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Abstract: Gait initiation (GI) over an obstacle to be cleared is a functional task that is highly challenging
for the balance control system. Two swing-foot strike patterns were identified during this task—the
rearfoot strike (RFS), where the heel strikes the ground first, and the forefoot strike (FFS), where the
toe strikes the ground first. This study investigated the effect of the swing-foot strike pattern on the
postural organisation of GI over an obstacle to be cleared. Participants performed a series of obstacle
clearance tasks with the instruction to strike the ground with either an FFS or RFS pattern. Results
showed that anticipatory postural adjustments in the frontal plane were smaller in FFS than in RFS,
while stability was increased in FFS. The vertical braking of the centre of mass (COM) during GI
swing phase was attenuated in FFS compared to RFS, leading to greater downward centre of mass
velocity at foot contact in FFS. In addition, the collision forces acting on the foot were smaller in
FFS than in RFS, as were the slope of these forces and the slope of the C7 vertebra acceleration at
foot contact. Overall, these results suggest an interdependent relationship between balance control
mechanisms and foot strike pattern for optimal stability control.

Keywords: anticipatory postural adjustments; balance control; foot strike pattern; gait initiation;
obstacle clearance; biomechanics

1. Introduction

Like all terrestrial species, humans move in a gravity field that permanently attracts them towards
the centre of the earth. Therefore, balance control is a key component of daily motor tasks. Gait
initiation (GI), which corresponds to the transient phase between quiet standing and level walking,
is a classical paradigm for investigating how balance is controlled during a functional whole-body
movement [1,2]. Gait initiation can be broken down into a postural phase (corresponding to anticipatory
postural adjustments (APAs)), followed by a swing phase that ends at the time of swing foot contact
with the support surface. These APAs are characterised by a centre of pressure (COP) shift backwards
towards the heels, and laterally towards the forthcoming swing leg. The backward centre of pressure
shift reflects a strategy to generate the initial propulsive forces necessary to reach the intended centre of
mass velocity at the end of gait initiation [3–6]. The mediolateral (ML) centre of pressure shift reflects
a strategy to propel the centre of mass above (or beneath) the forthcoming stance foot in order to
maintain ML stability during the swing phase of gait initiation [7–11].
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Besides ML APAs, a major mechanism involved in stability control is the braking of the centre
of mass fall during the swing phase of gait initiation. Previous lines of research have shown that
braking is an active phenomenon that occurs in anticipation of the swing foot’s collision with the
ground, and involves the activation of the soleus of the stance leg [12–15]. Anticipatory centre of mass
braking attenuates the vertical ground reaction forces (GRFs) at the time of foot collision (hereafter
called collision forces), thus facilitating balance control and reducing the risk of injury linked to the
transmission of this impact throughout the musculoskeletal system.

These collision forces are also known to depend on the swing-foot strike pattern at the time
of collision [16–18]. At least two main swing-foot strike patterns have been identified in the
literature—rearfoot strike (RFS), where the swing heel strikes the ground first, and forefoot strike
(FFS), where the swing toe strikes the ground first [16]. Because studies have reported that participants
systematically used an RFS pattern, foot strike patterns have so far not been considered in the literature
on gait initiation. However, a recent study showed that when gait was initiated with the goal of
clearing an obstacle longer than 30% of body height, a change from an RFS to an FFS pattern was
observed in most trials [10]. Based on previous research on the effect of the foot strike pattern on
collision forces during stepping down while walking [17,18] or running [16,19–22], it was proposed
that this change in foot strike pattern reflected a strategy directed at attenuating collision forces.

It is surprising that the authors of these important lines of research, focusing on foot strike pattern
effects, did not consider that the magnitude of the anticipatory braking might have changed between
the RFS and FFS patterns. Indeed, such a change could at least partly account for the differences in the
collision forces observed, with a larger anticipatory centre of mass brake being potentially responsible
for greater attenuation of the collision forces. More generally, a brief literature review shows that the
balance control mechanisms described above have been investigated by independent lines of research
(for a recent review see [2]). Thus, it remains largely unknown whether these mechanisms (i.e., ML
APAs, force braking and foot strike pattern) are independently controlled by the central nervous system
(CNS) or are interdependent. Gait initiation with an obstacle to be cleared is a natural task that offers
the opportunity to test the interdependence between these mechanisms since, as stated above, both
foot strategies are naturally used to land on the support surface.

