50 or 100) and high temperatures
(180 ◦C). However, a lower SAR (20) and temperature (150 ◦C) directed the structure toward a beta
zeolite, corresponding to the *BEA topology (Figure 3). Both topologies feature three-dimensional
channel systems and similar pore sizes (between 5.1 and 5.6 Å) [8]. However, the MFI topology, in
addition to being orthorhombic and not tetragonal like the *BEA topology, has a higher framework
density (FD; MFI = 18.4 T/1000 Å3, *BEA = 15.3 T/1000 Å3). Precisely, this high FD was favored by the
higher temperature used and followed the same tendency observed when synthesizing without an
OSDA, as published by Maldonado et al. [56]. In addition to this, when introducing more aluminum
cations into the framework, more crystallographic distortion should occur due to the difference between
the ionic radii of the aluminum and silicon cations [57].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 13 

template mechanisms [41,42], template interactions that occur when forming dimers [39], and 
adsorption isotherms [43]. It is worth noting there are studies that predict new structures, such as 
those used to collect the database of hypothetical structures, as mentioned previously [44]. Finally, 
the latest attempt to explain interzeolitic transformations and intergrowth has recently been 
published by Schwalbe-Koda et al. using graph theory [45]. In short, these types of studies are 
important to explain behaviors and help define new experiments. 

There are several other groups working with imidazolium derivatives [46–49], but still, there is 
much more to do. Due to the results obtained with this kind of compound, Prof. Dr. Corma and 
collaborators proceeded to study P-containing [50–52] and As-containing [53] OSDAs and initiated 
new lines of study that have much to offer. 

Thus, in this review, we will describe a case study about the establishment of a research line on 
using imidazolium derivatives for synthesizing zeolites at LABPEMOL. Without elaborating on the 
general aspects of these compounds, which was previously described in a general review from our 
laboratory [54], we will carry out a comparative description of our work to help the reader, whether 
they belong to a university or industry, to develop research on the synthesis with and/or application 
of these compounds. 

2. LABPEMOL Case Study: First Synthesis Method Using Imidazolium Derivatives 

The first attempt to synthesize zeolites with compounds derived from the imidazolium cation 
culminated in the publication of an article in 2009 in collaboration with the Porto Alegre (Brazil) 
group led by Dr. Roberto F. de Souza and Dr. Katia Bernando-Gusmão [55]. This article described the 
use of 1-butyl-3 methylimidazole chloride (Figure 1) as the OSDA and basic media as the mineralizing 
agent. The ZSM-5 zeolite belonging to the MFI topology, possessing an interesting spherical 
morphology (Figure 2) and was synthesized in 3 days using a high Si/Al ratio (SAR, 50 or 100) and 
high temperatures (180 °C). However, a lower SAR (20) and temperature (150 °C) directed the 
structure toward a beta zeolite, corresponding to the *BEA topology (Figure 3). Both topologies 
feature three-dimensional channel systems and similar pore sizes (between 5.1 and 5.6 Å) [8]. 
However, the MFI topology, in addition to being orthorhombic and not tetragonal like the *BEA 
topology, has a higher framework density (FD; MFI = 18.4 T/1000 Å3, *BEA = 15.3 T/1000 Å3). Precisely, 
this high FD was favored by the higher temperature used and followed the same tendency observed 
when synthesizing without an OSDA, as published by Maldonado et al. [56]. In addition to this, when 
introducing more aluminum cations into the framework, more crystallographic distortion should 
occur due to the difference between the ionic radii of the aluminum and silicon cations [57]. 

 
Figure 1. (a) Chemical representation of the OSDA 1-butyl-3-methylimidazolium chloride and its (b) 
3D representation obtained using the freeware programs ChemSketch (ACD/Labs 2017.2.1, copyright 
1994–2018) and ACD/3D Viewer (ACD/Labs 2017.2.1, copyright 1997–2017). 

Figure 1. (a) Chemical representation of the OSDA 1-butyl-3-methylimidazolium chloride and its (b) 3D
representation obtained using the freeware programs ChemSketch (ACD/Labs 2017.2.1, copyright
1994–2018) and ACD/3D Viewer (ACD/Labs 2017.2.1, copyright 1997–2017).



