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Abstract: This paper presents a new metamodel approach based on nonstationary kriging and a
support vector machine to efficiently predict the stochastic eigenvalue of brake systems. One of the
difficulties in the mode-coupling instability induced by friction is that stochastic eigenvalues represent
heterogeneous behavior due to the bifurcation phenomenon. Therefore, the stationarity assumption
in kriging, where the response is correlated over the entire random input space, may not remain valid.
In this paper, to address this issue, Gibb’s nonstationary kernel with step-wise hyperparameters
was adopted to reflect the heterogeneity of the stochastic eigenvalues. In predicting the response
for unsampled input, the support vector machine-based classification is utilized. To validate the
performance, a simplified finite element model of the brake system is considered. Under various
types of uncertainties, including different friction coefficients and material properties, stochastic
eigenvalue problems are investigated. Through numerical studies, it is seen that the proposed method
improves accuracy and robustness compared to conventional stationary kriging.

Keywords: Brake systems; stochastic complex eigenvalue analysis; nonstationary kriging; support
vector machine

1. Introduction

Brake systems subjected to friction-induced vibration are widely used in many industrial
applications such as the automobile, aircraft, and railway fields [1]. One of the important vibration
characteristics caused by friction is instability mechanisms, which can be classified into four categories:
Variable friction coefficient, stick-slip, sprag-slip, and mode-coupling [2]. Among these various types
of instabilities, mode-coupling is considered one of the most crucial mechanisms [3]; one phenomenon
that is observed when this mechanism occurs is that the real parts of the eigenvalues bifurcate, while
the associated imaginary parts are merged. Since the stability of the system can be determined from
the eigenvalues, many studies have been conducted to investigate the phenomenon through complex
eigenvalue analyses (CEA) [4–6].

In carrying out CEA, the computational model is usually considered as deterministic, and the
fixed friction coefficient is applied. However, the friction coefficient is known to have strong dispersion
characteristics depending on the operation conditions [7], and should be modeled as a random
parameter. In addition, most physical systems are subject to uncertainties concerning the input
parameters, such as the material properties and geometry, and the contact conditions. Therefore, it is
necessary to consider uncertainties to ensure that a robust analysis of brake systems can be made.

The stochastic eigenvalue problem is an extension of the deterministic problem to study response
variability under parametric input uncertainties. Several methods have been proposed, such as Monte
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Carlo simulation (MCS), a sensitivity-based approach, polynomial chaos expansion (PCE), and kriging
(Gaussian process). MCS [8] is a sampling-based technique which is considered the most robust method
for uncertainty quantifications. However, since a large number of samples must be drawn to obtain
sufficient accuracy, the computational cost becomes prohibitive. The sensitivity-based method [9]
is a low-order Taylor expansion method that approximates the solution near the input parameters.
Although this method is computationally efficient, the obtained solution will be inaccurate under large
parameter variabilities.

PCE and kriging are metamodel (surrogate model) -based techniques that replace the original
model with an easy-to-evaluate function. PCE [10], also known as a spectral approach, is a
regression-based methods that approximates the model by multivariate polynomials. Kriging [11]
is an interpolation-based approach in which the model is assumed to be a realization of a Gaussian
process. Since metamodel-based methods can be applied to various levels of uncertainty, numerous
studies have utilized them to solve stochastic eigenvalue problems in brake systems [12–15].

However, despite previous studies, it remains challenging to apply PCE and kriging to brake
systems with the mode-coupling phenomenon. Since eigenvalues exhibit nonsmooth behavior around
the bifurcation point, PCE is not adequate for capturing local solution accuracy. Several studies
have tackled this issue by applying multi-element PCE [16], a wavelet basis [17]. Although kriging
interpolates each sample and reflects the local characteristics, to the authors’ knowledge, previous
studies have all been based on the stationarity assumption, which means that the smoothness of
response is entirely correlated throughout the random input space. Therefore, for mode-coupling
problems where the stationarity assumption is violated, the results are highly sensitive to the samples,
and accuracy and robustness will be compromised.

In this paper, to address this issue, we propose a new combined nonstationary kriging and
support vector machine method for stochastic analyses of the brake systems. The main difference from
conventional stationary kriging is that the proposed algorithm utilizes a nonstationary kernel to reflect
the bifurcation characteristics of the eigenvalues. In predicting the response for unsampled input, one
difficulty arising from the nonstationary kernel is to construct a correlation vector. To resolve this
problem, support vector machine-based classification is applied.

The rest of this paper is organized as follows. In Section 2, we present the formulation of the
stochastic complex eigenvalue problem. Section 3 describes our proposed algorithm. In Section 4, the
proposed method is verified through numerical studies. Finally, we provide concluding remarks.

