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Abstract: As Intelligent Transport System (ITS) applications are diversified and amount of ITS data
increases, high throughput and reliability are required in next-generation V2X communications.
In order to meet such increased throughput and reliability requirements, IEEE 802.11bd, the
next-generation V2X communication standard, has commenced standard development. One of
the main features of IEEE 802.11bd is a 20-MHz bandwidth transmission. In this paper, a
novel wide-bandwidth channel access scheme in next-generation Wireless Local Area Network
(WLAN)-based vehicular communications is proposed. The proposed scheme is designed to provide
fairness with other ITS devices and channel efficiency considering adjacent channel interference.
By using the proposed scheme, through extensive simulations, it is verified that, while satisfying
the fairness requirement with other ITS devices, the channel access delay of wide-bandwidth packet
transmission can be optimized.
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1. Introduction

Intelligent Transport Systems (ITSs) have been developed and widely deployed with
Vehicle-to-Everything (V2X) communication. Vehicles equipped with various sensors (e.g., radar,
Lidar, and cameras) combined with Vehicle-to-Vehicle (V2V) communication to exchange sensed
data enable automatic driving and platooning. Vehicle-to-Pedestrian (V2P) communication prevents
traffic accidents by providing warning signals. In addition, various V2X applications enable driving
convenience, road safety, traffic efficiency, road management, and infotainment. As various applications
using V2X communication are developed, the required throughput and reliability are diversified.
Moreover, as more onboard sensors are equipped in each vehicle, the communication requirements of
throughput and reliability have increased.

At the time of this writing, the most widely deployed V2X communication system is Dedicated
Short Range Communication (DSRC) using a set of Wireless Access in Vehicular Environments
(WAVE) standards (Institute of Electrical and Electronics Engineers (IEEE) 1609 [1–3] and IEEE
802.11p [4]). Worldwide research projects and tests have proven that DSRC is a stable and efficient
V2X communication system. Whereas DSRC is sufficient to provide basic and some advanced ITS
services, more advanced future ITS services such as automated driving require more enhanced wireless
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communication performance. Two important requirements in next-generation V2X communication
systems are throughput and delay reduction.

In order to meet the requirements of next-generation V2X communication systems, the IEEE
802.11bd Task Group (TG) commenced V2X communication standardization in January 2019.
IEEE 802.11bd’s objective is to improve the throughput, transmission range, and positioning
performance, preserving backward compatibility and fairness with conventional Outside Context
of a Basic Service Set (OCB) devices [5–7]. One of the proposed features to improve throughput is
wideband transmission using a 20-MHz channel for large data transmission. A 20-MHz channel can
double the throughput performance compared to legacy DSRC systems using 10-MHz channels.

When the channel extension approach of IEEE 802.11n/ac is applied to 20-MHz transmission
in V2X communication, the adjacent channel interference problem should be carefully considered.
However, even though the channel access procedure is able to avoid adjacent channel interference
problem in 20-MHz transmission, the channel extension approach of IEEE 802.11n/ac still cannot be
applied in the V2X OCB environment owing to fairness concerns with conventional OCB devices and
10-MHz transmissions conducted by IEEE 802.11bd devices. When the channel load levels of two
10-MHz channels are not equal, the conventional channel extension scheme has higher channel access
priority in the extended channel than the conventional OCB devices’ 10MHz channel access because the
conventional channel extension scheme has no back-off procedure on the extended channel. One of the
most important requirements that IEEE 802.11bd must meet is fairness with legacy devices deployed
with IEEE 802.11p devices. Since the IEEE 802.11p OCB configuration does not require association with
Access Points (APs), there are no primary or secondary channels as in the Basic Service Set (BSS) of
other IEEE 802.11 networks such as IEEE 802.11n/ac. In addition, each channel is used independently
for its own purpose with equal importance. Therefore, the fairness issue in V2X environments is more
severe than in other IEEE 802.11 networks.