Appl. Sci. 2020, 10, 303 4 of 13
Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 13 

 
Figure 2. SEM micrographs of the ZSM-5 samples with an Si/Al ratio of 100 and different 
magnifications: (a) 500×, (b) 3K×, (c) 5K×, and (d) 10K× (Reprinted from Applied Catalysis A: General, 
v. 374, issues 1-2, M. L. Mignoni, M. O. de Souza, S. B. C. Pergher, R. F. de Souza, K. Bernardo-Gusmão, 
Nickel oligomerization catalysts heterogenized on zeolites obtained using ionic liquids as templates, 
pp. 23–30, Copyright (2009), with permission from Elsevier B. V.) [55]. 

. 

Figure 3. *BEA topology represented with the program Mercury from the CIF, which was provided 
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Figure 2. SEM micrographs of the ZSM-5 samples with an Si/Al ratio of 100 and different magnifications:
(a) 500×, (b) 3K×, (c) 5K×, and (d) 10K× (Reprinted from Applied Catalysis A: General, v. 374, issues
1-2, M. L. Mignoni, M. O. de Souza, S. B. C. Pergher, R. F. de Souza, K. Bernardo-Gusmão, Nickel
oligomerization catalysts heterogenized on zeolites obtained using ionic liquids as templates, pp. 23–30,
Copyright (2009), with permission from Elsevier B. V.) [55].
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Figure 3. *BEA topology represented with the program Mercury from the CIF, which was provided by
the International Zeolite Association (IZA) [8,58]. The oxygen atoms are red, and the silicon/aluminum
atoms are in blue.

With the same OSDA and fixing the temperature (160 ◦C) and the H2O/Si ratio (25), the synthesis
studies continued to use basic media and obtained the pure silica TON zeolite and the hetero-substituted
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Ti-TON [59]. The samples were synthesized both in static and in rotation and were completely crystalline
after 1 day of synthesis (Figure 4). This work showed for the first time that titanium cations were
introduced into the TON framework in basic media, resulting in a breakthrough for LABPEMOL.

In comparison with the MFI structure of the previous publication, we observed a similar FD (18.1
T/1000 Å3) and the same crystallographic system (orthorhombic). However, the TON topology has
a structure with a one-dimensional channel system. Most likely, some kind of relationship can be
established with the amount of OSDA molecules found per unit cell, but unfortunately we lack the
data presented in these two articles to make that comparison.
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Figure 4. X-ray diffractograms of the Ti-TON zeolite prepared with reaction times of (a) 1 day, (b) 3 days,
and (c) 7 days with stirring, and (d) 1 day, (e) 3 days, and (f) 7 days in static mode (Reprinted from
Microporous and Mesoporous Materials, v. 213, C. L. Lopes, P. H. Finger, M. L. Mignoni, D. J. Emmerich,
F. M. T. Mendes, S. Amorim, S. B. C. Pergher, TiO2-TON zeolite synthesis using an ionic liquid as a
structure-directing agent, pp. 78–84, Copyright (2015), with permission from Elsevier B. V.) [59].

Completing the experiments with this organic cation, Pergher’s group decided to combine
the knowledge acquired for the first synthesis attempts in hydrofluoric media with the history of
LABPEMOL [60]. To do this, the organic cation had to be exchanged with its hydroxyl form. Once
this was achieved, the synthesis was performed at 160 ◦C, and the pure silica TON topology was
obtained with a H2O/Si ratio of 14. However, by introducing Ti under the same synthetic conditions,
only amorphous products were identified, even when using seeds. A zeolitic material, Ti-MFI, was
only obtained by decreasing the H2O/Si ratio to 7. This result was explained with Villaescusa’s rule,
which states that concentrated gels lead to less dense zeolitic topologies [61]. Even so, there remains an
unknown if Ti-TON would have been obtained in a hydrofluoric medium with the same ratio that was
used in the basic medium (H2O/Si = 25).

As a novelty, this last work also incorporated the first study in cooperation with
Dr. Luis Gómez-Hortigüela, showing that the more stable location of the OSDA positioned the
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aromatic ring at the channel intersections, and that the alkyl chains were located in the sinusoidal
channels (interaction energy −328.2 kcal/mol per unit cell).

