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Abstract: This paper presents a method to detect line pixels based on the sum of gradient angle
differences (SGAD). The gradient angle differences are calculated by comparing the four pairs
of gradients arising from eight neighboring pixels. In addition, a method to classify line pixels
into ridges and valleys is proposed. Furthermore, a simple line model is defined for simulation
experiments. Experiments are conducted with simulation images generated using the simple line
model for three line-detection methods: second-derivatives (SD)-based method, extremity-count
(EC)-based method, and proposed method. The results of the simulation experiments show that the
proposed method produces more accurate line-detection results than the other methods in terms
of the root mean square error when the line width is relatively large. In addition, the experiments
conducted with natural images show that the SD- and EC-based methods suffer from bifurcation,
fragmentation, and missing pixels. By contrast, for the original and the noise-contaminated versions
of the natural images, the proposed SGAD-based line-detection method is affected by such problems
to a considerably smaller extent than the other two methods.
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1. Introduction

In image-processing terminology, a line is a geometrically elongated feature that is either brighter
or darker in intensity than its neighbors on either sides. In some scientific literature, a line is referred
to as a ridge or a valley [1–3]. As one of the most important and frequently observed features
in various types of imagery, including indoor imagery, building facade imagery, satellite imagery,
medical imagery, and road imagery, a line is used by perceptual systems to analyze and interpret
a scene in an image [4]. Therefore, line detection is a fundamental operation in image processing
and computer vision. Another image processing technique called edge detection is used to find the
boundaries of objects within images. Various operators are used to detect edges, including Robert’s
operator [5], the Sobel operator [6], Prewitt operator [7], Laplacian of Gaussian (LoG) operator followed
by zero crossing [8], and Canny operator [9]. These operators have ensured the widespread use of
edge detection as an image-processing technique.

Owing to the lack of an efficient direct method, edge-detection results are frequently employed
to extract line features [10–15]. However, this indirect method often fails to detect lines accurately,
especially when the edge signal emanating from a line in an image is weak as compared to noise
strength. In addition, this method requires a post-processing step to detect line pixels based on the
edge pixels it detected on both sides of the line.

In recent years, the demand for efficient extraction of line features from images has grown
rapidly owing to advancements in various applications, including lane detection in autonomous
driving [10–13], blood vessel detection in medical imaging [14,15], and road detection in satellite
imaging [16].

Appl. Sci. 2020, 10, 254; doi:10.3390/app10010254 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2491-4934
http://dx.doi.org/10.3390/app10010254
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 254 2 of 15

Although the demand for a method to detect line features directly has been strong,
existing line-detection methods do not satisfy the quality requirements to serve the demand.
For high-quality line detection, the operator must be insensitive to noise.

The second-derivatives (SD)-based method for line detection was proposed approximately
two decades ago in [17,18]. However, in this paper, for relatively large line widths, the SD-based
line-detection method was shown to produce dis-localized line pixels and low SNR. Line detection
based on extremity count (EC) was proposed in [4]. However, this method only partially fulfilled the
requirements of high-quality line detection. To resolve these problems and achieve high performance,
herein, a novel line-detection method based on the sum of gradient angle differences (SGAD)
is proposed. Furthermore, the present study proves that the performance of the SGAD-based
line-detection method is better than that of the SD- and EC-based line-detection methods and that
the proposed method maintains high quality even when the line width is relatively large. The main
reason for the high quality of line-detection of the proposed method is the use of the oppositeness of
gradient directions between four pairs of neighborhood pixels around a line pixel, which is relatively
less affected by high noise level and relatively large line width as compared to other methods,
thus providing higher SNR under varying conditions.

The remainder of this paper is organized as follows. Section 2 describes related line-detection
studies. Section 3 describes the proposed line-detection method. Sections 4 and 5 detail the experimental
results obtained using simulation images and natural images, respectively. Section 6 concludes
this paper.

