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Abstract: The main object of this study is to introduce hybrid integration approaches that consist
of state-of-the-art artificial intelligence algorithms (SysFor) and two bivariate models, namely the
frequency ratio (FR) and index of entropy (IoE), to carry out landslide spatial prediction research.
Hybrid integration approaches of these two bivariate models and logistic regression (LR) were used
as benchmark models. Nanzheng County was considered as the study area. First, a landslide
distribution map was produced using news reports, interpreting satellite images and a regional
survey. A total of 202 landslides were identified and marked. According to the previous studies and
local geological environment conditions, 16 landslide conditioning factors were chosen for landslide
spatial prediction research: elevation, profile curvature, plan curvature, slope angle, slope aspect,
stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), distance
to roads, distance to rivers, distance to faults, lithology, rainfall, soil, normalized different vegetation
index (NDVI), and land use. Then, the 202 landslides were randomly segmented into two parts with
a ratio of 70:30. Seventy percent of the landslides (141) were used as the training dataset and the
remaining landslides (61) were used as the validating dataset. Next, the evaluation models were built
using the training dataset and compared by the receiver operating characteristics (ROC) curve. The
results showed that all models performed well; the FR_SysFor model exhibited the best prediction
ability (0.831), followed by the IoE_SysFor model (0.819), IoE_LR model (0.702), FR_LR model (0.696),
IoE model (0.691), and FR model (0.681). Overall, these six models are practical tools for landslide
spatial prediction research and the results can provide a reference for landslide prevention and control
in the study area.

Keywords: hybrid integration approaches; bivariate models; artificial intelligence algorithm; landslide

1. Introduction

Landslides, as one of the most frequent geological disasters, have caused casualties, property
damage and a series of geological environment problems [1,2]. According to the statistics report of the
China Institute of Geo-environmental Monitoring [3], a total of 2966 geological disasters occurred in
2018, including 1631 landslides, resulting in 112 deaths and a direct financial loss of CNY 1.47 billion.
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Hence, to minimize the damage caused by the landslides, it is necessary to carry out landslide
susceptibility research in a region [1,4,5]. Generally, landslide susceptibility can be roughly defined as
the probability of landslide occurrence in a certain area under the coupling action of a series of geological
environmental factors and human activities [6–9]. Currently, many approaches have been applied in
landslide susceptibility research and their results have been applied to landslide prevention [10–12].
According to previous studies [13–16], the approaches applied in landslide susceptibility assessment
can be roughly divided into three types: statistical models, machine learning models and hybrid
integration models. The commonly used statistical models are statistical index (SI) [17,18], index of
entropy (IoE) [19,20], frequency ratio (FR) [21–23], weights of evidence (WoE) [24,25], certainty factor
(CF) [26,27], evidential belief function (EBF) [28,29], analytical hierarchy process (AHP) [30–32], and
logistical regression (LR) [33].

As the prediction ability of the above models has needed to be improved, machine learning methods
have been introduced, such as support vector machine (SVM) [34–36], random forest (RF) [37,38],
adaptive neuro-fuzzy inference systems (ANFIS) [39,40], artificial neural network (ANN) [41–43],
decision tree (DT) [44,45], and classification and regression tree (CART) [46,47]. Many researchers
have gradually found that the prediction ability of a single model is limited [48]. Therefore, it is
necessary to develop hybrid integration approaches, such as support vector machine–evidential belief
function (SVM_EBF) [49], decision tree–weights of evidence (DT_WoE) [50], adaptive neuro-fuzzy
inference systems–statistical index (ANFIS_SI) [51], frequency ratio–logistic regression (FR-LR) [23,52],
rotation forest–naive Bayes tree (RF_NBT) [53], and random subspace–classification and regression
tree (RS_CART) [54].

In order to obtain an appropriate model that is suitable for the study area, this paper introduces
an advanced artificial intelligence algorithm (SysFor) with a frequency ratio and index of entropy to
carry out a landslide susceptibility assessment. A logistic regression model is used as the benchmark
model to compare the performance of the hybrid models.

