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Abstract: This paper presents a low-noise multi-path operational amplifier for high-precision sensors.
A chopper stabilization technique is applied to the amplifier to remove offset and flicker noise. A ripple
reduction loop (RRL) is designed to remove the ripple generated in the process of up-modulating the
flicker noise and offset. To cancel the notch in the overall transfer function due to the RRL operation,
a multi-path architecture using both a low-frequency path (LFP) and high-frequency path (HFP) is
implemented. The low frequency path amplifier is implemented using the chopper technique and the
RRL. In the high-frequency path amplifier, a class-AB output stage is implemented to improve the
power efficiency. The transfer functions of the LFP and HFP induce a first-order frequency response
in the system through nested Miller compensation. The low-noise multi-path amplifier was fabricated
using a 0.18 µm 1P6M complementary metal-oxide-semiconductor (CMOS) process. The power
consumption of the proposed low-noise operational amplifier is 0.174 mW with a 1.8 V supply and
an active area of 1.18 mm2. The proposed low-noise amplifier has a unit gain bandwidth (UGBW) of
3.16 MHz, an input referred noise of 11.8 nV/

√
Hz, and a noise efficiency factor (NEF) of 4.46.

Keywords: low-noise amplifier; chopper stabilization technique; ripple reduction loop (RRL); notch;
multi-path amplifier; class AB output; noise efficiency factor (NEF)

1. Introduction

With the development of smart devices for Internet of Things (IoT), various sensor applications are
becoming increasingly necessary. Among them, micro-electro-mechanical system (MEMS) sensors are
receiving particular attention due to their small size, high signal-to-noise ratio (SNR), and low cost [1–4].
Sensing diminutive signals with a small output current and small output voltage amplitude using
MEMS sensors requires large amplification. Therefore, high gain, high input impedance, and low-noise
operational amplification are essential for various sensor interfaces [5–7]. To reduce output noise,
chopper stabilization or auto-zeroing techniques are typically used [8]. The auto-zeroing technique
typically operates using two phases. The first phase stores flicker noise and offset in the auto-zero
capacitor, and the next phase subtracts the stored flicker noise and offset from the input signal.
Because of these two phases, the auto-zeroing technique performs discrete-time operation. In addition,
auto-zeroing techniques cause switching noise as well as noise folding of high-frequency components
due to sampling operations, thus chopper-stabilized architecture is preferred for low-power and
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low-noise continuous-time applications [9]. Chopper stabilization techniques modulate the offset and
flicker noise with a chopper frequency (fchop), leaving only thermal noise in the base band. However,
the offset and the flicker noise are up-modulated, and these up-modulated noise signals are referred to
as ripple. To attenuate this ripple, the ripple reduction loop (RRL) was proposed [10]. RRL integrates
the generated ripple voltage at the output node and feeds back the integrated ripple to the input
stage negatively. However, there is a limit in bandwidth because the transfer function of the amplifier
produces a notch at the chopper frequency.

The bandwidth is increased by using a multi-path structure—a combination of a low-frequency
path (LFP) and a high-frequency path (HFP). The transfer functions of the LFP and HFP induce
a first-order frequency response in the system (a first-order system) by applying nested Miller
compensation [11]. In the HFP, a class-AB output stage is implemented to improve the power efficiency.
The proposed low-noise multi-path operational amplifier was fabricated using a 0.18-µm 1P6M
complementary metal-oxide-semiconductor (CMOS) process. The average current consumption is
96.7 µA and the active area is 1.18 mm2. The proposed low-noise multi-path amplifier has a unit gain
bandwidth (UGBW) of 3.16 MHz, an input referred noise of 11.8 nV/

√
Hz, and a noise efficiency factor

(NEF) of 4.46.

2. Circuit Implementation of the Proposed Operational Amplifier

2.1. Architecture of the Proposed Multi-Path Operational Amplifier

The basic schematic is shown in Figure 1. The proposed circuit consists of two main paths, the HFP
and LFP. In Figure 1, the red line represents the HFP and the blue line represents the LFP. The LFP
consists of four stages, and the HFP consists of two stages. The LFP applies chopper stabilization to
decrease the offset and flicker noise, while ripple is suppressed by the RRL. Connect the output of A6

in the current adder opposite to the output of A2 to suppress the ripple. The HFP has a first-order
frequency response with one dominant pole caused by Cm1 and the LFP has a second-order frequency
response with two dominant poles caused by Cm1 and Ci1. Nested Miller compensation is applied to
smoothly combine the two frequency responses.
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Figure 1. Block diagram of the proposed chopper-stabilized multi-path operational amplifier with
nested Miller compensation.
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2.2. Low-Frequency Path Design