2. Related Work

As one of the earliest approaches to detecting linear features, Paton [19] proposed a method
to detect edge and line pixels. This method was based on the analysis of the coefficients resulting
from the fitting of Legendre polynomials of degree two or lower to local intensities, in which a set
of combinations of the coefficients was used to classify the pixels into edge, ridge, valley, and other
geometric features. Although this approach had the ability to classify a given intensity surface
into multiple types, it was majorly limited in terms of line detection because it needed to execute a
sequence of steps to detect line pixels and a set of well-tuned threshold values, generating which
is an arduous task. Haralick [1] proposed a method to detect ridges and valleys by finding the
pixels of zero crossings of the first directional derivatives in the direction that extremizes the second
directional derivative function. The method employed 10 coefficients generated by fitting a bivariate
cubic polynomial to intensity surfaces within a local window. A drawback of this method was the
possibility of the generation of non-trivial ringing artifacts that cannot be removed. In addition, this
approach required a large window size to calculate the 10 coefficients of the bivariate cubic polynomial.
Moreover, this approach encountered problems when localizing the ridge and valley pixels because
the intensity surface tended to deviate from the bivariate cubic polynomial surface model, resulting in
a relatively large number of false positives and ringing artifacts. Ghosal and Mehrotra [20] proposed
another parameter-based edge- and line-detection method that employed Zernike moments to calculate
the parameters of edges and lines.

Gauch and Pizer [2] and Serrat et al. [3] proposed methods to find ridge and valley pixels by
using differential geometry, which finds zero crossings of the gradients of the curvature of the level
curve. However, these approaches were limited by their high computational cost for calculating the
first-, second-, and third-order derivatives of intensity surfaces.

Steger [18] and Lindeberg [17] proposed line-detection approaches that identify line pixels based
on large second directional derivatives in a direction determined by the eigenvector corresponding
to the maximum absolute eigenvalue of the Hessian matrix. In similar studies, Laptev et al. [21] and
Jeon et al. [22] employed Steger¡s method to detect roads in aerial images and synthetic-aperture
radar images, respectively. However, as will be demonstrated in the following sections, the SD-based
line-detection methods used in the abovementioned studies suffer from problems such as non-unique
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responses to a single line signal and dis-localization because of a relatively large line width.
Lindeberg [17] proposed a multi-scale-based line-detection approach to find line pixels that respond
most strongly to multi-scale filter operations. This approach may, however, be limited when used
to detect line features located near other non-homogeneous features, which are observed frequently
in many types of images. These limitations occur because, at a larger scale, the features in the
neighborhood intersperse, causing line signals to mingle and become dis-localized. One solution to
this problem is the use of line detection or edge detection when the line width is relatively small or
relatively large, respectively.

A simple rapid line-detection method that detects ridge and valley pixels by using EC, which
is derived from relational operations, to compare the intensity and other properties of a center pixel
with those of neighboring pixels has been proposed in [4]. Although the computational cost of this
method is low, its performance is limited, especially when images are contaminated with noise,
as will be demonstrated in the following sections. A line-detection method that uses multi-scale
anisotropic Gaussian kernels for characterizing the second-order partial derivative of an intensity
image was proposed in [23]. However, the characterization requires computation of all responses to
varying combinations of filter direction, smoothing factor, and degree of anisotropy, which makes it
computationally expensive.

A multi-step-based line-detection approach was proposed in [24]. This approach uses a
combination of three filters—oriented elongated filters, multi-scale top-hat, and K-SVD—to detect
cracks in paintings. This approach, too, is computationally expensive because it employs a set of
elongated filters and multiple steps.

A line-detection method that uses a creaseness measure calculated based on the sum of differences
among the gradients of neighboring pixels was proposed in [25]. One of the limitations of this approach
is that a simple sum of gradient differences may not be a plausible indicator of the existence of line
pixels because each gradient vector loses its directionality when the direct sum of gradient differences
is applied. The SGAD approach proposed herein overcomes this limitation by using the value derived
by adding the absolute values of the differences of four pair of gradient vector directions, where the
vector pair is made by each of a set of four predefined directions.