In the present article, it is expected that the ML APAs and the vertical centre of mass braking
mechanisms are programmed according to foot strike patterns (FFS or RFS). Specifically, it is reasoned
that the need to actively brake the centre of mass fall during the step–swing phase becomes less
imperative in FFS if the FFS pattern is more effective than the RFS pattern to attenuate the collision
forces, as repeatedly shown in the literature [16,19–22]. Because it has an energetic and attentional
cost [12], the CNS may consequently choose to attenuate this active braking for economical purposes.
If so, the duration of the swing phase of gait initiation can be expected to be shortened for the FFS
pattern, since the centre of mass would fall more rapidly.

Of particular interest, recent studies reported that the amplitude of the ML APAs associated with
gait initiation over an obstacle was programmed according to this temporal parameter (i.e., the duration
of the swing phase), and was lower when this duration decreased with a lower obstacle [10,11]. In the
present study, changes in ML APAs amplitude can therefore be expected because of the changes in the
swing-foot strike pattern.

Hence, the present study aimed to investigate the effect of changing the swing-foot strike pattern
(FFS vs. RFS) on the postural organisation of gait initiation over an obstacle. The hypothesis of an
interdependent relationship between balance control mechanisms for optimal stability control was
raised. Specifically, and for the reasons detailed above, it was expected that both active braking of
the centre of mass fall and the ML APAs associated with gait initiation over an obstacle to be cleared
would be attenuated in the FFS compared to the RFS pattern, but with no consequent alteration in ML
stability or increase in collision forces.
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2. Materials and Methods

2.1. Participants

In all, 13 young healthy subjects (eight males and five females, age (mean standard ± 1 deviation),
28.7 ± 1.5 years; height, 178.1 ± 7.2 cm; weight, 69 ± 8.3 kg) participated in the experiment. All were
free of any known neuromuscular disorders. They provided written informed consent after being
informed of the nature and purpose of the experiments, which were approved by the local ethics
committee of University Paris-Sud, Paris-Saclay (EA 4532, 10 September 2019). The study complied
with the standards set by the Declaration of Helsinki.

2.2. Experimental Protocol

The participants were instructed to initiate gait at maximal velocity with their preferred limb
while clearing an obstacle, and to continue walking at the same velocity to the end of a five-meter track
(Figure 1). The task was self-triggered, that is, the participants initiated gait only when they felt ready.
As in our previous study [11], the obstacle height was 10% of the subject’s height and its distance
from the subject was 30% of the subject’s height. Two conditions of gait initiation were performed.
Under the first condition, the participants were instructed to strike the ground with the heel first after
stepping over the obstacle (rearfoot strike (RFS) condition). Under the second condition, they were
instructed to strike the ground with the forefoot first (forefoot strike (FFS) condition). We showed in
our previous study [11] that participants used both the FFS and the RFS patterns under the condition
where the obstacle had the same distance/height features as in the present study. In other words,
no clear preferred foot strike pattern could be detected, suggesting that participants of the present
experiment were not much constrained by the instruction on the foot strike pattern.
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Figure 1. Schematic illustration of the experimental setup. (A) Gait initiation with a forefoot strike
(FFS) pattern. (B) Gait initiation with a rearfoot strike (RFS) pattern. 1, walkway; 2, force plate; 3,
obstacle; 4, reflective marker; 5, Vicon camera; 6, visual target.

The order of the conditions was randomised to avoid rank effects. For each condition, the subjects
were allowed two familiarisation trials, after which five trials were recorded. In the initial posture,
the participants stood upright barefoot, with their feet hip-width apart, their arms hanging loosely
alongside their body and their body weight evenly distributed between their legs.

Gait was initiated on a force plate (600 × 1200 mm, AMTI, Watertown, MA, USA) positioned at
the beginning of the track. The force plate was embedded in the track and was long enough so that
the participant’s swing foot always landed on it at the end of gait initiation. The obstacle consisted of
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a lightweight wooden rod (length, 65 cm; diameter, 1 cm) resting on two adjustable upright stands
(Figure 1). The participant’s toes served as the reference point for positioning the obstacle. Reflective
skin markers (9 mm in diameter) were placed bilaterally at the hallux (toe markers), head of the fifth
metatarsal (metatarsal markers) and posterior calcaneus (heel markers). In 10 subjects, a marker was
also placed at the top spine level (C7) to investigate the transmission of the collision forces from the
swing foot to the upper part of the musculoskeletal system. An additional marker was positioned at
the middle of the obstacle to determine the safety distance, that is, the distance between the swing
foot and the obstacle at the time of clearance. A V8i VICON eight-camera (Mcam2) motion capture
system (Oxford Metrics Ltd., Oxford, UK) with a 64-channel analogue card was used to collect both the
position of these markers and the force plate data at a sampling rate of 500 Hz. Kinematic and force
plate data were acquired and synchronised using the Vicon acquisition software (Workstation, Version
5.1, Oxford, UK).