2. Methodology

2.1. Frequency Ratio

The frequency ratio (FR) is defined as the ratio between the percentage of landslides and the
percentage of pixels within one class [20,55]. The relationship between landslide and the factors
is stronger when the frequency ratio is larger than 1 [56,57]. The frequency ratio is calculated by
Equation (1).

FR =

NLSpix∑n
1 NLSpix

NCpix∑n
1 NCpix

(1)

where NLSpix is the number of landslides, and NCpix is number of pixels of a class.

2.2. Index of Entropy

The second model is the entropy index (IoE), which is based on the bivariate analysis
principle [58,59]. The model can calculate the weight of each input variable, and the weight can
show which variable is most relevant to the occurrence of landslides in the natural environment [20].
The weights of each variable obtained are taken as the entropy index [60]. The equations used to
calculate the weight of each variable are shown as Equations (2)–(8).

Pi j =
b
a

(2)
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(Pi j) =
Pi j

S j∑
j=1

Pi j

(3)

H j = −

S j∑
i=1

(Pi j) log2(Pi j) j = 1, 2, 3, . . . , n (4)

H jmax = log2 S j (5)

I j =
H jmax −H j

H jmax
, I = (0, 1) j = 1, 2, 3, . . . , n (6)

P j =
1
S j

S j∑
i=1

Pi j (7)

W j = I j × P j (8)

where a is the percentage of the defined domain; b is the landslide percentage; Pij is the probability
density; Hjmax and Hj are both entropy values; Sj is the number of classes; Ij is the information coefficient;
and Wj is the weight for the variable as a whole.

2.3. SysFor

The systematically developed forest of multiple trees (SysFor) is a data mining algorithm that is
based on the concept of the gain ratio and was proposed by Islam and Giggins in 2011 [61,62]. Compared
with the commonly used techniques, the SysFor applies both high-dimensional and low-dimensional
data sets. In addition, it also shows a higher prediction accuracy than the common techniques [63].
Generally, the SysFor is built with the following four steps: (1) According to the user-defined gain ratio
and separation value, a set of good attributes and their segmentation points are identified. (2) If the
number of good attributes is smaller than the number of user-defined trees, each attribute is selected as
the root attribute of the tree, and the number of trees built is equal to the number of good attributes.
(3) If the number of trees generated in step 2 is less than the number of user-defined trees, more trees
are built. (4) All trees built in steps (2) and (3) are returned as the SysFor.

2.4. Logistic Regression

Logistic regression is a multivariable method [64–66]. The main goal of a logistic regression
model is to obtain the most suitable method to determine whether there are landslides using particular
variables [47,67]. The relationship between landslide occurrence and the variables is shown in
Equation (9).

P =
1

1 + exp(−Z)
(9)

where P is the probability of landslide occurrence, and Z is the linear sum, which is obtained by the
product of independent variables and their coefficients. The calculation of Z is shown in Equation (10).

Z = α+ β1x1 + β2x2 + β3x3 + . . .+ βnxn (10)

where α is a constant; βi (i = 1, 2, 3 . . . n) are the coefficients; and xi (i = 1, 2, 3 . . . n) are the
independent variables.

3. Study Area and Data Used

The study area (Nanzheng County) lies in Shaanxi Province, China (Figure 1). It is located between
longitude 106◦30′ and 107◦22′ E and latitude 32◦24′ to 33◦07′ N. It covers an area of 2823 square
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kilometers. The altitude of the study area is between 442 and 2410 m. The study area has a subtropical
monsoon climate, with an annual average temperature of 14.2 ◦C. Rainfall is mainly concentrated from
June to September and the mean annual rainfall is 909.8 mm.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 22 

 

where α is a constant; βi (i = 1, 2, 3… n) are the coefficients; and xi (i = 1, 2, 3… n) are the independent 
variables. 

3. Study Area and Data Used 

The study area (Nanzheng County) lies in Shaanxi Province, China (Figure 1). It is located 
between longitude 106°30′ and 107°22′ E and latitude 32°24′ to 33°07′ N. It covers an area of 2823 
square kilometers. The altitude of the study area is between 442 and 2410 m. The study area has a 
subtropical monsoon climate, with an annual average temperature of 14.2 °C. Rainfall is mainly 
concentrated from June to September and the mean annual rainfall is 909.8 mm. 