The LFP is shown in Figure 2. Because the LFP amplifies in four stages and the HFP in two stages,
the LFP predominantly determines the offset and flicker noise of the overall amplifier. Using the
chopper, the offset and flicker noise are up-modulated to the chopper frequency to reduce the offset
and flicker noise in the baseband. The schematic of the input stage is shown in Figure 3. The common
mode feedback (CMFB) of the current adder is implemented with an amplifier structure. The Vcmfb is
set to 1/2 VDD so that the common mode voltage of the output Vop and Von are set to 1/2 VDD.
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Figure 3. Schematic of the input stage.

The signal is converted to a current through A2 and the ripple is converted to a current through
A6. The two-signal current and the ripple current are subtracted through the current adder to suppress
ripple. The output current of the current adder is converted to Vx through the A3 integrator. Vx is
converted to a current through A4 and is merged with the HFP current through the current adder
before A5.
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2.3. Ripple Reduction Loop Design

The offset of A2 is shown in Vx as the ripple due to the demodulation chopper and integrator
A3. When the transconductance of A2 is Gm2 and the frequency of the chopper is fch, the ripple at the
output of A3 can be expressed as

Vripple1 ≈
Vos2Gm2

2Ci1fch
. (1)

When the transconductance of A4 is Gm4, this ripple is integrated again by integrator A5 so the
ripple of the operational amplifier output can be expressed as

Vripple2 ≈
Vripple1Gm4

8Cm1fch
. (2)

To reduce this ripple, the ripple reduction loop is used. The AC component Vripple1 is converted
to the current Ir by the AC coupling capacitor Cr and is input into the current buffer (CB).

|Ir| ≈ 2Crfch
∣∣∣Vripple1

∣∣∣ (3)

The CB is shown in Figure 4. If the output impedance of current source M1, M2, M7, and M8 is
large enough, the output voltage and DC output impedance of the CB are given in Equations (4) and
(5). The ACB is the DC voltage gain of the NMOS cascode in the CB. The output of the CB through A6 is
combined to estimate the amount of ripple suppressed by the current adder, as given by Equation (6).

VCB = |Ir| ·RCB (4)

where, RCB =
ACB

2Crfch
(5)

Iripple_can ≈
ACBGm2Gm6Vos2

2Ci1fch
(6)
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Figure 4. Schematic of the current buffer (CB). Figure 4. Schematic of the current buffer (CB).

The simulation results of the ripple for Vx when a 10-mV offset exists are shown in Figure 5.
The red line is the output waveform of Vx in Figure 2 when RRL is not working, and the blue line is the
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output waveform of Vx when RRL is operating. The ripple voltage was reduced by approximately
88%, from 68 mV to 8 mV by the RRL.
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2.4. High-Frequency Path Design

The HFP of the proposed operational amplifier is shown in Figure 6. The HFP consists of a folded
cascode and a Monticelli-class AB output circuit [12] to increase power efficiency. The HFP becomes
active when the loop gain of the HFP exceeds the loop gain of the LFP.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 12 

The simulation results of the ripple for Vx when a 10-mV offset exists are shown in Figure 5. The 
red line is the output waveform of Vx in Figure 2 when RRL is not working, and the blue line is the 
output waveform of Vx when RRL is operating. The ripple voltage was reduced by approximately 
88%, from 68 mV to 8 mV by the RRL. 

 
Figure 5. Simulation results of the ripple reduction loop. 

Finally, the ripple suppression factor F can be expressed as 

_

2

6 , 2 2 2
1

 . 2
CBripple can

os

m
os os m

i ch

I
I

A GF I V GC f== =   (7) 

2.4. High-Frequency Path Design 

The HFP of the proposed operational amplifier is shown in Figure 6. The HFP consists of a folded 
cascode and a Monticelli-class AB output circuit [12] to increase power efficiency. The HFP becomes 
active when the loop gain of the HFP exceeds the loop gain of the LFP.  

 
Figure 6. Schematic of the high-frequency path (HFP). 

2.5. Frequency Response 

Figure 6. Schematic of the high-frequency path (HFP).



Appl. Sci. 2020, 10, 281 6 of 12

2.5. Frequency Response

The LFP and HFP signals are combined by the current adder in Figure 6. The LFP has a second-order
frequency response caused by A3 and A5 and the HFP has a first-order frequency response caused by
A5. To smoothly merge the transfer functions of the two paths, the frequency response of the LFP must
be made similar to that of a first-order system. To accomplish this, the poles were split by applying the
nested Miller compensation to Cm1, Cm2, and Cm3. In the case of Cm2, as there is positive feedback,
there is a risk that the operation of the entire amplifier will become unstable by inducing the pole to
appear in the right half of the complex-s plane [13]. Therefore, Cm2 is connected to a negative terminal
and its signal is implemented in the form of negative feedback.