2. Stochastic Complex Eigenvalue Analysis of Brake System

2.1. Finite Element Model of the Brake System

The finite element model of the simplified brake system used in this study is illustrated in Figure 1.
This model is taken from [15] and the parameters are listed in Table 1.
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Table 1. Model properties of the simplified brake system.

Parameters Disc Pad

Young’s modulus E (N/m2) 125 × 109 2 × 109

Poisson ratio ν 0.3 0.1
Density ρ (kg/m3) 7200 2500
Inner radius (m) 0.034 0.091
Outer radius (m) 0.151 0.147

Thickness (m) 0.019 0.0128

To discretize the given geometry, low order hexahedral elements are applied, and a total of
10,692 nodes and 6820 elements are used. The total DOF of the given model is 32,076. When applying
the boundary conditions, the disc’s inner surface and in-plane of the pad are fixed.

In implementing the contact algorithm at the interface, the mortar method [18] with element-based
integration was adopted. Let us define the pad and disc interface as a slave (nonmortar) and master
(mortar) segment. At each integration point of the slave segment, orthogonal projection is applied to
find the master segment and its natural coordinate. A graphical interpretation is presented in Figure 2,
this relationship may be formulated with the following nonlinear equations.
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Coulomb’s friction law, the normal and tangential contact force are modeled as follows:

Fn = kL
(
up − ud

)
Ft = µFn

(3)
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where Fn, Ft are normal and tangential contact force, and kL, up, ud, and µ are normal contact stiffness,
displacement of the pad and disc, and the friction coefficient, respectively. Throughout this paper,
normal contact stiffness, i.e., kL = 1016, is used. Based on the contact points and force relation, the
normal and tangential stiffness matrices of each contact segment are given by [19]

KN = kL

Nint∑
i=1

wiNT
n(ξi, ηi)Nn(ξi, ηi)det(J)

KT = µkL

Nint∑
i=1

wiNT
t (ξi, ηi)Nn(ξi, ηi)det(J)

(4)

where wi, det(J) are the integration weight, and determinant of the Jacobian, and Nn, Nt are the
matrices related to normal and tangential directions. Since only hexahedral elements are used in this
example, all interface segments are quadrilateral, and matrices Nn, Nt are expressed as follows:

Nt =
[

x1
c,ξ · v/|v| x1

c,η · v/|v|
] x1

c,ξ · x
1
c,ξ x1

c,ξ · x
1
c,η

x1
c,ξ · x

1
c,η x1

c,η · x1
c,η

−1[
Ntξ
Ntη

]
Nn =

[
N1(ξi, ηi)n N2(ξi, ηi)n N3(ξi, ηi)n N4(ξi, ηi)n 0

]
−

[
0 N1(ξc, ηc)n N2(ξc, ηc)n N3(ξc, ηc)n N4(ξc, ηc)n

]
Ntα=

[
N1(ξi, ηi)x1

c,α N2(ξi, ηi)x1
c,α N3(ξi, ηi)x1

c,α N4(ξi, ηi)x1
c,α 0

]
−

[
0 N1(ξc, ηc)x1

c,α N2(ξc, ηc)x1
c,α N3(ξc, ηc)x1

c,α N4(ξc, ηc)x1
c,α

]
,α = ξ, η

(5)

where n, 0, v/|v| and Ni are the normal row vector, zero row vector with size 12, the directional
velocity at the contact point, and i-th shape function.

Based on the contact stiffness and system matrices of the disc and pad, the deterministic eigenvalue
problem can be expressed as [

K + λ iC + λ2
iM

]
Φi = 0 (6)

where M, C, and K are mass, damping, and stiffness matrix, respectively. To investigate the eigenvalue
characteristic, Equation (6) is solved for the friction coefficient µ = 0.8 and in the absence of damping.
The obtained first two unstable eigensolution pair results are presented in Figure 3.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 17 

paper, normal contact stiffness, i.e., 1610Lk = , is used. Based on the contact points and force relation, 
the normal and tangential stiffness matrices of each contact segment are given by [19] 

( ) ( ) ( )

( ) ( ) ( )

int

int

T
N

1

T
T

1

, , det

, , det

N

L i n i i n i i
i
N

L i t i i n i i
i

k w

k w

ξ η ξ η

μ ξ η ξ η

=

=

=

=





K N N J

K N N J
 (4)

where ( ), detiw J  are the integration weight, and determinant of the Jacobian, and ,n tN N  are the 
matrices related to normal and tangential directions. Since only hexahedral elements are used in this 
example, all interface segments are quadrilateral, and matrices ,n tN N  are expressed as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