3. LABPEMOL Case Study: New OSDAs Based on the Imidazolium Cation

The latest work carried out with the OSDA 1-butyl-3-methylimidazolium opened a plethora of
synthetic possibilities at LABPEMOL, which led to a change in course, now focusing on synthesizing
zeolites in hydrofluoric media. The direction experiments were started using pure-silica zeolite
conditions and concentrated gels, and the hydroxylic forms of the OSDAs 1,2,3-triethylimidazolium,
2-ethyl-1,3-dimethylimidazolium, and 1,2,3-triethyl-4-methylimidazolium (Figure 5) were studied [23].
The STF topology was primarily obtained with all of the OSDAs, while the MFI topology was only
identified when using the cation 1,2,3-triethylimidazolium (Figure 6). Dense tridymite-like phases
were also found with the cation 1,2,3-triethyl-4-methylimidazolium. These results also followed
Villaescusa’s rule; however, in this case, what was acting as the second variable was the OSDA (where
the first variable was the H2O/Si ratio).
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(b) 2-ethyl-1,3-dimethylimidazolium hydroxide, and (c) 1,2,3-triethyl-4-methylimidazolium hydroxide,
using the freeware program ChemSketch (ACD/Labs 2017.2.1, copyright 1994–2018).
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Figure 6. (a) MFI and (b) STF topologies represented with the program Mercury obtained from the CIF
and provided by the International Zeolite Association (IZA) [8,58]. The oxygen atoms are in red, and
the silicon/aluminum atoms are in blue.

Another difference that was observed was the number of OSDA molecules per unit cell. Regardless
of the chosen cation, the STF topology featured 2 imidazolium cations per unit cell, while for the MFI
topology there were 4 imidazolium per unit cell. With these data and again in collaboration with
Dr. Luis Gómez-Hortigüela, a more comprehensive computational study was carried out. This study
began by studying the different isolated cations to determine the most stable conformations. Then,
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the interactions of the different cations with the crystalline MFI and STF topologies were studied,
regardless of whether or not that phase was obtained with all the OSDAs. An interesting result was
how the symmetry required by each cation in the MFI structure varied, allowing some combinations to
be discarded based on the incompatibility of some of the symmetries with this topology. This was not
found when studying the cation-STF topology interactions, which explained the direction strength of
each OSDA based on their sizes.

Following the initial reasoning of the works with 1-butyl-3-methylimidazolium, the effect
of titanium incorporation on the synthesis method was studied with the OSDA 1,2,3-triethyl-
4-methylimidazolium, which was chosen for directing only the STF topology [62]. The resulting
products also belonged to the same zeolitic topology, regardless of the chosen Si/Ti ratio. Nevertheless,
we cannot conclude that Ti only directs toward the STF, as the only H2O/Si ratio tested was 3.5. Further
study is still needed.

4. LABPEMOL Case Study: Al Insertion into the Zeolitic Framework

Zeolitic aluminosilicates were studied again, but this time from a different perspective. The research
works that followed focused on the introduction of Al3+ cations into known structures synthesized
with imidazolium derivatives in hydrofluoric media.

The tests initially started with the STW topology, particularly the HPM-1 zeolite [34]. The great
interest generated by this chiral zeolite led us to perform a more advanced characterization through
the reaction of ethanol dehydration. The great advantage of this model reaction is that the catalysis
products indicate the acidic and/or basic characteristic of the zeolite used [2]. If the zeolite has acidic
sites, ethylene and diethyl ether are obtained, whereas a basic material produces acetaldehyde. In our
work, which introduced Al3+ into HPM-1, we only observed products from acidic sites and a greater
selectivity to diethyl ether (Figure 7).
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This work also marked the beginning of a collaboration with Dr. Enrique Rodríguez-Castellón,
a specialist in X-ray photoelectron spectroscopy (XPS) and HPDEC MAS NMR. Thus, we managed to
carry out some interesting studies on differentiating the SAR between the bulk (SARNMR) and surface
(SARXPS). The work describing the introduction of Al3+ into the STF structure was where we most
clearly appreciated the differences (Table 1), and we noted that much of the tetrahedral aluminum that
was located in the outermost layer of the zeolitic crystals did not observe large differences between the
calcined and non-calcined samples, in this regard.
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Table 1. SAR calculated using the XPS and HPDEC MAS NMR results of the different Al STF
samples (Reprinted from Catalysis Today, v. 2019, P. Vinaches, E. C. Gonçalves, Y. Variani, A. Rojas, E.
Rodríguez-Castellón, S. B. C. Pergher, Aluminum introduction on the STF zeolite synthesized with the
organic structure-directing agent 123TE4MI, in press, Copyright (2019), with permission from Elsevier
B. V.) [63].