 

Figure 1. Study area and landslide inventory. Figure 1. Study area and landslide inventory.

A landslide inventory can give insight into landslide location, dates, type, and damage
caused [68–70]. In this study, the landslide inventory map was prepared on the basis of historical
landslide records and satellite images (Google Earth and ZY03 images). A total of 202 landslides were
identified, including 190 slides and 12 rock falls [71]. The largest landslide was more than 1,000,000 m3,
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and the smallest landslide was nearly 160 m3 [70]. Finally, 141 landslides were randomly selected as
training and validation datasets with a ratio of 70:30 (Figure 1).

There is no clear agreement about the precise cause of landslides due to their complex nature
and development. According to the latest relevant research and local geological environment
characteristics [72–76], 16 landslide conditioning factors have been compiled: elevation, profile
curvature, plan curvature, slope angle, slope aspect, stream power index (SPI), topographic wetness
index (TWI), sediment transport index (STI), distance to roads, distance to rivers, distance to faults,
lithology, rainfall, soil, normalized different vegetation index (NDVI), and land use. The 16 landslide
susceptibility conditioning factors were converted with a resolution of 30 × 30 m.

Elevation influences earth surface and topographic attributes which account for spatial variability
of precipitation, soil thickness, erosion, and vegetation [38]. Profile curvature and plan curvature
have significant effects on surface runoff and infiltration [77]. Slope angle is an important factor that
controls the velocity of the slopes, and the slope aspect has an important effect on rainfall, wind and
sunlight exposure [78]. SPI, TWI and STI are related to soil water content status, water accumulation
and progress of erosion and sedimentation in a watershed, which influence landslide stability [77,78].
In the present study, the elevation map was acquired from a 30 × 30 m digital elevation model (DEM)
and reclassified into 10 classes: 442–600 m, 600–800 m, 800–1000 m, 1000–1200 m, 1200–1400 m,
1400–1600 m, 1600–1800 m, 1800–2000 m, 2000–2200 m, and 2200–2410 m (Figure 2a). Similarly, the
profile curvature, plan curvature, slope angle, slope aspect, SPI, TWI, and STI were also extracted from
the DEM by ArcGIS. In the study, the profile curvature was grouped into three classes of −14.28 to
−0.05, −0.05 to 0.05, and 0.05 to 14.77 (Figure 2b). The plan curvature was divided into three categories
of −14.0 to −0.05, −0.05 to 0.05, and 0.05 to 13.07 (Figure 2c). The slope angle was grouped into seven
categories: 0–10◦, 10–20◦, 20–30◦, 30–40◦, 40–50◦, 50–60◦, and 60–72.83◦ (Figure 2d). The slope aspect
was reclassified into nine classes (Figure 2e). The SPI values were grouped into five classes: <20, 20–40,
40–60, 60–80, and >80 (Figure 2f). The TWI was reclassified into five categories: <4, 4–5, 5–6, 6–7,
and >7 (Figure 2g). The STI values were divided into five classes: <10, 10–20, 20–30, 30–40, and >40
(Figure 2h).

Distance to roads, distance to rivers and distance to faults are three commonly used landslide
conditioning factors, these factors are related to the infiltration and strength of slopes [79,80]. Distance
to roads, distance to rivers and distance to faults are divided into five categories by the equal distance
method, as shown in Figure 2i–k, respectively. Lithology is one of the most important restrictive
factors in landslide susceptibility evaluation; areas with highly resistant rocks or highly permeable
subsoil material have low drainage density [81], which are natural factors essential to determine
landslide occurrence [82,83]. The geological map of this study was extracted from a geological map
with 1:1,000,000 scale. The study area has 12 different lithological units, which are shown in Figure 2l.
Rainfall is a widely recognized landslide-inducing factor, which not only increases the weight of the
slope, but also reduces soil strength [84,85]. From Figure 2m, it can be seen that the rainfall in the
middle of the study area is significantly higher than that in the north and south. The rainfall map was
reclassified with an interval of 100 mm/yr. Soil is the material composition of the slope, and different
soils have different physical and mechanical properties. Soil type was extracted from the geological
map with a 1:1,000,000 scale, as shown in Figure 2n, and there are nine kinds of soils in the study
area. NDVI is a measure of surface reflectance and gives a quantitative estimate of biomass and the
vegetation growth [38,86–88]. The NDVI values in this paper were reclassified into five categories:
−0.21 to 0.21, 0.21 to 0.36, 0.36 to 0.44, 0.44 to 0.52, and 0.52 to 0.65 (Figure 2o). Land use is considered as
the direct manifestation of human activities impacting on landslide probability. Land use types control
the amount of infiltration and surface runoff generation [77]. In general, landslides are concentrated in
human active areas [89,90]. In this study, a land use map was extracted from regional land use maps
with a 1:100,000 scale. Land use was divided into farmland, forestland, grassland, water, residential
areas, and bare land (Figure 2p).
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Figure 2. Thematic maps of landslide conditioning factors.