The simulation results of the complete transfer function of the proposed operational amplifier are
shown in Figure 7. The red line represents the HFP, the blue line represents the LFP, and the black line
represents the overall transfer function of the multi-path operational amplifier. The frequency where
the loop gain of the LFP and the loop gain of the HFP are equal is called the cross-over frequency and
is determined by Ci1 and A4 in Figure 1. The overall transfer function follows the LFP function at
low frequencies and the HFP function at high frequencies, and thus is not affected by the notch of the
chopper frequency in the RRL. When the transconductance of A2 is Gm1, the frequency response of the
proposed multi-path operational amplifier is seen as the first-order frequency response, so unit gain
bandwidth (UGBW) can be expressed as Equation (8). The simulation results show that the UGBW of
the proposed multi-path operational amplifier is 2.2 MHz.

UGBW =
Gm1

2πCm1
(8)
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2.6. Residual Input Offset

In the case of LFP, the offset and 1/f noise were suppressed using the chopper and RRL. Depending
on the ripple suppression factor F, the residual ripple can ideally be removed completely. In the case of
HFP, since there is no chopper that suppresses the offset, the input offset is shown as the residual input
offset. In terms of residual input offset, the offset Vos1 of A1 can be expressed as Equation (9) when the
gain of HFP is AHFP and the gain of LFP is ALFP [14].

Vresidual_input_offset1 ≈
AHFP

ALFP
Vos1 (9)
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The offset Vos3 of A3 also affects the residual input offset. Vos3 is represented by a square wave
by chopper ch2 and parasitic capacitor Cp3_1-3. The current to charge and discharge Cp3_1-3 requires
an input AC voltage of A2 [14]. This AC voltage becomes the DC voltage via chopper ch1 and appears
as the residual input offset, which can be expressed as

Vresidual_input_offset2 ≈
4Vos3fchCp3

Gm2
(10)

where, Cp3 = Cp3_2 +
Cp3_1 + Cp3_3

2
(11)

Chopper ch2 consists of 4 CMOS switches, as shown in Figure 8. Switching errors occur due to
clock feedthrough caused by a mismatch of parasitic capacitors Cp_ch21 and Cp_ch23 in chopper ch2,
which is seen as input offset [14]. Cp_ch21 and the Cp_ch23 are parasitic capacitors generated between
the input of chopper ch2 and the switch gate. Vclk is the voltage of the clock signal. The residual input
offset can be expressed as

Vresidual_input_offset3 ≈
2∆Cp_ch2Vclkfch

Gm2
(12)

where, ∆Cp_ch2 = Cp_ch21 −Cp_ch23 (13)
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3. Measurement Results

3.1. Chip Die and Measurement Environment

The proposed multi-path operational amplifier was fabricated using a standard 0.18-µm CMOS
process. Figure 9 shows the die photograph and measurement environment of the proposed operational
amplifier. The power consumption of the proposed low-noise operational amplifier is 0.174 mW
with a 1.8-V supply and an active area of 1.18 mm2. The fabricated chip was connected to a printed
circuit board for circuit performance measurements. A waveform generator provided clock and other
input signals, and signal acquisition and data analysis were performed using a digital oscilloscope.
A dynamic signal analyzer was used to analyze the spectrum.
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Figure 9. Die photograph and measurement environment of the proposed operational amplifier.

3.2. Measurement Results

The sine wave input and output and pulse wave input and output results for the buffer operation
of the proposed multi-path operational amplifier are shown in Figure 10. The x-axis of (a) is 400-µs
scale, the y-axis is 200-mV scale, and the x-axis of (b) is 2-µs scale, the y-axis is 50-mV scale. The red
wave is the input and the blue wave is the output of the amplifier. Sinusoidal and pulse waves with
an amplitude of 100 mV were applied using a 50-pF capacitive load. For the pulse response, the rise
time was 1.15 µs.
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The slew rate measurement results are shown in Figure 11. The red wave is the input and the blue
wave is the output of the amplifier. The proposed multi-path operational amplifier exhibits a slew rate
of 0.86 V/µs when a 1 V amplitude pulse wave is applied.

Slew_Rate =
dVo

dt
=

1V
1.15µs

= 0.86V/µs (14)
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Figure 11. Measurement results of the slew rate.