There are prior researches to provide enhanced channel access mechanisms considering throughput
and fairness under various IEEE 802.11 environments. Authors in reference [8] addresses unfairness
caused by the wide-bandwidth transmission of IEEE 802.11ac in case of overlapping channels between
neighboring APs. It provides channel allocation and scheduling methods to minimize the interference
and enhance the fairness and network throughput considering different channel bonding levels.
On the other hand, wireless mesh network of IEEE 802.11s is assumed in reference [9], where the
authors propose an implementation method to provide proportional fairness without non-linear and
non-concave optimization. However, these works assume static environments where APs or stations
rarely move. Since there is no concept of AP in WLAN V2X scenario and all vehicles may change their
positions dynamically, channel access methods considering static graphs are not suitable. The fair
channel access scheme in WLAN V2X environment is considered in reference [10]. It compromises
throughput and fairness considering multi-rate and multi-channel operation defined in IEEE 802.11p
and IEEE 1609.4, respectively. It includes the grouping method of service channels (SCHs) regarding
the data rate and the distance of transmission. However, in a real V2X environment, since WLAN V2X
channels are pre-allocated and cannot be dynamically changed over time, throughput and fairness
should be controlled with channel access schemes. Furthermore, 20-MHz transmission operation in
the next generation V2X is not considered. In contrast to the related works, in this paper, the proposed
channel access scheme jointly optimizes fairness and throughput performance for 20-MHz transmission
under realistic WLAN V2X environment.

In this paper, a novel and effective wide-bandwidth channel access scheme in next-generation
V2X communication systems is proposed. The proposed scheme is carefully designed to provide both
enhanced fairness with other stations and reduced channel access delays. The proposed scheme is
designed to alleviate interchannel interference problems that exist in OCB environments. The proposed
architecture is able to effectively prevent a hidden node problem in the extended channel with the
detection capability of exact channel usage time. The performance of the proposed scheme is analyzed
in order to show the enhanced fairness. In addition to the proposed scheme, alternative channel-access
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methods are given in the case of hardware limitations. In order to design the best scheme, the proposed
scheme and other variant wideband channel access schemes are compared by computer simulations.
Through extensive simulations, the best performing scheme is selected.

The rest of the paper is composed as follows. Section 2 presents background on conventional
WLAN V2X communications and channel access schemes, Section 3 describes the proposed channel
access scheme and alternative channel access schemes for the wide bandwidth of 20-MHz transmission
in next-generation V2X communication systems, Section 4 provides extensive analysis of the fairness
and delay performance of the proposed scheme, Section 5 evaluates the performance of the proposed
scheme, Section 6 discusses the simulation results, and Section 7 concludes the paper.

2. Background

2.1. Conventional V2X Communication Scheme in 5.9 GHz Band

The most widely deployed V2X communication scheme is DSRC, which employs a set of WAVE
standards including the IEEE 1609 series and IEEE 802.11p, as described in [11]. The most widely
used V2X frequency band used for V2X communication is the 5.9 GHz band, which is a licensed band.
As described in reference [12], the Federal Communications Commission (FCC) in the U.S. initially
allocated seven channels in the 5.9 GHz band in 1999 and defined each channel’s usage and rules in
2003 and 2006, as in Figure 1.
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Figure 1. The 5.9 GHz channel allocation in the US.

As shown in the figure, Channel 178 (5.885 GHz–5.895 GHz band) is called the Control
Channel (CCH), which is used only for safety messages and control messages. Channel 172
(5.855 GHz–5.865 GHz band) is dedicated to safety messages between vehicles, and Channel
184 (5.915 GHz–5.925 GHz band) is used to transmit frames to vehicles in a long communication range.
The remaining channels can be used to send data frames regardless of message or data type. Two sets
of 20-MHz channels (Channel 174 and Channel 176, and Channel 180 and Channel 182) can be used for
20-MHz frame transmissions.

IEEE 802.11p defines the Medium Access Control (MAC) and Physical (PHY) layers of V2X
communication schemes in the 5.9 GHz band. The channel access schemes in IEEE 802.11p employ the
Enhanced Distributed Channel Access (EDCA) mechanism of IEEE 802.11e with modified parameter
values. EDCA is a contention-based channel access scheme with four different Access Categories (ACs)
depending on traffic type: Video, Voice, Best Effort, and Background. Except for EDCA parameters for
differentiated channel access per traffic type, EDCA is basically a Distributed Coordination Function
(DCF) scheme. In a DCF scheme, when a station has data to transmit, it first senses for a DCF Interframe
Space (DIFS) period to check if the medium is idle before it transmits the data frame.

There are two kinds of channel sensing methods—Preamble Detection (PD) and Energy Detection
(ED). PD senses the channel status by decoding the signal duration included in the IEEE 802.11
preamble and the frame duration value indicated in the Duration field of frame. ED senses the channel
status by detecting if there is any received signal power over a threshold value that is regarded as
decoding a failure or an error. When the channel has a busy status, there are different procedures
depending on the used channel sensing methods (PD or ED). If the channel is sensed as busy by PD
during a DIFS period, then a back-off procedure is triggered after the DIFS period from the end of the
sensed busy period. The back-off procedure waits for the back-off duration, which is determined by a
randomly selected back-off counter.