4. Results

As the LR method was employed to produce the landslide susceptibility map, it is necessary to
analyze the multicollinearity of landslide conditioning factors [91]. Currently, the tolerance (TOL)
and variance inflation factor (VIF) are mostly used in multicollinearity analysis [92,93]. Generally, a
TOL < 0.1 or a VIF > 10 indicate multicollinearity [72]. In the study, the results indicate that there are
no multicollinearities among the 16 landslide conditioning factors (Table 1).

Table 1. Multicollinearity analysis.

Parameters
Collinearity Statistics

Tolerance VIF Tolerance VIF

Elevation 0.543 1.843 0.507 1.970
Profile curvature 0.897 1.115 0.897 1.115
Plan curvature 0.824 1.214 0.801 1.248

Slope angle 0.764 1.308 0.759 1.317
Slope aspect 0.912 1.096 0.904 1.106

SPI 0.524 1.907 0.464 2.157
TWI 0.830 1.205 0.834 1.200
STI 0.479 2.086 0.426 2.346

Distance to roads 0.817 1.224 0.823 1.214
Distance to rivers 0.952 1.050 0.924 1.083
Distance to faults 0.926 1.080 0.731 1.368

Lithology 0.729 1.372 0.734 1.362
Rainfall 0.741 1.349 0.802 1.247

Soil 0.805 1.242 0.687 1.456
NDVI 0.847 1.180 0.639 1.566

Land use 0.640 1.562 0.507 1.970
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4.1. Application of FR Model

The frequency ratio (FR) is a commonly used method of univariate probability analysis in landslide
susceptibility assessment [21,25]. When the frequency ratio is 1, it represents the average value; when
the frequency ratio is greater than 1, it indicates that the factor has a strong correlation with the
occurrence of the landslide; when the frequency ratio is less than 1, it indicates that the correlation
between the factor and the occurrence of the landslide is weak. The landslide susceptibility index (LSI)
calculated by the FR model can be expressed as Equation (11), as shown in Table 2.

LSIFR = (ElevationFR) + (Pro f ile curvatureFR) + (Plan curvatureFR)+

(Slope angleFR) + (Slope aspectFR) + (SPIFR) + (TWIFR) + (STIFR)+

(Distance to roadsFR) + (Distance to riversFR) + (Distance to f aultsFR)+

(LithologyFR) + (Rain f allFR) + (SoilFR) + (NDVIFR) + (LanduseFR)

(11)

Table 2. Relationship between landslides and conditioning factors using FR and IoE models.

Factors Class Percentage of Domain Percentage of Landslides FR Wj

Elevation (m) 442–600 13.242 19.858 1.500 0.223
600–800 16.399 34.043 2.076
800–1000 12.091 21.986 1.818

1000–1200 10.450 12.057 1.154
1200–1400 12.756 10.638 0.834
1400–1600 12.341 1.418 0.115
1600–1800 12.042 0.000 0.000
1800–2000 7.920 0.000 0.000
2000–2200 2.504 0.000 0.000
2200–2410 0.255 0.000 0.000

Profile curvature −14.28 to −0.05 45.753 46.809 1.023 0.083
−0.05–0.05 5.696 11.348 1.992
0.05–14.77 48.551 41.844 0.862

Plan curvature −14.0 to −0.05 46.110 41.135 0.892 0.014
−0.05–0.05 6.893 9.220 1.338
0.05–13.07 46.996 49.645 1.056