2.3. Data Analysis

After data collection, kinematic and force plate data were processed offline using a custom-made
program written in MATLAB™ (Version 5.3 (R11), The MathWorks Inc., Natick, MA, USA). Data were
low-pass filtered using a Butterworth filter with a 15 Hz cutoff frequency for kinematic data [23] and
a 10 Hz cutoff frequency for kinetic data [24]. The ML and anteroposterior (AP) coordinates of the
centre of pressure (yP and xP, respectively) were computed from force plate data in accordance with
the instructions from the manufacturer (AMTI) as follows:

yP =
Mx + Fy× dz

Fz
, (1)

xP =
−My + Fx× dz

Fz
, (2)

where Mx and My are the moment around the AP and ML axes, respectively; Fy, Fx and Fz are the ML,
AP and vertical ground reaction forces, respectively; and dz is the distance between the surface of the
force plate and its origin.

Instantaneous acceleration of the centre of mass along the AP, ML and vertical axes was determined
from the ground reaction force according to Newton’s second law. The centre of mass velocity and
displacement were computed by the successive numerical integration of centre of mass acceleration
using integration constants equal to zero, namely, initial velocity and displacement null [3].

Gait initiation onset (t0) and swing-foot contact were determined from force plate data. Since gait
initiation onset did not necessarily occur simultaneously in the ML and AP axes, two t0 times were
estimated, one for each axis. T0y and t0x corresponded, respectively, to the instants when the ML and
AP centre of pressure trace exceeded 2.5 standard deviations from its baseline value, respectively [24].
The one occurring first was considered t0. Swing-foot contact corresponded to the instant when the
ML and the AP centre of pressure trace shifted abruptly towards the swing-leg side and forward,
respectively. Swing heel-off and swing toe-off were determined from VICON data. They corresponded
to the instants when the swing heel marker’s vertical position and the swing toe marker’s anterior
position exceeded their position in the initial static posture by 3 mm.

2.4. Dependant Variables

Initial posture, APAs and swing foot lift. Gait initiation was divided into three phases, namely
APAs (from t0 to swing heel-off), swing foot lift (from heel-off to toe-off) and swing phase (from swing
toe-off to swing foot contact) (Figure 2). The ML and AP centre of mass position in the initial upright
posture was estimated by averaging the centre of pressure position during a 250 ms period, lasting
from t0 minus 1500 ms to t0 minus 1250 ms. No dynamic phenomena were detected during this
period. APAs amplitude was characterised by the peaks of the backward and ML centre of pressure
shift obtained during the APAs time window. The duration of APAs along the ML and AP axes was
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computed separately, as the t0 times for these two axes did not necessarily occur simultaneously as
stated above. The centre of mass velocity and displacement along the ML and AP axes were determined
at swing toe-off and foot contact.
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Motor performance. Motor performance was quantified with the AP centre of mass velocity at
foot contact, step length and swing phase duration. Step length corresponded to the distance covered
by the heel marker of the swing leg from the initial posture to foot contact.

Safety distance. The vertical distance between the obstacle and the marker of the swing/rear heel,
and between the obstacle and the marker of the swing/rear toe was measured at the instant these
markers passed over the obstacle. The smaller of these two vertical distances corresponded to the
safety distance.

ML dynamic stability. ML dynamic stability at foot contact (hereafter called ML stability) was
quantified by the ML boundary of the base of support (BOSymax) and an adaptation of the margin of
stability (MOS) [25]. The BOSy was measured as the distance at foot contact between the marker on
the fifth metatarsal of the stance foot and the heel marker of the swing foot in the case of a rearfoot
strike, or the marker on the fifth metatarsal of the swing foot in the case of a forefoot strike. The MOS
corresponded to the difference between BOSymax and the ML position of the extrapolated centre of mass
at swing foot contact (YcoMFC), that is, MOS = BOSymax − YcoMFC. Based on the study of Hof et al. [25],
the ML position of the extrapolated centre of mass at foot contact (YcoMFC) was calculated as follows:

YCOMFC = yMFC +
y′MFC
ω0

, (3)

where yMFC and y’MFC are, respectively, the ML centre of mass position and velocity at foot contact,

and ω0 is the eigenfrequency of the body modelled as an inverted pendulum calculated as ω0 =
√

g
l ,

where g = 9.81 m/s2 is gravitational acceleration and l is the length of the inverted pendulum, which in
this study was estimated to 57.5% of body height [26]. This quantity was held constant during the gait
initiation. ML stability at foot contact is preserved on the condition that YcoMFC is within BOSymax,
which corresponds to a positive MOS.

Centre of mass braking. The braking index introduced by Welter and colleagues provides evidence
that the centre of mass does not merely fall under the force of gravity but that the CNS prepares for
foot contact by decreasing the centre of mass vertical velocity to achieve a soft landing [15]. It was
calculated according to the formula of Chong et al. [12] as follows:

Braking index = (VMIN − VFC)/VMIN, (4)

where VMIN is the minimum vertical centre of mass velocity occurring between mid- to late swing,
and VFC is the vertical centre of mass velocity at foot contact (Figure 3).

This index indicates the amount of change (i.e., braking) in the centre of mass vertical velocity at
foot contact relative to its minimal value. If the centre of mass vertical velocity is actively decreased
before foot contact, the braking index value is increasing.

Collision forces. The combined effect of the foot strike pattern (RFS vs. FFS) and vertical force
braking on the collision forces and on the transmission of these forces through the body was assessed
using variables extracted from force plate and VICON data, respectively. The variables obtained
from the force plate were the peak and slope of the vertical ground reaction force trace occurring
immediately after foot contact [16] (Figure 3). The variable obtained from VICON data was the slope
(computed at foot contact) of the vertical acceleration of the marker placed at the C7 spine level.
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Figure 3. Typical biomechanical traces and representation of the main experimental variables (vertical
direction). Traces are from one representative subject initiating gait in the (left) rearfoot strike condition
and the (right) forefoot strike condition. COM, GRF, acc: centre of mass, ground reaction forces, and
acceleration, respectively; VMIN, VFC: peak of negative vertical COM velocity and COM velocity at
foot contact (FC). Vertical dashed lines: t0 onset variation of biomechanical traces; HO: swing heel-off;
TO: swing toe-off; FC: swing foot contact. Horizontal arrows. APAs: anticipatory postural adjustments;
FL: swing foot lift; SWING: swing phase of gait initiation.

2.5. Statistics

Mean values and standard errors were calculated for each variable under each condition.
The normality of data was checked using the Kolmogorov–Smirnov test and the homogeneity
of variances was assessed using Bartlett’s test. Paired t-tests were used to compare mean values. The
alpha level was set at 0.05.
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3. Results

3.1. Biomechanical Traces

The time course of the biomechanical traces was generally similar under both experimental
conditions (see Figures 2 and 3). Swing heel-off was systematically preceded by postural dynamics that
corresponded to APAs. During these APAs, the centre of pressure displacement reached a peak value
in a backward direction and towards the swing leg side, while the centre of mass velocity was directed
forwards and towards the stance leg side. The ML centre of mass velocity trace reached a first peak
value towards the stance leg side at around heel-off. This trace then fell towards the swing leg side
and a second peak value towards this side was reached a few milliseconds after foot contact. The ML
centre of mass shift trace was bell-shaped and reached a peak value towards the stance leg side in the
late part of the swing phase. The AP centre of mass velocity increased progressively until it reached
a peak value a few milliseconds after swing foot contact, while the centre of mass was continuously
shifted forward (see Figure 2).

The time course of the vertical ground reaction force and the centre of mass vertical velocity
was also generally similar under both experimental conditions (see Figure 3). Following foot-off, the
centre of mass was accelerated downwards (negative velocity indicates downward centre of mass
movement) and then reversed. In fact, during single support, the centre of mass velocity shows a V
shape indicating that the centre of mass fall was braked.