11 1 1 1
, , , ,1 1

, , 1 1 1 1
, , , ,

1 2 3 4

1 2 3 4

1 1
1 , 2 , 3

/ /

, , , ,

, , , ,

, ,

tc c c c
t c c

tc c c c

n i i i i i i i i

c c c c c c c c

t i i c i i c

N N N N

N N N N

N N N

ξξ ξ ξ η
ξ η

ηξ η η η

α α α

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

ξ η ξ η ξ

−
 ⋅ ⋅  

 = ⋅ ⋅      ⋅ ⋅    
=   
−   

=

Nx x x x
N x v v x v v

Nx x x x

N n n n n 0

0 n n n n

N x x ( ) ( )
( ) ( ) ( ) ( )

1 1
, 4 ,

1 1 1 1
1 , 2 , 3 , 4 ,

, ,

, , , , , ,
i i c i i c

c c c c c c c c c c c c

N

N N N N

α α

α α α α

η ξ η

ξ η ξ η ξ η ξ η α ξ η

  
 − = 

x x 0

0 x x x x

 (5)

where , , /n 0 v v  and iN  are the normal row vector, zero row vector with size 12, the directional 
velocity at the contact point, and i-th shape function.  

Based on the contact stiffness and system matrices of the disc and pad, the deterministic 
eigenvalue problem can be expressed as 

2 0i i iλ λ + + = K C M Φ  (6)

where , ,M C  and K  are mass, damping, and stiffness matrix, respectively. To investigate the 
eigenvalue characteristic, Equation (6) is solved for the friction coefficient 0.8μ =  and in the absence 
of damping. The obtained first two unstable eigensolution pair results are presented in Figure 3. 

 
(a) 

 
(b) 

Figure 3. The first two unstable eigenvector pair results at friction coefficient 0.8.μ = (a) First pair 
1 4

1 1.80 10 1.29 10 iλ = ± × + × ; (b) Second pair 1 4
2 7.27 10 2.19 10 iλ = ± × + × . 

Since the tangential contact stiffness matrix is nonsymmetric, the eigensolutions can become 
complex values, even without damping. The real part of the eigenvalue corresponds to the dynamic 

Figure 3. The first two unstable eigenvector pair results at friction coefficient µ = 0.8. (a) First pair
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Since the tangential contact stiffness matrix is nonsymmetric, the eigensolutions can become
complex values, even without damping. The real part of the eigenvalue corresponds to the dynamic
response caused by the instability. If the given system has all the negative real parts of the eigenvalues,
the system is considered stable. However, if at least one of them is positive, the system is regarded
as unstable.

2.2. Stochastic Complex Eigenvalue Analysis under Uncertainties

If some structure parts have parametric uncertainties, they can be modeled by introducing
additional terms to the deterministic system. Let Θ, F , P denotes the probability spaces, where
Θ, F and P are the sample space, σ-algebra, and probability measure of M random variables
ζ = (ζ1, ζ2, . . . ζM), respectively. If the uncertainty is modeled as a spatially-distributed field, the
random field can be represented by spectral decomposition using a truncated Karhunen-Loève (KL)
expansion [20]. Based on the modeled random variable, each system matrix is represented as a
combination of the deterministic and random matrix as follows:

M(ζ) = M0 +

n1∑
i=1

M i(ζ) , C(ζ) = C0 +

n2∑
i=1

C i(ζ) , K(ζ) = K0 +

n3∑
i=1

K i(ζ) (7)

where M(ζ), C(ζ) , and K(ζ) are random mass, damping, and stiffness matrix. The subscripts zero
and i represent the deterministic and i-th random matrix, and n1, n2, and n3 indicate the number of
random variables in each system matrix, respectively. Utilizing the obtained random system matrices,
the stochastic eigenvalue problem can be expressed as[

K(ζ) + λ i(ζ)C(ζ) + λ2
i(ζ)M(ζ)

]
Φi(ζ) = 0 (8)

where λ i(ζ), Φi(ζ) are the i-th random eigenvalue and eigenvector.
Prior to describing the proposed method for the stochastic eigenvalue problem, the response due

to the friction coefficient is computed. In the absence of damping, the first three unstable eigenvalue
pairs within the friction coefficient interval [0, 1] are shown in Figure 4.
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It can be seen from the results that after the critical friction coefficient, the two real eigenvalues are
separated (bifurcation), while the imaginary parts coalesce (mode-coupling). Near the critical point,
the first derivative of eigenvalues may not be continuous and, after this point, the response patterns are
changed. Also, this coalescence pattern can be changed by the effect of damping [3]. Let ck = 2χkωk be
the structure damping associated with an unstable eigenvalue pair, where ωk is the natural frequency
without friction and χk is the modal damping ratio. If damping is equal on the two coupling modes
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(i.e., c1 = c2), it will lower the real part curves, whereas the coalescence point is still singular. However,
if damping is nonequally distributed (i.e., c1 , c2), the coalescence is not perfect, and the imaginary
parts will not be the same at a critical point. In this paper, only singular-coalescence point cases (e.g.,
undamped and equally damped) are considered.