Slope angle (◦) 0–10 23.641 25.532 1.080 0.146
10–20 29.270 44.681 1.526
20–30 26.292 20.567 0.782
30–40 14.987 7.801 0.521
40–50 4.975 1.418 0.285
50–60 0.780 0.000 0.000

60–72.83 0.055 0.000 0.000
Slope aspect Flat 0.028 0.000 0.000 0.075

North 14.212 11.348 0.798
North-east 12.976 11.348 0.875

East 12.046 12.057 1.001
South-east 12.505 16.312 1.304

South 11.982 22.695 1.894
South-west 11.044 9.220 0.835

West 11.355 6.383 0.562
North-west 13.853 10.638 0.768

SPI <20 55.734 62.411 1.120 0.010
20–40 15.930 14.184 0.890
40–60 7.404 8.511 1.149
60–80 4.284 3.546 0.828
>80 16.649 11.348 0.682

TWI <4 17.880 7.801 0.436 0.046
4–5 32.049 35.461 1.106
5–6 23.903 34.043 1.424
6–7 12.599 14.184 1.126
>7 13.569 8.511 0.627
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Table 2. Cont.

Factors Class Percentage of Domain Percentage of Landslides FR Wj

STI <10 55.157 63.830 1.157 0.024
10–20 22.491 22.695 1.009
20–30 9.447 4.255 0.450
30–40 4.524 3.546 0.784
>40 8.381 5.674 0.677

Distance to roads (m) <300 11.010 23.404 2.126 0.065
300–600 8.951 11.348 1.268
600–900 7.852 5.674 0.723
900–1200 7.036 10.638 1.512

>1200 65.151 48.936 0.751
Distance to rivers (m) <200 16.686 19.149 1.148 0.003

200–400 14.837 15.603 1.052
400–600 13.695 12.766 0.932
600–800 12.002 13.475 1.123

>800 42.781 39.007 0.912
Distance to faults (m) <1000 21.510 22.695 1.055 0.022

1000–2000 16.106 12.766 0.793
2000–3000 13.198 14.894 1.129
3000–4000 11.168 5.674 0.508

>4000 38.019 43.972 1.157
Lithology Group 1 11.627 19.149 1.647 0.117

Group 2 0.054 0.000 0.000
Group 3 4.383 1.418 0.324
Group 4 12.756 4.255 0.334
Group 5 0.239 0.000 0.000
Group 6 3.453 0.000 0.000
Group 7 7.231 3.546 0.490
Group 8 10.228 7.092 0.693
Group 9 8.846 6.383 0.722

Group 10 1.254 0.709 0.566
Group 11 13.945 22.695 1.627
Group 12 25.982 34.752 1.338

Rainfall (mm/yr) <900 6.069 5.674 0.935 0.111
900–1000 18.642 20.567 1.103

1000–1100 9.029 16.312 1.807
1100–1200 10.544 24.823 2.354
1200–1300 8.680 11.348 1.307
1300–1400 20.159 12.766 0.633
1400–1500 11.247 4.965 0.441
1500–1600 8.670 2.128 0.245
1600–1700 4.343 0.709 0.163

>1700 2.618 0.709 0.271
Soil ATc 11.538 14.184 1.229 0.326

CMd 3.647 2.837 0.778
CMe 7.992 21.986 2.751
FLc 1.186 0.000 0.000
LVh 70.808 56.738 0.801
LVx 0.322 0.000 0.000
PLe 0.475 2.128 4.479
RGc 2.630 0.709 0.270
RGe 1.403 1.418 1.011

NDVI −0.21 to 0.21 2.161 2.837 1.313 0.128
0.21–0.36 6.660 7.092 1.065
0.36–0.44 20.845 44.681 2.144
0.44–0.52 34.881 39.716 1.139
0.52–0.65 35.454 5.674 0.160

Land use Farmland 28.826 60.993 2.116 0.311
Forestland 30.974 2.837 0.092
Forestland 38.500 36.170 0.939

Water 0.603 0.000 0.000
Residential areas 1.075 0.000 0.000

Bare land 0.022 0.000 0.000
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4.2. Application of IoE Model

The index of entropy (IoE) is based on the bivariate analysis principle. The weight of each
conditioning factor in landslides can be calculated by this method. From Table 2, it can be seen that
soil has the highest weight (0.326), followed by land use (0.311), elevation (0.223), slope angle (0.146),
NDVI (0.128), lithology (0.117), rainfall (0.111), profile curvature (0.083), slope aspect (0.075), distance
to roads (0.065), TWI (0.046), STI (0.024), distance to faults (0.022), plan curvature (0.014), SPI (0.01),
and distance to rivers (0.003). The LSI calculated by the IoE model can be represented as Equation (12).