3.2. Initial Posture, APAs and Swing Foot Lift

Statistical analysis showed that there was no significant effect of the swing-foot strike pattern on
the initial position of the centre of mass along the ML and the AP direction. Additionally, there was no
significant effect of the swing-foot strike pattern on the peak of AP centre of pressure shift and AP/ML
APAs duration (Figure 4). By contrast, the peak of the ML centre of pressure shift was significantly
smaller under the FFS than under the RFS condition (t12 = −2.43, p = 0.032) and foot lift duration
was significantly longer under the FFS than under the RFS condition (t12 = 5.22, p < 0.001). Foot lift
duration was 88 ± 8 ms under the RFS condition and 105 ± 7 ms under the FFS condition. Finally,
the ML centre of mass velocity at toe-off was significantly lower under the FFS than under the RFS
condition (t12 = −3.25, p = 0.006), whereas the AP centre of mass velocity at toe-off was significantly
higher (t12 = 2.46, p = 0.003).

3.3. Safety Distance

The safety distance values for the swing foot and for the rear foot were 13.6 ± 0.9 cm and 14.4 ±
1.4 cm, respectively, under the RFS condition, and were 13.7 ± 0.9 cm and 15.0 ± 1.5 cm, respectively,
under the FFS condition, with no significant difference across conditions.

3.4. Motor Performance

The swing phase duration was significantly shorter (t12 = −5.01, p < 0.001) and the AP centre of
mass velocity at foot contact was significantly smaller (t12 = −4.64, p < 0.001) under the FFS than under
the RFS condition. By contrast, step length did not differ between the two conditions. Step length was
79.2 ± 4.0 cm under the RFS condition and 77.8 ± 4.5 cm under the FFS condition.

3.5. ML Dynamic Stability

The ML margin of stability (MOS) at foot contact was significantly greater under the FFS than
under the RFS condition (t12 = 6.12, p < 0.001), showing that ML dynamic stability at foot contact was
increased under the FFS compared to the RFS condition (Figure 5). The results further show that the
ML size of the base of support (BOSymax) was larger under the FFS than under the RFS condition
(t12 = 4.77, p < 0.001), and that the ML centre of mass velocity at foot contact was lower (t12 = 5.75,
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p < 0.001). By contrast, the ML centre of mass position at foot contact was not significantly different
between the two conditions.
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3.6. Centre of Mass Braking

The braking index was significantly smaller under the FFS than under the RFS condition (t12 =−2.44,
p = 0.03), that is, the downward vertical centre of mass velocity was braked less before foot contact
under the FFS condition (Figure 6). As a consequence, the vertical centre of mass velocity at foot
contact was greater under the FFS than under the RFS condition (t12 = −2.19, p = 0.049), and the swing
phase was shorter (as reported above).
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foot contact was greater under the FFS than under the RFS condition (t12 = −2.19, p = 0.049), and the 
swing phase was shorter (as reported above). 

3.7. Collision Forces 

Figure 5. Effects of swing-foot strike pattern on selected stability parameters along the mediolateral
(ML) direction. Reported are mean values (all participants together) + 1 SE. BOSymax: base of support
size; MOS: margin of stability; COM: centre of mass; RFS: rearfoot strike condition; FC: swing foot
contact; FFS: forefoot strike condition. * Indicates a significant difference between bars.

3.7. Collision Forces

The peak value of the vertical ground reaction forces, which occurred shortly after foot contact
and reflected the collision forces acting at the foot, was significantly smaller under the FFS than under
the RFS condition (t12 = −5.61, p < 0.001), as was the slope of these forces (t12 = −5.11, p < 0.001; see
Figure 6). In addition, the slope of the vertical acceleration (computed at foot contact) of the marker
located at the C7 spine level was significantly smaller under the FFS than under the RFS condition
(t12 = −2.32, p = 0.045).
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4. Discussion

The present study investigated the effect of changing the swing-foot strike pattern (FFS vs. RFS)
on ML APAs and active braking of the centre of mass fall, and on the related ML stability and force
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collisions. Specifically, it was hypothesised that the active braking of the centre of mass fall and
the ML APAs associated with gait initiation over an obstacle to be cleared are both attenuated in
an FFS compared to an RFS pattern, but with no alteration of ML stability or increase in collision
forces. The results discussed below are in line with these expectations and suggest the existence of an
interdependent relationship between balance control mechanisms for optimal stability control.