3. Proposed Algorithm

3.1. Nonstationary Kriging

As described in the previous section, complex eigenvalues show heterogeneous behavior near the
bifurcation point. Since stationary kriging is based on the assumption that the response smoothness is
fairly uniform, application to brake systems is still limited. To address this issue, the nonstationary
kriging algorithm is presented. For simplicity, letM(ζ) be the model problem in Equation (8) and y
the interested eigenvalue result. Using this notation, the random eigenvalue problem can be simply
expressed as y = M(ζ). Given N samples

{
ζ1, . . . ζN

}
in the M dimensional input space and their

associated output
{
y1, . . . yN

}
, the kriging assumes that the response of a computational model is a

realization of the Gaussian random process as

y =M(ζ) ' fT(ζ)β+ Z(ζ) (9)

where the first part f(ζ), β represents the trend function, and their product is the mean of the response.
In constructing a global trend, ordinary kriging uses a constant value, while universal kriging uses
polynomial functions. The second part Z(ζ) is a Gaussian process with zero mean satisfying the
following statistical property:

E
[
Z
(
ζi
)
Z
(
ζ j

)]
= σ2R

(
ζi, ζ j

)
(10)

where σ2, R
(
ζi, ζ j

)
, and ζi are the process variance of Z(ζ), the correlation function, and i-th input

sample. In selecting the correlation function in the conventional stationary kriging, the Gaussian

type R
(
ζi, ζ j

)
=

∏M
k=1 exp

(
−θk

(
ζi
− ζ j

)2
)

is widely used. However, rather than applying the stationary

kernel, the following nonstationary Gibbs kernel [21] is adopted.

R
(
ζi, ζ j

)
=

M∏
k=1

 2lk
(
ζi
)
lk
(
ζ j

)
l2k
(
ζi
)
+ l2k

(
ζ j

) 
1/2

exp

−
(
ζi
− ζ j

)2

l2k
(
ζi
)
+ l2k

(
ζ j

)
 (11)

where lk(·) is the length-scale in k-th input dimension. The length-scale controls the response smoothness
within the input domain, and can be any arbitrary positive function of random variables ζ. In this
paper, to reflect the heterogeneous properties in each stable and unstable regions, the length-scale for
the input sample is modeled by using step-wise hyperparameters as follows:

lk
(
ζi
)
=

θ 1
k g

(
ζi
)
= 0

θ 2
k g

(
ζi
)
> 0

(12)

where g
(
ζi
)

, θ are the criteria function and hyperparameter to be determined. Based on the fact that
the real eigenvalue pair λ1, λ2 is bifurcate after the mode-coupling, the following stability criteria
function is proposed.

g
(
ζi
)
=

∣∣∣∣ Re
(
λ 1

(
ζi
))
−Re

(
λ 2

(
ζi
)) ∣∣∣∣ (13)

The proposed function can be interpreted as a gap between two eigenvalues. If g
(
ζi
)
= 0, the given

eigenvalue pair is stable, and if g
(
ζi
)
> 0, instability occurs. A simple comparison of nonstationary

and stationary correlation functions is presented in Figure 5. For a stationary correlation function, the
Gaussian type is considered. By comparing these two results, the proposed kernel and length scale
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function makes it possible to model the heterogeneity of the response. If the length-scale is relatively
high, the response is smooth, whereas if the length-scale is low, the response changes rapidly. However,
for a stationary correlation function, the entire input space is correlated.
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The hyperparameters are obtained by solving an optimization problem that minimizes the 
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After the input samples are divided by utilizing the criteria function in Equation (13), the
correlation matrix based on the given N samples is constructed as

R
(
ζi, ζ j

)
=


R
(
ζ1, ζ1

)
. . . R

(
ζ1, ζN

)
...

. . .
...

R
(
ζN, ζ1

)
. . . R

(
ζN, ζN

)
 (14)

The kriging model parameters are computed using the best linear unbiased estimator (BLUE) [22]
given by

β =
(
FTR−1F

)−1
FTR−1y

σ2 =
[
(y− Fβ)TR−1(y− Fβ)

]
/N

(15)

The hyperparameters are obtained by solving an optimization problem that minimizes the concentrated
log-likelihood function as follows:

ψ(θ) =
1
2

ln
∣∣∣R(θ)

∣∣∣+ N
2

ln
(
σ2(θ)

)
(16)

In solving the problem in Equation (16), the pattern search, which is one of the global optimization
algorithms, is adopted. After obtaining hyperparameters, the predicted response and its variance at
the unsampled input point ζ are computed as

y(ζ) ' fT(ζ)β+ rT(ζ)R−1(y−Fβ)