Regarding the evaluation of line-detection methods, Zwiggelaar et al. [26] compared the
performance of several line detectors for medical images based on receiver operating characteristic
curves. In addition, Lopez et al. [25] evaluated several ridge- and valley-detection methods by using
various types of images.

3. Proposed Line-Detection Method

In this section, a line-detection method based on SGAD is proposed. First, the line model is
introduced. Then, SGAD is defined.

3.1. Line Model

In image processing, blur and noise are always non-negligible because of the limitations of camera
lens systems. Studies have previously adopted the approach that any real image I can be modeled as a
base signal F convolved with blur b and noise n [27–35], as follows:

I = F ∗ b + n, (1)

where ∗ represents the convolution operator. Although a more complete blur model with blurring
patterns in edge neighborhoods was proposed in [36], the present study employed the image formation
model described in (1) for simplifying experiments.

In this study, line profile is modeled in terms of width w and contrast k, as shown in Figure 1.
Although a more general line model has been proposed previously [18], which models a line with
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different contrasts on either side, the derivation here uses the simpler model shown in Figure 1 because
it simplifies subsequent tests, and most line features have similar contrasts on either side.

Figure 1. One-dimensional line profile model used in current study.

From Figure 1, the one-dimensional line signal is modeled as follows:

F(x) =

{
h + k, if |x− L| < w

2 ;

h, otherwise
, (2)

where L is the coordinate of the line center.
The following one-dimensional Gaussian blur is introduced to consider the blur effects that occur

during image formation:

b(t) =
1√

2πσb
e
− t2

2σ2
b , (3)

where σb is the blurring factor.

Figure 2 shows an exaggerated version of the blur function k · exp(− (t−x)2

2σ2
b

) centered at an

arbitrary location x. Thus, the intensity at x after blurring is given as follows:

Fb(x) = (F ∗ b)(x) =
∫ x+ w

2 −L

x− w
2 −L

k
σb
√

2π
e
− t2

2σ2
b dt,

=
k
2
[
erf
( x + w

2 − L

σb
√

2

)
− erf

( x− w
2 − L

σb
√

2

)]
,

(4)

where erf(·) is the error function.
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Figure 2. Gaussian blur for one-dimensional line model.

For denoising, a certain amount of smoothing is invariably required. Image smoothing is typically
performed with a kernel defined by a two-dimensional Gaussian function, which can be described
as follows:

s(u, v) =
1

2πσ2
s

e
− u2+v2

2σ2
s , (5)

where σs is the smoothing factor. The corresponding one-dimensional smoothing function can be
written as follows:

s(u) =
1√

2πσs
e
− u2

2σ2
s . (6)
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Then, by applying the convolution of the smoothing function s to the original image, the smoothed
image Is can be generated as follows:

Is = I ∗ s = (F ∗ b + n) ∗ s = F ∗ b ∗ s + n ∗ s. (7)

Thus, after the convolutions of blurring and smoothing, the original line signal in (2) is
transformed according to [37] as follows:

Fb∗s(x) = (F ∗ b ∗ s)(x) = (Fb ∗ s)(x) =
∫ x+ w

2 −L

x− w
2 −L

k√
2π(σ2

b + σ2
s )

e
− t2

2(σ2
b +σ2

s ) dt. (8)

3.2. Definition of SGAD

First, the gradient angle at each pixel is calculated as follows:

θi = tan−1
(

gri

gci

)
, (9)

where gri and gci are the gradients of the smoothed intensities in (7) at pixel i in the row and column
directions, respectively, as follows:

gri =
∂Is

∂r
(i) and gci =

∂Is

∂c
(i), (10)

where r and c are row and column coordinates, respectively.
Then, the difference between the gradient angles of two pixels is calculated by finding the

minimum positive angle between the gradient vectors at the two pixels as follows:

δi,j = min
(
abs

(
θi − θj

)
, 2π − abs

(
θi − θj

))
. (11)

The difference in angles is calculated for four pairs of gradient vectors, as shown in Figure 3.
The angle differences of the four pairs are summed to generate the SGAD measure, as follows:

SGAD = δ1,8 + δ2,7 + δ3,6 + δ4,5. (12)

3

8

5

2

7

1

6

4

Figure 3. Pairings for calculating gradient angle difference.