Appl. Sci. 2020, 10, 222 4 of 18

On the other hand, if the channel is sensed as busy by ED during a DIFS period, then the stations
must wait for an Extended Interframe Space (EIFS) period, which is a longer time period than DIFS
after the end of the channel’s busy status sensed by ED. An EIFS period is sufficiently long to protect
the ongoing frame transaction where the transmitter of the frame that caused the channel to be busy
needs to receive an acknowledge (ACK) frame to successfully complete the ongoing frame transaction.
Therefore, an EIFS period includes the time for ACK frame transmission, i.e., EIFS = Transmission time
of Ack frame at lowest PHY mandatory rate + SIFS + DIFS. By providing enough time in the EIFS
period for a transmitter to receive an ACK frame, the hidden node problem caused by the ACK frame
transmitter can be avoided.

In EDCA, in order to provide differentiated channel-access priorities depending on the traffic
type, as shown in Figure 2, an Arbitration Interframe Space (AIFS) is used instead of the DIFS of the
previously described normal DCF operation. AIFS values are different for the AC. The EIFS value
is also adjusted with the AIFS period, i.e., EIFS = Transmission time of Ack frame at lowest PHY
mandatory rate + SIFS + AIFS.
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In IEEE 802.11p, the default transmission bandwidth for frame transmission is 10 MHz. Doubled
timing parameters are adopted compared to other IEEE 802.11 systems [13] because of a larger delay
spread in the vehicular communication environment.

2.2. Conventional Channel Extension Scheme (Conventional AIFS)

When a 20-MHz channel is composed by two contiguous 10-MHz channels, the most simple
20-MHz channel access scheme reuses the existing wide-bandwidth channel access scheme defined in
IEEE 802.11n and IEEE 802.11ac [14], which is used to access wider channels of 40 MHz, 80 MHz, and
160 MHz channels. In IEEE 802.11n and IEEE 802.11ac, a primary channel is defined as a common
access channel used by all stations including AP in a BSS, and secondary channels are defined as the
remaining channels of 40 MHz, 80 MHz, and 160 MHz with the primary channel.

The wide channel access in IEEE 802.11n and IEEE 802.11ac follows the EDCA channel access
procedure on the primary channel and ED sensing on the secondary channel for a certain period
before the end of the channel access procedure in the primary channel. The ED sensing period of the
secondary channel depends on the operating band: PIFS in the 5 GHz band and DIFS in the 2.4 GHz
band. When a busy channel is indicated in the secondary channels by ED sensing, the station may
transmit a frame using only the primary channel, or a back-off procedure is restarted with a new
back-off counter, preserving the contention window value and retransmission counter.

The previously described channel-access rule for 40-MHz channel access can be applied to 20-MHz
channel access in IEEE 802.11bd. In reference [14], the primary channel was defined as the 10-MHz
channel where an EDCA channel access procedure is performed, and the secondary channel was
defined as the extended 10-MHz channel composing the 20 MHz channel. In order to provide enhanced
fairness with stations using the secondary channel, using AIFS instead of PIFS is currently under
discussion [14], as depicted in Figure 3. However, despite using AIFS, which has a longer waiting
period than PIFS, there still exists a fairness problem with stations on the secondary channel because
there is no back-off of the secondary channel. The fairness problem becomes worse when the channel
load in the secondary channel is higher than the channel load of the primary channel because stations
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on the secondary channel perform the back-off procedure as a result of EDCA procedure. The fairness
problem should be carefully considered because fairness is one of the crucial requirements of IEEE
802.11bd [5,6].
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2.3. Adjacent Channel Interference Problem in V2X Communications

For the vehicular environment, there have been a number of prior studies [15,16] on
adjacent-channel interference problems. Adjacent channel interference is caused by a power leakage of
signals transmitted in neighboring channels, which is nonnegligible. Because of the adjacent-channel
interference problem, transmission in nearby channels causes a degradation of the signal quality and
an increased channel access delay. Therefore, to reduce negative impacts on the signal quality of the
frame transmission on adjacent 10-MHz channels, authors in reference [17] suggested schemes to
alleviate such channel interference caused by transmission in adjacent channels.

The previously described adjacent-channel interference problem should be taken into account
for the channel access rule of wide-bandwidth transmission. In the wide-bandwidth channel access
procedure in IEEE 802.11n or IEEE 802.11ac, when a busy channel is detected in the secondary channel
by ED sensing, the station may transmit frames using only the primary channel. This is called a
fallback operation. However, in V2X communication, a fallback operation causes an adjacent-channel
interference problem because it transmits frames using adjacent channels even though a station senses
transmission on the neighboring channel. The fallback operation causes more severe adjacent-channel
interference by ignoring the transmissions in nearby channels. Therefore, in the proposed channel-access
method for 20-MHz transmission, it is suggested not to allow the transmission of a 10-MHz fallback
operation in case of a busy channel indicated in a secondary channel, as in reference [18].