σ̂2(ζ) = σ2

1−
[

fT(ζ) rT(ζ)
][ 0 FT

F R

]−1[
f(ζ)
r(ζ)

] (17)

where r(ζ) is the correlation vector between input ζ and given N samples, and its i-th component is

ri(ζ) = R
(
ζ, ζi

)
=

M∏
k=1

 2̃lk(ζ)lk
(
ζi
)

l̃2k(ζ) + l2k
(
ζi
) 

1/2

exp

−
(
ζ− ζi

)2

l̃2k(ζ) + l2k
(
ζi
)
 (18)

where l̃k(ζ) is the k-th length-scale for the unsampled input ζ.
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One difference between stationary kriging and the proposed method is that, in the case of
stationary kriging, one can estimate the response for any input using Equation (17). However, for
nonstationary kriging, the correlation function in Equation (18) cannot be constructed, since the length
scale function for unsampled input is unknown. As a result, the response prediction in Equation (17) is
not directly applicable. To tackle this issue, support vector machine (SVM) -based classification for
unsampled input is applied and will be discussed in the next subsection.

3.2. SVM Based Classification for Predicting the Response

The SVM [23] has been widely used for solving both linear and nonlinear classification problems.
It uses a binary decision that maps given samples (training data) to a discrete-valued output class
z ∈ {−1, 1}. Since the eigenvalues of the brake system have two states, i.e., either stable or unstable, the
SVM can be directly applied. In this paper, the classes z = −1 and z = 1 are defined as to the region
where stable and unstable response occur. Given N samples and their obtained output class using the
stability criteria function, a hyperplane equation which separates these two classes can be constructed
as follows:

h(ζ) = b +
N∑

i=1

αiziK
(
ζi, ζ

)
(19)

where b, K
(
ζi, ζ

)
, zi and αi are the intercept with the origin, kernel function of the SVM, output class

of i-th sample, and Lagrange multipliers, respectively. In applying the kernel function for the SVM,
a Gaussian-type function is adopted in this paper. The Lagrange multipliers are unknown and can
be obtained by maximizing the margin between support hyperplanes. After Lagrange multipliers
are computed, the hyperplane is given by h(ζ) = 0, and output classes of −1 and 1 are predicted by
h(ζ) < 0 and h(ζ) > 0, respectively. Utilizing the SVM classification, k-th length scale for the given
unsampled input point is estimated as

l̃k(ζ) =

θ 1
k h(ζ) < 0

θ 2
k h(ζ) > 0

(20)

Since the length-scale for unsampled input is now defined, the response prediction for nonstationary
kriging in Equation (17) can be computed. A flowchart of the proposed combined nonstationary
kriging and SVM method is presented in Figure 6.
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In comparison with stationary kriging, the proposed algorithm increases the number of
hyperparameters in optimization problems and requires SVM training. However, if the complex
eigenvalue problem requires a large amount of computation, these additional operations can be
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ignored compared to solving the eigenvalue problem. Issues regarding the accuracy and computational
efficiency of the proposed method will be discussed in the next section.

4. Numerical Results

Prior to validating the proposed method through numerical studies, some implementation issues
and the development environments are briefly discussed. All the algorithms mentioned above are
developed with in-house code, written in the MATLAB 2017Ra. In performing some numerical
operations, the following MATLAB commands are used: eigs for solving eigenvalue problems,
patternsearch for optimization in kriging, fitcsvm for training support vector machine, and ksdensity for
estimating the probability density function (PDF). In stationary kriging, the Gaussian type correlation
function is applied. Finally, the numerical simulations are carried out on a personal desktop operating
Windows 10 with Intel Core i7-7700K@4.2 GHz and 16 GB RAM.

4.1. Case 1: Study with a Random Friction Coefficient

In the first case study, only the friction coefficient is considered as a random variable. The eigenvalue
results and their solution characteristics have already been discussed in Section 2.2. The purpose of
this simple case study is to test the stationary kriging in nonstationary environment and validate our
proposed kernel with length-scale function. Using eight equally-spaced samples within the interval
[0, 1], the stationary ordinary kriging (i.e., constant trend function) is applied. The first three unstable
eigenvalue pairs are presented in Figure 7. In obtaining the reference results, 300 equally-spaced
samples are considered.
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As seen in the results, the samples are far away from the bifurcation point. Therefore, the transition
region near this point is not reflected, and except for that region, the obtained results show quite good
agreement with reference. In order to investigate the effect of the trend functions, the polynomial trend
functions from 0th to 3rd order are applied; the error results are given in Table 2. In evaluating the
error, the following 2-norm error is considered.