3.3. Classification of Line Pixels into Ridge and Valley, and Suppression of Non-Maxima

The pixels classified as line pixels in the previous step are further classified into the groups
ridge and valley. A ridge is a line feature with an intensity greater than that of other features in its
neighborhood, and a valley is a line feature with an intensity lower than that of the other features in
its neighborhood. The aforementioned classification is based on the sum of the convolutions of the
gradients with the following two kernels. The first kernel is defined as follows:
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Nc =

−1 0 1
−1 0 1
−1 0 1

 . (13)

The second kernel is defined as follows:

Nr =

−1 −1 −1
0 0 0
1 1 1

 . (14)

Nc in (13) gathers gradients outgoing from (or incoming to) the center of the kernel in the column
direction. Similarly, Nr in (14) gathers gradients outgoing from (or incoming to) the center of the kernel
in the row direction.

The measure that indicates whether a line pixel at (r,c) is a ridge or a valley is calculated as follows:

RV(r, c) = −
[
(gr ∗Nr) + (gc ∗Nc)

]
(r, c), (15)

where gr and gc denote images containing the gradients in the row and the column directions,
respectively. If RV(r, c) is positive, the pixel at (r,c) is classified as ridge. Else, the pixel is classified
as valley.

Then, a non-maxima suppression process is employed to eliminate the detected line pixels
whose absolute SGAD values are non-maxima as compared to those of their neighboring pixels.
The suppression process is executed using only the neighboring pixels of the same line class, with either
ridge or valley as the center pixel. In addition, the suppression process employs the maximum
curvature direction, which is determined from the eigenvector corresponding to the maximum
eigenvalue of the Hessian matrix [18].

4. Line-Detection Experiments with Simulated Images

4.1. Generation of Simulated Images

To test the line-detection performance of the SD-, EC-, and proposed SGAD-based methods,
a series of images was generated containing line features with fixed blurring factor σb = 1, varying line
width w, line normal angle θ, and noise σn. For the given image center coordinates (ro, co) and line
normal direction θ, normal distance from the origin to the center of the line ρ was calculated as follows:

ρ = co cos θ + ro sin θ, (16)

and the following two metrics were calculated for each pixel location (r, c).

D1(r, c) =
c cos θ + r sin θ − ρ + w

2

σb
√

2

D2(r, c) =
c cos θ + r sin θ − ρ− w

2

σb
√

2
.

(17)

For the given contrast k, described in (2), the intensity at each pixel was then calculated according
to (4) as

Fb(r, c) =
k
2
[
erf(D1(r, c))− erf(D2(r, c))

]
. (18)

An image was generated by adding a noise image n, as follows:

I = Fb + n, (19)
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where n(r, c) was assumed to follow the normal distribution N(0, σ2
n).

Figure 4 shows four typical examples of 101× 101 pixel simulation line images with varying θ

and constant k = 1, σb = 1, w = 4, and σn = 30/255.

(a) (b) (c) (d)

Figure 4. Simulated 101× 101 pixel images generated with constant contrast (k = 1), line width (w = 4),
and noise strength (σn = 30/255) for (a) θ = 0◦; (b) θ = 25◦; (c) θ = 46◦; and (d) θ = 80◦.

Denoising is commonly applied before feature extraction from noise-contaminated images to
ensure that the extracted features are of the highest possible quality. Therefore, in the present study,
the following smoothing convolution is applied:

Is = I ∗ s, (20)

where s is a two-dimensional Gaussian function with standard deviation σs.