Do and colleagues first reported that, in young healthy adults, the centre of mass fall during the
swing phase of gait initiation was actively braked in anticipation of the swing foot’s collision with the
ground [2,14,15,27,28]. This centre of mass brake, which was ascribed to an activation of the soleus
of the stance leg (not recorded in the present study), aims to attenuate the vertical ground reaction
forces at the time of foot contact (i.e., the collision forces). Therefore, this braking facilitates balance
control following foot contact and attenuates the transmission of the collision forces throughout the
entire musculoskeletal system by allowing a softer swing foot landing [6,14,15]. The results of the
present study showed that the indicator of this centre of mass brake (the braking index) reached a
significantly lower value under the FFS than under the RFS condition (the difference between the two
conditions was ∆ = 19.4%), thus revealing that the fall of the centre of mass was much less braked
under the FFS condition. The much larger downward-oriented centre of mass velocity at foot contact
under the FFS condition (∆ = 74.5%) can be considered a direct consequence of this reduced braking.
Therefore, it could be surprising that the two indicators of the collision forces’ perturbing effect (namely,
peak collision forces and the slope of this peak) were both smaller under the FFS than under the RFS
condition (∆ = 27.3% and ∆ = 26.2%, respectively), revealing that the foot landing was softer under the
first condition. In addition, the jerk value recorded at the C7 spine level was lower under the FFS than
under the RFS condition. This finding suggests that the collision forces acting at the foot were absorbed
to a greater extent by the swing leg under the FFS condition, reducing its transmission through the
upper part of the musculoskeletal system. In turn, these results are in line with classical studies in the
literature comparing collision forces during running [16,19–22,29,30], or during stepping down during
ongoing gait [17]. According to van Dieën et al. [17], the FFS pattern allows the ankle plantar flexors
of the swing leg to produce negative work that can absorb part of the collision forces. This negative
work is absent in the RFS pattern which might explain the greater collision forces found under the RFS
condition. As stressed in the introduction, it is noteworthy that centre of mass braking has not been
investigated in any of these studies. Consequently, a possible modulation effect of this force braking
on the collision forces cannot be discounted in these studies.

In fact, the result of the present study showing that the collision forces were smaller under the
FFS than under the RFS condition, despite the centre of mass braking being attenuated, further stresses
the efficiency of the FFS pattern in dampening collision forces. The present results may also suggest
that the dampening effect specifically associated with the FFS alone was probably underestimated in
the studies on foot strike pattern cited above.

The question arises as to why centre of mass braking is attenuated under the FFS condition
compared to the RFS condition. To interpret this finding, it should be stressed that this braking has an
energetic and attentional cost [14,15] and shares a dampening action on collision forces with the foot
strike strategy. Therefore, when the FFS pattern is employed, the need to actively brake the centre of
mass fall becomes less crucial than when the RFS pattern is used. The CNS would then attenuate this
active brake in order to minimise the associated energetic and attentional cost, and would rely more
heavily on the efficiency of the foot strike strategy to dampen the collision forces. This implies that the
CNS takes into account the foot strike pattern and the related dampening effect when programming
braking force generation. This statement is in line with the hypothesis of an interdependent relationship
between these two mechanisms (active braking and foot strike pattern) for optimal stability control
and better ground reaction force management. The results linking ML APAs to the foot strike pattern
further strengthen this hypothesis (paragraph below).

During gait initiation or any locomotor task, imbalance occurs in the frontal plane due to the
transition from a bipedal to a unipedal stance. Following swing foot-off, the centre of mass falls
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rapidly towards the swing leg side under gravity, and this lateral fall is braked by foot contact with
the ground. This ML imbalance is greater when an obstacle is to be cleared, since the duration of the
lateral fall of the centre of mass is increased compared to a control condition with no obstacle to be
cleared [10,11,31–33]. The development of ML APAs is therefore of utmost importance to maintain
stability as it acts to minimise this lateral fall by propelling the centre of mass towards the stance leg
side and thus attenuating the ML gap between the centre of mass and the centre of pressure at the
time of swing foot-off [7,8,10,11,34,35]. Previous modelling studies demonstrated the link between ML
APAs and ML stability at foot contact [8,10,11,34].

In the present study, the results showed that the amplitude of these ML APAs, in terms of peak
centre of pressure shift, was lower under the FFS than under the RFS condition (∆ = 9.4%). It also
revealed that this lower amplitude was not accompanied by a ML APA duration lengthening strategy.
Such a trade-off strategy between APA amplitude and APA duration has been repeatedly reported in the
literature under various conditions of postural constraints, such as fear of falling [36], fatigue [37–39],
leg dominance [40] and temporal pressure [41]. There was no such compensative trade-off strategy in
the present study. Consequently, the ML centre of mass velocity at the time of swing foot-off, which
represents the total amount of forces applied to the centre of mass during the APAs, reached a lower
value under the FFS than under the RFS condition (∆ = 5.99%). For the above reasons, ML dynamic
stability, as measured with the MOS [25], could be expected to be lower under the FFS than under the
RFS condition. However, contrary to this expectation, the MOS reached much higher values under
the FFS than under the RFS condition (∆ = 71.42%), that is, ML dynamic stability was significantly
improved. Changes in two components of the MOS with the foot strike strategy can account for this
result, as detailed below.