ε2−norm =

√√√√ 2∑
j=1

N∑
i=1

(
λ

i, j
kriging − λ

i, j
ref

)2
/

√√√√ 2∑
i=1

N∑
j=1

(
λ

i, j
ref

)2
(21)

where superscripts i and j denote the j-th part of the eigenvalue pair in the i-th sample. The results
indicate that the 0th order trend function shows the best performance under the given samples.
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Next, near each bifurcation point of unstable eigenvalues, an additional sample is introduced.
The first three unstable eigenvalue pairs using ordinary kriging are shown in Figure 8. The obtained
results show that although the total number of samples is increased, their accuracy is severely degraded.
Reflecting the nonsmooth characteristic at the bifurcation point results in inaccurate oscillations over
the input range. This implies that the response prediction can be highly sensitive to the sample near
the bifurcation point. In order to compare the error, metamodels for different trend functions are
computed; the error results are presented in Table 3. Comparing Tables 2 and 3, the results under given
samples indicate that applying a high-order trend function may increase the metamodel performance.
However, the accuracy is not always guaranteed, and depending on the response characteristics, their
optimal polynomial orders differ

Table 2. Error results for the three unstable eigenvalue pairs using the stationary kriging with eight
samples. The trend functions with polynomial order from 0th to 3rd are applied.

Re(λ1) Re(λ2) Re(λ3) Im(λ1) Im(λ2) Im(λ3)
∑

Re(λi)
∑

Im(λi)

0th 6.72 × 10−2 3.95 × 10−2 3.54 × 10−2 7.26 × 10−5 8.29 × 10−5 8.72 × 10−5 1.42 × 10−1 2.43 × 10−4

1st 7.00 × 10−2 3.98 × 10−2 3.47 × 10−2 7.32 × 10−5 8.00 × 10−5 1.18 × 10−4 1.45 × 10−1 2.72 × 10−4

2nd 1.54 × 10−1 3.84 × 10−2 3.51 × 10−2 7.35 × 10−5 1.61 × 10−4 1.47 × 10−4 2.27 × 10−1 3.81 × 10−4

3rd 1.56 × 10−1 4.78 × 10−2 3.55 × 10−2 1.19 × 10−4 1.61 × 10−4 1.30 × 10−4 2.39 × 10−1 4.11 × 10−4

Table 3. Error results for the three unstable eigenvalue pairs using the stationary kriging with nine
samples. The trend functions with polynomial order from 0th to 3rd are applied.

Re(λ1) Re(λ2) Re(λ3) Im(λ1) Im(λ2) Im(λ3)
∑

Re(λi)
∑

Im(λi)

0th 1.16 × 10−1 8.36 × 10−2 8.46 × 10−2 1.30 × 10−4 2.94 × 10−4 1.85 × 10−4 2.84 × 10−1 6.09 × 10−4

1st 9.44 × 10−2 5.56 × 10−2 5.24 × 10−2 1.90 × 10−4 2.75 × 10−4 1.40 × 10−4 2.02 × 10−1 6.05 × 10−4

2nd 7.92 × 10−2 5.33 × 10−2 5.37 × 10−2 6.87 × 10−5 1.84 × 10−4 1.13 × 10−4 1.86 × 10−1 3.66 × 10−4

3rd 8.57 × 10−2 4.50 × 10−2 4.58 × 10−2 1.30 × 10−4 1.82 × 10−4 1.16 × 10−4 1.77 × 10−1 4.28 × 10−4
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Finally, our proposed method is applied. In this case, only the nonstationary kernel with
length-scale function is examined. Rather than using the SVM to classify the unsampled input, an
additional sample acts as a hyperplane. The first three unstable eigenvalue pairs using ordinary kriging
are given in Figure 9, the error results for different trend functions are listed in Table 4.

Comparing the results in Figures 8 and 9, the nonstationary kriging results show that the oscillation
behaviors are alleviated. This is attributed to a step-wise length scale that reflects the heterogeneity.
One observed phenomenon in this example is that the number of samples for the stable region in the
third eigenvalue pair is two. Since the given samples are divided based on stability criteria, the number
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of samples for each region may be insufficient. Therefore, additional sampling may be introduced to
increase accuracy.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 17 
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Table 4. Error results for the three unstable eigenvalue pairs using the nonstationary kriging with nine
samples. The trend functions with polynomial order from 0th to 3rd are applied.