4.2. Special Simulation Tests

In the experiments conducted with the simulation images, line pixels were detected using the SD-,
EC-, and SGAD-based methods from the pixels located within half of each line width from the true
center lines of the simulation line features. For implementing the SD-based method, SD values at the
pixels were calculated, and the pixels were classified as ridge or valley according to their RV values
calculated using (15). Then, non-maxima suppression was applied to the image containing the SD
values, as described in Section 3.3, where SD values were used instead of SGAD values. The experiment
with the SGAD-based method followed the procedure described in Section 3. The only parameter to
be set for implementing SGAD is the SGAD threshold. In the present study, the threshold value was
set to π. Thus, line pixels were detected when the SGAD value was greater than π. Experiments with
the EC-based method counted the cases of maximum and minimum of each pixel as compared to the
intensities of its neighborhood pixels in four pairs of directions. Further, if the count of the number of
maximum or minimum cases of each pixel was greater than or equal to 2, the pixel was classified as
ridge or valley, respectively. Thus, the EC-based method classified certain pixels as both ridge and
valley. Non-maxima suppression was not applied to the EC images in the EC-based method because
EC is not a good measure for non-maxima suppression.

Figure 5 shows the typical line-detection results obtained with varying σn, w, and θ. As shown
in Figure 5a–c, the SD-, EC-, and SGAD-based methods produce accurate line-detection results for
σn = 10/255, w = 2, and θ = 30◦. However, as shown in Figure 5d–l, the EC- and SGAD-based
methods produce more accurate line-detection results than the SD-based method. Furthermore,
as shown in Figure 5g,j, the SD-based method bifurcates the line location when w = 8. By contrast,
as shown in Figure 5h,i,k,l, the EC- and SGAD-based methods are not affected by the bifurcation
problem. Based on a detailed comparison of the performance of the EC- and SGAD-based methods,
according to Figure 5e,f,h,i,k,l, the SGAD-based method produces more accurate line-detection results
than the EC-based method in terms of the detected line locations and the number of fragmentations.



Appl. Sci. 2020, 10, 254 8 of 15

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Detection results of second-derivatives (SD)-, extremity-count (EC)-, and sum of gradient
angle differences (SGAD)-based methods for simulated images with (a–c) noise strength σn = 10/255,
line width w = 2, and line normal angle θ = 30◦; (d–f) σn = 30/255, w = 6, and θ = 25◦; (g–i)
σn = 30/255, w = 8, and θ = 75◦; and (j–l) σn = 60/255, w = 8, and θ = 15◦. (column 1) SD-, (column
2) EC-, and (column 3) SGAD-based line-detection approaches. The red lines indicate the true center
lines of the simulated line features.

Figure 6 compares the performance of the SD-, EC-, and SGAD-based methods in terms of the
root mean square error (RMSE) of the detected positions for varying θ, w, and σn. The graphs have
different scales depending on w. However, the graphs for w = 6 and w = 8 have the same scale.

As shown in Figure 6a–d, the performance of the SD-, EC-, and SGAD-based methods are
comparable for w = 2 with σn = 10/255, 30/255, and 60/255 and for w = 4 with σn = 10/255.
However, as shown in the rest of the panels of Figure 6, the SD-based method yielded line-detection
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results with RMSEs greater than those of the results yielded by the EC- and SGAD-based methods.
This limitation of the SD-based method is ascribed to bifurcation of the SD values when the line
width is relatively large. In addition, in a comparison of the EC- and SGAD-based methods, shown in
Figure 6a–e,g, the line-detection performances of the two methods are comparable for w = 2, 4, 6 with
σn = 10/255; for w = 2, 4 with σn = 30/255; and for w = 2 with σn = 60/255. However, as shown
in the other panels of Figure 6, the performance of the SGAD-based method is better than that of the
EC-based method in terms of the RMSEs of the detected line pixel locations.