LSIIoE = (ElevationFR ∗ 0.223) + (Pro f ile curvatureFR ∗ 0.083)+
(Plan curvatureFR ∗ 0.014) + (Slope angleFR ∗ 0.146)+
(Slope aspectFR ∗ 0.075) + (SPIFR ∗ 0.010) + (TWIFR ∗ 0.046)+
(STIFR ∗ 0.024) + (Distance to roadsFR ∗ 0.065)+
(Distance to riversFR ∗ 0.003) + (Distance to f aultsFR ∗ 0.022)+
(LithologyFR ∗ 0.117) + (Rain f allFR ∗ 0.111) + (SoilFR ∗ 0.326)+
(NDVIFR ∗ 0.128) + (LanduseFR ∗ 0.311)

(12)

4.3. Application of Hybrid Models

Compared with a single model, a hybrid model has higher predictive ability when dealing with
high-dimensional problems [94–96]. In this study, the SysFor algorithm was combined with FR and
IoE models. During the modeling process, the following parameters were used for hybrid FR_SysFor
and IoE_SysFor models: separation, 0.3; confidence, 0.25; goodness, 0.3; number of trees built in the
forest, 500.

The hybrid integration of LR with FR and IoE was also applied as a benchmark model to build
landslide susceptibility maps. A forward stepwise LR was adopted, and the analysis results are given
in Table 3. The landslide occurrence probability P of FR_LR and IoE_LR models can be expressed
using Equations (13)–(16), respectively.

ZFR−LR = (ElevationFR ∗ 0.596) + (Pro f ile curvatureFR ∗ 0.005)+
(Plan curvatureFR ∗ 1.390) + (Slope angleFR ∗ 0.182)+
(Slope aspectFR ∗ 0.633) + (SPIFR ∗ 0.370) + (TWIFR ∗ 0.729)+
(STIFR ∗ 0.381) + (Distance to roadsFR ∗ 0.436)+
(Distance to riversFR ∗ (−0.722)) + (Distance to f aultsFR ∗ (−0.060))+
(LithologyFR ∗ (−0.138)) + (Rain f allFR ∗ 0.607) + (SoilFR ∗ (−0.030))+
(NDVIFR ∗ 0.275) + (LanduseFR ∗ 0.399) − 5.702

(13)

PFR−LR =
eZFR−LR

1 + eZFR−LR
(14)

ZIoE−LR = (ElevationIoE ∗ 1.978) + (Pro f ile curvatureIoE ∗ (−0.626))+
(Plan curvatureIoE ∗ 72.424) + (Slope angleIoE ∗ 1.042)+
(Slope aspectIoE ∗ 9.670) + (SPIIoE ∗ 66.354) + (TWIIoE ∗ 1.570)+
(STIIoE ∗ 7.543) + (Distance to roadsIoE ∗ 5.933)+
(Distance to f aultsIoE ∗ (−4.887)) + (LithologyIoE ∗ (−1.090))+
(Rain f allIoE ∗ 5.141) + (SoilIoE ∗ 0.008)+
(NDVIIoE ∗ 5.007) + (LanduseIoE ∗ 1.260) − 6.400

(15)

PIoE−LR =
eZIoE−LR

1 + eZIoE−LR
(16)
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Table 3. Coefficients of models.