Re(λ1) Re(λ2) Re(λ3) Im(λ1) Im(λ2) Im(λ3)
∑

Re(λi)
∑

Im(λi)

0th 3.35 × 10−2 8.47 × 10−3 1.21 × 10−2 5.93 × 10−5 3.24 × 10−5 1.19 × 10−4 5.42 × 10−2 2.10 × 10−4

1st 3.35 × 10−2 3.06 × 10−2 2.57 × 10−2 9.54 × 10−5 8.85 × 10−5 1.17 × 10−4 8.98 × 10−2 3.01 × 10−4

2nd 4.14 × 10−2 2.00 × 10−2 2.60 × 10−2 5.74 × 10−5 1.52 × 10−4 1.36 × 10−4 8.75 × 10−2 3.45 × 10−4

3rd 4.10 × 10−2 1.57 × 10−2 2.34 × 10−2 1.07 × 10−4 3.81 × 10−5 2.16 × 10−4 8.02 × 10−2 3.61 × 10−4

4.2. Case 2: Study with a Random Friction Coefficient and Young’s Modulus of the Disc

In the second case study, the friction coefficient and Young’s modulus of the disc are considered
to be random. Utilizing the random variables, they are modeled as

µ = 0.5 + 0.5 ζ1

Edisc = 125× 109(1 + 0.2ζ2)
(22)

where ζ1 , ζ2 are uniform random variables within the interval [−1, 1]. The purpose of the second
example is to validate the combined nonstationary kriging and support vector machine method.
The reference results for the real part of the first three unstable eigenvalues are presented in Figure 10.
In obtaining the reference, a 2D linear sample grid (40 × 40) is considered. The obtained results show
that the sensitivity of the bifurcation friction coefficient to the disk’s random variable is large at the
first eigenvalue, making the response surface more complex.
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Next, stationary ordinary kriging is applied to create the metamodels. The response surfaces
using 150 Sobol sequential samples provided by UQLab [24] are given in Figure 11. It can be seen from
the results that the third eigenvalue pair is most accurate, while other pairs show oscillation behavior
over the stable region. This is attributed to the fact that for the third eigenvalue pairs, the sensitivity of
the bifurcation friction coefficient due to the disk’s parameter is relatively low. Therefore, the response
surface has nonstationary characteristics which mainly depend on the friction coefficient. However, for
the first and second eigenvalue, nonstationarity exists for both dimensions. Reflecting this behavior
under stationarity assumptions results in oscillatory responses.
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Based on the given 150 samples, our proposed method is applied. The hyperplane results of the
SVM for three unstable eigenvalue pairs are shown in Figure 12. Since the Gaussian kernel is applied,
the obtained hyperplanes are nonlinear, and can classify the given output classes properly.
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After classifying the validated samples utilizing the hyperplane, the predicted response results
are presented in Figure 13. The obtained results are quite similar to the reference results in Figure 10,
and no spurious oscillations occur. One observed property of the proposed method is that there is a
slight peak in the second eigenvalue pair result. This is because the proposed correlation function at
the bifurcation boundary is discontinuous. However, this phenomenon can be alleviated by employing
additional samples near the boundary.

To investigate the error of stationary kriging and the proposed method, the Sobol sequential
samplings, from 150 to 300 in increments of 10, are applied. The polynomial trend functions from the
0th to 3rd order are used. In evaluating the error, in addition to the 2-norm based error in Equation
(21), the following 1-norm based error is also considered.

ε1−norm =

√√√√ 2∑
j=1

N∑
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The reason for introducing Equation (23) is to compute the error due to the spurious oscillations
more accurately. The 2-norm and 1-norm error for real eigenvalue pairs are presented in Figure 14.
The abbreviation SK-i and NSK-i, denote stationary and nonstationary kriging with the i-th order
polynomial trend function, respectively. The nonmonotonic convergence patterns, which are frequently
observed in stationary kriging, are related to the optimization, sample sensitivities, and response
complexity. In the case of nonstationary kriging, the classification of the given sample also affects the
convergence behavior. However, the solution accuracy tends to improve as the number of samples
increases. The results in Figure 14 indicate that nonstationary kriging shows better performance for all
polynomial orders than stationary kriging. Although stationary kriging results are highly sensitive to
the applied polynomial order, the nonstationary kriging results are less sensitive and yield similar errors
for all considered polynomial orders. Comparing the 2-norm and 1-norm error, the error difference
between stationary and nonstationary kriging is larger in the 1-norm based measure. This implies
that the proposed method reflects the flattened region of response correctly, while stationary kriging
reflects the stable region in an oscillated form.
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4.3. Case 3: Study with a Random Friction Coefficient and Disc’s Material Properties

In the final case study, the friction coefficient, Young’s modulus and density of the disc are
considered to be random. These properties are modeled using random variables as follows:

µ = 0.5 + 0.5 ζ1

Edisc= 125× 109(1 + 0.2ζ2)

ρdisc= 7200(1 + 0.2ζ3)