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
E

SD

EC

SGAD

(a) (b) (c)

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.2

0.4

0.6

0.8

1

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.2

0.4

0.6

0.8

1

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.2

0.4

0.6

0.8

1

R
M

S
E

SD

EC

SGAD

(d) (e) (f)

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.5

1

1.5

2

2.5

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.5

1

1.5

2

2.5

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.5

1

1.5

2

2.5

R
M

S
E

SD

EC

SGAD

(g) (h) (i)

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.5

1

1.5

2

2.5

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.5

1

1.5

2

2.5

R
M

S
E

SD

EC

SGAD

0 10 20 30 40 50 60 70 80 90

 (deg)

0

0.5

1

1.5

2

2.5

R
M

S
E

SD

EC

SGAD

(j) (k) (l)

Figure 6. Root mean square errors (RMSEs) of simulation image line detection against line normal
angle (θ) for various noise strengths (σn) and line widths (w) with constant smoothing factor, σs = 1.0,
and line width (a–c) w = 2; (d–f), w = 4; (g–i) w = 6; and (j–l) w = 8 pixels. Noise strength (a,d,g,j)
σn = 10/255; (b,e,h,k) σn = 30/255; and (c,f,i,l) σn = 60/255.

4.3. General Simulation Tests

Tests were performed on simulated line images generated with w = 1, 2, · · · , 8 and
σn = 0, 5, · · · , 60/255, with θ = 0, 1, · · · , 90◦ for each case. Line detection was performed using the
SD-, EC-, and SGAD-based methods, and RMSE was then calculated for each case. Finally, mean RMSE
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was calculated for each combination of w and σn. In addition, the effect of smoothing on localization
was investigated by setting σs = 0.5, 0.75, · · · , 1.25; values of σs > 1.25 were not considered because
larger σs values tend to cause signal mixing within a neighborhood in real images and are therefore
inappropriate for extracting fine features from images.

Figure 7 shows the outcomes of the experiments conducted on the simulated images with various
values of w, σn, θ, and σs. Overall, SGAD produces more accurate line-detection results than the
SD- and the SGAD-based methods under varying w and σn. The three methods suffer from large
line-detection errors when w is relatively large. However, as shown in columns 4 and 5 of Figure 7,
the SGAD-based method produces more accurate line-detection results than the SD- and the EC-based
methods when the line width is greater than 3 pixels. Line-detection RMSEs of the three methods
increase monotonically with increasing σn, but the increase is significantly less for the SGAD-based
method compared to those for the SD- and the EC-based methods. Thus, in terms of line-detection
performance, the SGAD-based method is more accurate and less sensitive to noise and signal strength
than the SD- and the EC-based methods.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 7. RMSE distribution effects for simulated line detection under varying line width (w), noise
strength (σn), and smoothing factor (σs). (column 1) SD, (column 2) EC, and (column 3) SGAD-based
line-detection methods; (column 4) difference between SD- and SGAD-based methods; and (column 5)
difference between EC- and SGAD-based methods. (a–e) σs = 0.5, (f–j) σs = 0.75, (k–o) σs = 1.0,
and (p–t) σs = 1.25.

Table 1 summarizes the processing times of the SD-, EC-, and SGAD-based line-detection methods
for the simulated images. The three methods were implemented in the MATLAB software environment
on a 64-bit PC equipped with an Intel Core I7 Dual CPU and 16 GB RAM. As summarized in Table 1,
the SGAD-based method is faster than the SD-based method by more than 30 %. Although the EC-based
method was shown to be the fastest among the three methods, the quality of its line-detection results
was inferior to that of the SGAD-based method, as will be shown in Section 5. The procedure of the
proposed method is composed of two phases. The first phase comprises of smoothing convolution
with a Gaussian filter and calculation of the gradients at all pixels in an image. The second phase
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comprises of calculation of the second derivatives, the SGAD, and the maximum curvature direction,
classification of pixels into ridge and valley, and non-maxima suppression at all candidate line pixels.
Thus, the computational complexity of the first and second phases of the proposed method are linearly
proportional to the number of image pixels and candidate line pixels, respectively.

Table 1. Processing times of SD-, EC-, and SGAD-based methods for simulated images (in seconds).