First, the ML centre of mass velocity at the time of foot contact reached a lower value under
the FFS than under the RFS condition (∆ = 14%), that is, the velocity at which the centre of mass fell
towards the swing leg side was attenuated. This finding could be ascribed to the lower duration of the
swing phase of gait initiation under the FFS compared to the RFS condition (∆ = 6.70%), which implies
that the period during which the centre of mass was falling laterally under gravity was reduced. In
turn, this shorter duration of the swing phase under the FFS condition could be ascribed to the lower
force braking under the FFS condition (∆ = 19.4%), which accelerated the fall of the centre of mass to a
greater extent (as discussed above).

As a second factor contributing to enhanced stability, the size of the ML base of support was
increased under the FFS compared to the RFS condition. This result could not be ascribed to a strategy
of a more lateral placement of the swing foot [24,35] (since the distance between the two heels remained
unchanged between the two foot strike conditions), but to foot anatomy. Under the FFS condition, the
ML base of support size corresponded to the distance between the stance heel and the fifth metatarsal
of the swing foot, while under the RFS condition, it corresponded to the distance between the two
heels. It was therefore smaller than under the FFS condition. This difference reached up to 10 cm in
some subjects.

The question arises as to why the amplitude of ML APAs is decreased when stability is increased
with the change in the foot strike pattern.

Generating ML APAs is known to have an energetic cost, requiring a coordinated activation of
hip abductors and ankle dorsiflexors [7,42]. Although not shown in the literature to date, it may also
have an attentional cost, as has previously been documented for the control of static erect posture
and level walking [43,44]. An optimal strategy for stability control would appear to be to reduce
this cost by attenuating the ML APAs under the FFS condition while, at the same time, increasing
stability with the mechanical and anatomical changes reported above—neither of which requires any
additional energetic or attentional cost (even less for attenuated force braking). This optimal strategy
implies that one (or both) of these factors associated with the foot strike pattern be accounted for in the
programming of ML APAs. This statement further reinforces the hypothesis proposed above of an
interdependent relationship between motor mechanisms for optimal stability control.
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Interestingly, previous studies focusing on the effect of different sorts of constraints applied to the
postural system during gait initiation (such as temporal pressure [41,45], progression velocity [24],
the presence of an obstacle of different heights and distances to be cleared [10,11], the addition of a
mass distributed (a)symmetrically over the body or the ankles [46–48], etc.) repeatedly showed that
the CNS modulated the spatiotemporal features of ML APAs so as to maintain an equivalent MOS
value. This motor invariance through these disparate postural constraints led the authors to suggest
that the CNS would set a fixed MOS value before initiating gait and would then adjust ML APAs
features to keep it unchanged (for review, see [2]). Thus, the present finding that the MOS was not
invariant is not in line with these previous results and related hypothesis. Now, it may be recalled
that the participants systematically used an RFS pattern in all of the previous studies. Therefore, the
MOS was computed and compared across conditions at the moment the swing heel hit the ground. By
contrast, the present study compared the MOS of two different postures of the landing foot. These foot
postures were responsible for the difference in the ML size of the base of support, which was a major
factor explaining the MOS differences between the two foot strike conditions. It is possible that, for a
given foot strike pattern (RFS or FFS), a fixed MOS value is planned before initiating gait, and may be
greater for the FFS than the RFS pattern due to foot anatomy.

5. Conclusions

In conclusion, these findings are in line with the hypothesis of an interdependent relationship
between balance control mechanisms and foot strike pattern for optimal stability control. These findings
are original since previous studies in the literature focused on either balance control mechanisms during
gait initiation or changes in the collision forces with the foot strike pattern. Thus, the present study
linked these two major lines of research to better highlight how balance is controlled in humans during
a functional locomotor task. The question remains as to whether and how coordination between these
balance control mechanisms is affected by aging as well as neurological and musculoskeletal disorders.
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