(24)
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where ζ1 , ζ2, and ζ3 are uniform random variables within the interval [−1, 1]. By using 200 Sobol
sequential samples, the stationary and nonstationary kriging with constant trend function are applied.
The hyperplane results of the SVM for three unstable eigenvalue pairs are shown in Figure 15. Based on
the obtained metamodels, probability density functions (PDF) for the real part of the three unstable
eigenvalues are estimated; the results are presented in Figure 16. In obtaining the reference results,
10,000 samples using Latin hypercube sampling (LHS) are considered.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17 
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It can be seen from the stationary kriging results that for the first eigenvalue, the estimated PDF is
inaccurate. Although the overall shape of the PDF for the second and third eigenvalues matches well
with the reference results, the error still exists near the stable region (i.e., Real(λ) = 0). However, the
proposed method yields almost identical results to the reference for the second and third eigenvalues,
even in the stable region. For the first eigenvalue, although there is still an error, the proposed method
shows better performance than stationary kriging.

Next, to evaluate the metamodel performance, the Sobol sequential samplings, from 200 to 500
with increments of 25, are applied. Polynomial functions from 0th to 3rd order are considered as a trend
function. The 2-norm and 1-norm error for the real part of eigenvalue pairs are presented in Figure 17.
The obtained results indicate that for 2-norm-based error criteria, stationary and nonstationary kriging
show similar performance in the small sample sizes. However, for 1-norm-based error criteria,
nonstationary kriging outperforms over the stationary kriging within the all considered the sample
sizes and polynomial orders. To further investigate the performance of the metamodels, the propensity
of stability is considered. Given N samples, the i-th eigenvalue stability can be estimated as follows:
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where Ni
stable is the number of stable samples for i-th eigenvalue, and Ii

Ω(ζ) is the indicator function
given by

Ii
Ω(ζ) =

1, λi(ζ) < tol

0, otherwise
(26)

where tol is the tolerance of the indicator function. Under 10,000 LHS samples and 0.1 tolerance,
the reference eigenvalue stability in Equation (25) is computed. The propensity of stability based on
the constructed metamodels is computed using the predicted responses at the LHS sample points.
The obtained results for the three eigenvalues are presented in Figure 18. As seen from the results,
although stationary kriging shows similar performance with nonstationary kriging based on 2-norm
error criteria, their stability results are completely different. None of the stationary kriging results
predict the stability of the response within the range of the given sample sizes, while nonstationary
kriging yields similar results with the reference. The reason for this difference is that the oscillation
phenomenon in stationary kriging is much larger than the tolerance of the indicator function in
Equation (26). This implies that although the stationary kriging based metamodel seems to be
applicable to the brake system in terms of 2-norm based error, it is difficult to investigate the propensity
of the stability. However, in the case of nonstationary kriging, since spurious oscillation is alleviated
by applying the step-wise hyperparameters, the obtained results are close to the reference.
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Finally, the computational cost and numerical efficiency of the proposed method are discussed.
Given the finite element model, it takes about 3.7 s to solve the complex eigenvalue problem for one
sample, and the total computation time is assumed to be linear for the given sample sizes. The total
computation time results for complex eigenvalue problems, and stationary and nonstationary kriging,
are given in Figure 19. The right and left y-axis are computation time in eigenvalue problems and kriging,
respectively. The obtained results indicate that although the computation cost for nonstationary kriging
is higher than that for stationary kriging, its additional cost can be relatively negligible when compared
to solving the eigenvalue problems. Therefore, for the small number of random variables, the proposed
nonstationary kriging can improve metamodel performance with acceptable additional computation.
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5. Conclusions

In this study, a new combined nonstationary kriging and SVM is proposed to conduct stochastic
eigenvalue analyses of brake systems. The proposed algorithm utilizes the nonstationary kernel
reflecting the bifurcation region of the eigenvalue in the random input space. In order to divide the
given samples into stable and unstable regions, a mode-coupling based stability criteria function is
proposed. Finally, the support vector machine-based classification is applied to estimate the stability
condition of the unsampled point, and the response is predicted.

To validate the performance of the proposed method, three stochastic eigenvalue problems in
the simplified brake system are considered. The results applying the nonstationary kriging method
are in good agreement with the reference, while the conventional stationary kriging shows oscillatory
behavior and sample-sensitive results. Especially in predicting the propensity of stability, the proposed
method outperforms the stationary kriging. This is attributed to the length scale with step-wise
hyperparameters, which can represent nonstationary behavior. The additional computational cost for
nonstationary kriging has been examined, and taking into account the cost for complex eigenvalue
problems, it can be considered relatively negligible for the small number of random variables.

The obtained results indicate that the proposed method is promising for both accuracy and
robustness, implying the possibility of its application to more complex brake system problems. In this
paper, the stability criteria function is valid for only singular-coalescence point cases. Therefore, further
research on various types of damping is necessary to generalize the proposed framework.
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