Sample SARNMR SARXPS

SA12T11 52.7 15.6
SA12T11C 56.5 19.0
SA23T11 45.9 25.3

SA23T11C 49.6 33.3
SA45T11 79.8 32.3

SA45T11C 83.8 40.3

5. LABPEMOL Case Study: SAPO Synthesis Using Imidazolium Derivatives

Until that moment at LABPEMOL, aluminosilicates, titanosilicates, and pure silica zeolites were
studied in both basic and hydrofluoric media. As shown in the literature, there were some studies
with imidazolium derivatives that gave interesting results in the synthesis of silicoaluminophosphates
(SAPOs), and we performed a series of experiments in this regard [64]. As the OSDA, we chose
the compound 2-ethyl-1,3,4-trimethylimidazolium hydroxide, and we chose hydrofluoric acid as
the mineralizing agent. This combination already produced interesting results when a pure silica
composition was selected, as the chiral zeolite STW was obtained [7,37]. However, as an SAPO, we
obtained two different topologies: CHA and LTA. The SAPO-CHA possesses t-hpr tilings, among
others, and SAPO-LTA possesses t-cub tilings, also among others. Both types of natural tilings are
directed by fluoride anions. Apart from that fact, these two SAPO types have no other structural
similarities. Then, to understand the results, we performed a statistical study, showing some results
regarding the SAPO-CHA in Figure 8.
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Figure 8. Pareto chart referring to the conditions used to synthesize SAPO-CHA (Reprinted from
European Journal of Inorganic Chemistry, v. 2018, P. Vinaches, S. B. C. Pergher, Organic structure-directing
agents in SAPO synthesis: the case of 2-ethyl-1,3,4-trimethylimidazolium, pp. 123–130, Copyright (2018),
with permission from Wiley-VCH Verlag GmbH & Co.) [64].

In the Pareto chart, we observed that the temperature (T) was a decisive parameter for obtaining
the SAPO-CHA and had the strongest effect when the water ratio (xH2O) was combined with the
synthesis time (t). For the SAPO-LTA, we were unable to quantify the effects due to the small amount
of material that was obtained.
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Returning to the SAPO-CHA, an interesting fact was the presence of hexacoordinated aluminum
in the structure (Figure 9), which was probably due to the interactions of the aluminum cations with the
fluoride anions. Concluding this study, it was shown that there is a need to deepen the understanding
of the LTA topology, including when the LTA contains phosphor, and the statistical studies used for
the structure-direction analysis were very useful.
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6. Conclusions and Prospects

Imidazolium cation derivatives are promising compounds both in the search for new zeolitic
structures and in the synthesis of the already known ones. The ease of using and recovering imidazolium
cation derivatives highlights their potential in zeolite synthesis research. In this review, we have shown
several study possibilities that were carried out by establishing this research line at LABPEMOL. There
is a need for systematization in order to study the products resulting from the different synthesis
methods with imidazolium derivatives. The use of statistical methods, such as that performed with the
SAPOs, or of computational studie (for example those used to study the new OSDAs), may help in this
sense. Further studies of the zeolite chirality are needed to translate this knowledge into industry. It is
also interesting to perform experiments in relation to the recovery of the OSDAs and the use of cheaper
alternative silica and aluminum sources. Finally, new OSDAs and new synthetic methods are needed
to achieve other hypothetical topologies that are still waiting to be synthesized. We hope that showing
the history of the laboratory, in this regard, will help other research groups begin similar studies.

7. Patents

R. F. de Souza, M. O. de Souza, K. Bernardo-Gusmão, S. B. C. Pergher, M. L. Mignoni. PI 1001211-7
B1 Processo de preparação de zeólitas utilizando líquidos iônicos como agentes direcionadores de
estrutura. Brazil; deposit date 04/19/2010; issued 05/08/2018.

S. B. C. Pergher, M. L. Mignoni, D. J. Emmerich, C. W. Lopes. BR1020140164294 Proccesso de
obtenção da zeólita LPM-2, um titanosilicato zeolítico de topologia TON, utilizando líquidos iônicos
como agentes direcionadores de estrutura. Brazil; deposit date 05/30/2014; publication date 12/29/2015.
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