Parameters Coefficient of FR_LR Model Coefficient of IoE_LR Model

Elevation 0.596 1.978
Profile curvature 0.005 −0.626
Plan curvature 1.390 72.424

Slope angle 0.182 1.042
Slope aspect 0.633 9.670

SPI 0.370 66.354
TWI 0.729 1.570
STI 0.381 7.543

Distance to roads 0.436 5.933
Distance to rivers −0.722 ——
Distance to faults −0.060 −4.887

Lithology −0.138 −1.090
Rainfall 0.607 5.141

Soil −0.030 0.008
NDVI 0.275 5.007

Land use 0.399 1.260
Constant −5.702 −6.400

Finally, all the landslide susceptibility maps were reclassified into five categories using the equal
area classification method [92,93]: very high (5%), high (10%), moderate (15%), low (20%), and very
low (50%) (Figure 3).
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4.4. Validation of Landslide Susceptibility Maps

Validating the landslide susceptibility map (LSM) and determining its accuracy is an important
aspect of landslide susceptibility research. The verification of landslide susceptibility maps is very
important. Without it, the rigor of the study is greatly weakened, and the results of the study have
no scientific significance [97–99]. In consequence, three commonly used statistical parameters, the
receiver operating characteristics (ROC) curve [100–102] and the area under the curve (AUC) [103–105],
standard error, and 95% confidence interval are introduced to verify the landslide susceptibility maps.
It can be seen that the FR_SysFor model acquired the highest AUC value (0.940) of all hybrid models in
the training data, followed by the IoE_SysFor model (0.926), IoE_LR model (0.783) and FR_LR model
(0.779) (Figure 4). With the exception of the AUC value, the other statistical parameters in Tables 4
and 5 show similar results; the FR_SysFor model obtained the smallest SE (0.0132) and 95% CI (0.906,
0.965), followed by the IoE_SysFor, IoE_LR and FR_LR models. The validating data showed similar
results to the training data, and the FR_SysFor model achieved the highest AUC value (0.831) and the
smallest SE (0.0388) and 95% CI (0.753, 0.893).Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 22 
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In addition, the success rate curves and prediction rate curves of the landslide susceptibility maps
were also assessed (Figures 5 and 6). It can be seen that the FR_SysFor model recognized a highly
susceptible area with a success rate curve that contains more than 80% of landslides. Similarly, the



Appl. Sci. 2020, 10, 29 13 of 21

highly susceptible area with the prediction rate curve recognized by the FR_SysFor model also includes
more than 70% of landslides, which illustrates that the precision of the FR_SysFor model is the highest
and that the FR_SysFor model is the best model in this study.

Table 4. Parameters of ROC curves using training data.

Variable AUC SE 95% CI

FR_model 0.757 0.0285 0.702 to 0.806
IoE_model 0.746 0.0292 0.691 to 0.796

FR_SysFor_model 0 940 0.0132 0.906 to 0.965
IoE_SysFor_model 0.926 0.0151 0.889 to 0.954

FR_LR_model 0.779 0.0271 0.726 to 0.826
IoE_LR_model 0.783 0.0270 0.730 to 0.829

Table 5. Parameters of ROC curves using validating data.

Variable AUC SE 95% CI

FR_model 0.681 0.0498 0.590 to 0.762
IoE_model 0.691 0.0489 0.601 to 0.771

FR_SysFor_model 0.831 0.0388 0.753 to 0.893
IoE_SysFor_model 0.819 0.0399 0.739 to 0.883

FR_LR_model 0.696 0.0485 0.606 to 0.776
IoE_LR_model 0.702 0.0483 0.612 to 0.781
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5. Discussion

Currently, some novel ensemble techniques have been proposed in landslide susceptibility
mapping, and the excellent performance of ensemble techniques has been proven [92,106–109].
Furthermore, the hybrid integration of machine learning algorithms with bivariate statistical models
can weaken the hypotheses of the conventional bivariate models and retain the merits of bivariate
statistical models and machine learning models [110].

Compared with SysFor, FR, IoE and LR are three common evaluation models which have the
merits of model stabilization, higher accuracy and simple calculation. Razavizadeh et al. proposed
a GIS-based landslide susceptibility mapping with frequency ratio, statistical index, and weights of
evidence models for a part of Mazandaran Province, Iran. Both success rate curve and prediction
rate curve demonstrated that the frequency ratio (FR) is a reliable model with the highest accuracy.
Moreover, the landslide susceptibility map generated by the FR model is trustworthy for hazard
mitigation strategies [25]. Pourghasemi et al. introduced the index of entropy (IoE) and conditional
probability models to landslide susceptibility research in Safarood Basin, Iran. The results indicated
that both models have good predictive capacity, while the IoE performed slightly better than the
conditional probability model in landslide susceptibility mapping [111]. Abedini et al. applied logistic
regression (LR) and AHP models to landslide susceptibility assessment. The results indicated that the
LR is a suitable model to classify and estimate the probability of landslide occurrence in the process of
project research planning and implementation [112].