σs SD EC SGAD

0.50 31.7 10.2 21.0
0.75 30.5 9.5 19.5
1.00 31.8 9.3 18.6
1.25 30.9 9.0 18.2

5. Line-Detection Experiments with Natural Images

Figure 8 shows the four 512× 512 pixel natural images employed herein. Two of them are the
well-known Lena and Barbara images, and the other two are subsets of images of a shrub and a
building facade acquired with a DSLR camera. Image intensity was [0, 255].

(a) (b) (c) (d)

Figure 8. Natural 512× 512 pixel images: (a) Lena; (b) Barbara; (c) Shrub; and (d) Facade

The performance of the SD-, EC-, and SGAD-based methods was tested in two phases. In the first
phase, the performance of the methods was tested using raw images to evaluate their line-detection
performance on the original versions of images. In the second phase, the performance of the methods
was tested by contaminating the raw images with Gaussian noise σn = 5.

In both phases, the images were smoothed with σs = 1.0 to reduce the noise. Figures 9 and 10
show the line-detection results obtained in the first and the second phases for the regions marked by
red boxes in Figure 8, respectively. For each natural image, the detailed views of line-detection results
for the regions are shown in Figure 9. Figure 10 shows the detailed views of the line-detection results
corresponding to those shown in Figure 9.

As shown in Figure 9, the SD-based line-detection method fails to detect the line pixels correctly
when line width is relatively large, as shown distinctively in the detailed views of Lena 1, Lena 2,
Barbara 2, Facade 1, and Facade 2. In the detailed view of Lena 2, the SD-based method produced
the boundary pixels of a thick line feature as line pixels, which is unsuitable given the purpose of
line detection.

The EC-based method detected line pixels with a few missing pixels, fragmentation, and a greater
number of noisy pixels as compared to the SGAD-based method, as shown in all corresponding
detailed views of the results obtained using the EC- and the SGAD-based methods.

Thus, the experimental results obtained using the raw images indicate that the SGAD-based
method produces the best line-detection results among the three methods.
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SD

EC

SGAD

Lena 1 Lena 2 Barbara 1 Barbara 2

SD

EC

SGAD

Shrub 1 Shrub 2 Facade 1 Facade 2

Figure 9. Line-detection results obtained using the SD-, EC-, and SGAD-based methods for the original
images. Ridge and valley pixels are denoted by upward-pointing black and downward-pointing white
triangles, respectively.

As shown in the detailed views of Lena 2 and Facade 2 in Figure 10, the EC-based method is
affected by additional noise to a greater extent than the SGAD-based method. The detailed view of
Facade 2 shows that the line pixels detected by the EC-based method are more jagged because of the
addition of noise than those detected by the SGAD-based method. Thus, the experiments with noisy
images indicate that the proposed SGAD-based method is less sensitive to noise compared to the
other methods.
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SD

EC

SGAD

Lena 1 Lena 2 Barbara 1 Barbara 2

SD

EC

SGAD

Shrub 1 Shrub 2 Facade 1 Facade 2

Figure 10. Line-detection results obtained using SD-, EC-, and SGAD-based methods for images
contaminated with noise σn = 5. Ridge and valley pixels are denoted by upward-pointing black and
downward-pointing white triangles, respectively.

6. Conclusions

The proposed SGAD-based line-detection method was proved to produce more accurate
line-detection results than the SD- and the EC-based methods by means of experiments conducted
using simulation images and natural images.

Implementation of the proposed SGAD-based line-detection method was shown to be simple but
less sensitive to noise compared to the other state-of-the-art methods. Thus, the proposed method can
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be applied readily in general line-detection applications without difficulty because of its simplicity.
The SGAD-based line-detection method is expected to provide high-quality line features in applications
in the fields of photogrammetry and image processing, such as lane detection, building feature
detection, and other applications involving the detection of line features from images.

As the performance of line-detection is dependent on the contrast present in images,
a well-designed contrast enhancement process as a pre-processing step [38] can be utilized to improve
the quality of the proposed line-detection method.
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