Figure 12 shows the open loop gain measurement result of the proposed multi-path operational
amplifier. The proposed operational amplifier has a gain of 135 dB at 1 Hz and exhibits a first-order
frequency response. The proposed operational amplifier has a gain of 50 dB at 10 kHz and a unit gain
bandwidth (UGBW) of 3.16 MHz. Compared with the simulation results in Figure 7, similar values
are measured.
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Figure 12. Open loop gain measurement results of the proposed multi-path operational amplifier.

Figure 13 shows the common mode rejection ratio (CMRR) and power supply rejection ratio
(PSRR) measurements of the proposed multi-path operational amplifier. The proposed operational
amplifier has a CMRR of 125 dB at 1 Hz and a PSRR of 100 dB at 1 Hz. The minimum values of the
CMRR and PSRR are 69.8 dB and 71.7 dB.
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Figure 14 shows the results of the input referred offset measurement of the proposed multi-path
amplifier. The input referred offset measurement shows that the average input offset is 1.99 µV and
peak-to-peak offset is 3.73 µV.
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The noise measurement results of the proposed multi-path operational amplifier for a bandwidth
of 0.5–200 Hz are shown in Figure 15. Figure 15a shows the input referred noise of the proposed
operational amplifier. The measured input referred noise is 47.8 nV/

√
Hz at 1 Hz and 10.8 nV/

√
Hz at

200 Hz. Figure 15b shows a noise histogram at 200 Hz for 10 samples. The average value of the input
referred noise at 200 Hz for the 10 samples is 11.8 nV/

√
Hz.
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4. Discussion

A performance comparison with previous low-noise amplifier studies is shown in Table 1.
When Vni is the input referred noise and Itot is the total consumption current of the operational amplifier,
the NEF of the performance comparison can be obtained from Equation (15) [15]. The proposed
low-noise chopper-stabilized multi-path operational amplifier achieves a current consumption of
96.7 µA with a 1.8 V power supply, UGBW of 3.16 MHz, and input referred noise of 11.8 nV/

√
Hz,

resulting in a NEF of 4.46.

NEF = Vni ·

√
2Itot

π ·UT · 4kT · BW
(15)
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Table 1. Performance comparison: summary of measured parameters.

This Work [5] [10] [16] [17] [18] [19] [20] [21]

Technology (µm) 0.18 0.18–0.5 0.7 0.7 0.3–0.6 0.35 0.18 0.18 0.32
Multi-path Y N N Y N Y N N N

Power (µW) 174 25.9 1150 715 27 3675 74 3.24 561
DC gain >137 168 - 100 >130 150 100 - 201.2
UGBW * 3.16M 260k 800k 1.8M 350k 4M 2k - 40k

CMRR (dB) >125 124 >120 137 - - >120 100 >120
PSRR (dB) >100 120 >120 120 - - - >70 115

Input referred offset (µV) 1.99 2 5 1 3 0.78 1.78 - 2
Input referred noise (nV/

√
Hz) 11.8 37 15 10.5 55 5.9 1.8 45.9 18

Chip Area (mm2) 1.18 1.14 4.8 1.8 0.7 1.26 0.12 0.2 0.57
NEF ** 4.4 5.5 8.8 4.8 8.1 8.4 17 2.37 10.6

UGBW * = unit gain bandwidth, NEF ** = Vni
√

(2·Itot/π·UT·4kT·BW).

Because of the multi-path architecture, the proposed multi-path operational amplifier is relatively
large in size and power consumption, but has a low input referred noise and wide bandwidth, so its
NEF is better than previous studies.

5. Conclusions

This paper has presented a low-noise chopper-stabilized multi-path operational amplifier with
nested Miller compensation for high-precision sensors. The proposed multi-path operational amplifier
removes the offset, flicker noise, and ripple by applying a chopper stabilization technique and RRL,
and enables wide bandwidth operation using a multi-path structure. Nested Miller compensation
is applied to obtain the frequency response of a clean first-order system. The proposed multi-path
operational amplifier was fabricated using a standard 0.18-µm CMOS process and an active area
of 1.18 mm2. The power consumption is 0.174 mW with a 1.8 V power supply. It achieves a slew
rate of 0.86 V/ µs, >137 dB open loop gain, >125 dB CMRR, and >100 dB PSRR. The NEF of 4.46
was obtained based on the achieved input referred noise of 11.8 nV/

√
Hz and UGBW of 3.16 MHz.

The proposed low-noise multi-path operational amplifier has a good NEF and is suitable for precision
sensor applications.
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