In the present study, for the class of 600–800 m of elevation (ratio value = 2.650), distance to
roads <300 m (ratio value = 2.126) and 1100–1200 mm/yr of rainfall (ratio value = 2.354) facilitated
the occurrence of landslides. The results based on the IoE model showed that soil (0.326), land use
(0.311), elevation (0.223), and slope angle (0.143) are the most important factors, which are closely
related to the occurrence and spatial distribution of landslides compared with other factors. On the
contrary, distance to faults, plane curvature, SPI, and distance to rivers achieved the four lowest
weight values, which were 0.022, 0.014, 0.003, and 0.014, respectively. However, the classifications
of landslide conditioning factors were based on previous studies and might not be suitable for the
present study. Therefore, further studies should be conducted to find an objective classification method
for landslide conditioning factors [113,114]. In order to obtain more reliable landslide susceptibility
maps, the significant differences of six landslide susceptibility methods were calculated and compared.
According to the relevant research [58,115], the most common and effective methods include the
receiver operating characteristics (ROC) curve, standard error (SE), 95% confidence interval (CI), and
Wilcoxon signed-rank tests. Hence, the paper introduced three well known statistical parameters—the
ROC curve, SE and 95% CI—to calculate and compare the model performance. For the training data,
the results of the ROC curve, SE and 95% CI can be seen in Table 4. The FR_SysFor model performed
best and acquired the highest AUC value (0.940), followed by IoE_SysFor, IoE_LR, FR_LR, FR, and IoE
models with AUC values of 0.926, 0.783, 0.779, 0.757, and 0.746, respectively. Similarly, the two other
statistical parameters showed the same results; the FR_SysFor model obtained the smallest SE and 95%
CI. For the validating data, the parameters of the ROC curve, SE and 95% CI are shown in Table 5.
The validating data showed that the FR_SysFor model had higher accuracy (AUC = 0.831) than the
remaining models and performed best in the research. Meanwhile, the smallest SE and 95% CI also
belonged to the FR_SysFor model.

Overall, based on the FR and IoE models, combined with SysFor and LR models, the landslide
susceptibility of Nanzheng County was studied. As described above, the FR_SysFor model performed
the best in this study as compared to other models. Finally, the ensembles of FR and IoE with the
proposed algorithm (SysFor) can provide a reference for landslide susceptibility research in other areas.

In practice, landslide hazard managers can employ the FR_SysFor model to determine regions
with high and very high susceptibility in the study area. An early warning system for landslide
occurrence can transmit useful awareness and warning information for residents living in these
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areas [107]. Furthermore, the landslide susceptibility map of the present study can help to construct
retaining wall systems and anchor systems to enhance slope stability [107].

6. Conclusions

In this case study, six landslide susceptibility evaluation methods, namely, the FR, IoE, FR_SysFor,
IoE_SysFor, FR_LR, and IoE_LR models, were systematically analyzed and compared as part of
landslide susceptibility research in Nanzheng Country (China). Based on previous research and the
geological environmental characteristics in the study area, 16 conditioning factors were selected for the
research: elevation, profile curvature, plan curvature, slope angle, slope aspect, SPI, TWI, SPI, distance
to roads, distance to rivers, distance to faults, lithology, rainfall, soil, NDVI, and land use. These
models were applied to the calculation of landslide occurrence probability for the first time. Finally,
the model performances were compared by the statistical parameters of ROC curves, AUC values, SE
and 95% CI. The results show that all the models perform well. Compared with other models, the
prediction capability of the FR_SysFor model is the highest, with a success rate of 0.940 and prediction
rate of 0.831. Hence, the FR_SysFor model is considered the most promising technique in this study.
The results can provide a reference for land-use planning and decision-making in the study area.
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