3. Proposed Scheme and Its Variants

3.1. Proposed Channel Access Scheme for 20-MHz Transmission

A channel access scheme for 20-MHz frame transmission should ensure fairness with stations
using an extended 10-MHz secondary channel, with the definitions of the primary channel and
secondary channel as in [14]. In a BSS environment, the primary channel is a main channel used
by all stations, and the secondary channels can be other BSSs’ primary channels, which may be
geographically separated where adjacent channel interference and channel extension fairness problems
are not very serious.

However, in the OCB environment, each channel is equally important, with its own purpose.
Stations using other channels cannot be geographically separated owing to the moving nature of
vehicles. Therefore, adjacent channel interference and channel extension fairness problems are taken
into account more seriously and carefully in an OCB environment (e.g., IEEE 802.11p and IEEE
802.11bd) than a BSS environment (e.g., IEEE 802.11n, IEEE 802.11ac, and IEEE 802.11ax). In the design
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of the 20-MHz channel access scheme, fairness and adjacent interference avoidance are considered,
and a minimized channel-access delay must be provided. In the proposed scheme, while fairness
with stations operating in an extended 10-MHz channel is ensured, minimized channel-access delay is
provided by preventing overprotection caused by dynamic sensing methods.

3.1.1. Device Architecture

In order to provide maximum performance, the device architecture of the proposed 20-MHz
channel access scheme is designed to include two preamble detectors to perform PD sensing in both
10-MHz channels. The proposed station architecture to support the proposed scheme is shown in
Figure 4. The proposed station architecture has an additional simplified receiver module with PHY
layer receiver and simple MAC layer. In the proposed station structure, one preamble detector is
a normal part of IEEE 802.11 MAC and PHY architecture [19], and the other preamble detector is
part of the additional simplified receiver module. The additional simplified receiver module has a
simplified MAC layer and PHY layer receiver for a secondary channel to perform PD sensing on
that secondary channel. The added PHY receiver only includes the receiver part of a normal PHY
layer [19]. The added simplified PHY and MAC layers for a secondary 10-MHz channel only includes
the functionality of PD sensing: the decoding of the LENGTH field in the preamble’s L-SIG and
Duration field in the MAC header of the received frames. The simplified receiver module detects the
channel state of the secondary channel according to the decoded LENGTH field and Duration field.
Since the simple MAC layer is only for the detection of channel usage time in the secondary channel,
the decoded frames are not transferred to the upper layer.
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Based on the proposed device architecture as in Figure 4, each 10-MHz channel is able to perform 
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the back-off of the entire 20-MHz channel, as depicted in Figure 5, which guarantees fair contention 

with other 10-MHz frame transmissions in each 10-MHz channel. In the proposed 20-MHz frame 

transmission scheme, the 20-MHz channel is determined to be idle when both 10-MHz channels are 

sensed as idle because of PD and ED sensing in each 10-MHz band. Channel sensing of the primary 

channel is performed by an IEEE 802.11 transceiver, and channel sensing of the secondary channel is 

performed by the previously described newly added receiver with simplified MAC layer and PHY 
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3.1.2. Proposed Channel Access Scheme (All Back-Off AIFS)

Based on the proposed device architecture as in Figure 4, each 10-MHz channel is able to perform
carrier sensing (e.g., PD and ED) independently. Such independent carrier sensing capability enables
the back-off of the entire 20-MHz channel, as depicted in Figure 5, which guarantees fair contention
with other 10-MHz frame transmissions in each 10-MHz channel. In the proposed 20-MHz frame
transmission scheme, the 20-MHz channel is determined to be idle when both 10-MHz channels are
sensed as idle because of PD and ED sensing in each 10-MHz band. Channel sensing of the primary
channel is performed by an IEEE 802.11 transceiver, and channel sensing of the secondary channel is
performed by the previously described newly added receiver with simplified MAC layer and PHY
layer. When the back-off duration expires, the station is able to transmit a 20-MHz frame without
secondary-channel idle status checking for the AIFS duration as in the conventional AIFS scheme.
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3.2. Alternative Channel Access Schemes for 20-MHz Transmission

Since there might be hardware restrictions in adding the proposed simplified receiver, several
variant 20-MHz frame transmission schemes with a single transceiver are also proposed. Without the
proposed simplified receiver, both detection and decoding, i.e., ED and PD, of received 10-MHz frames
in the secondary channel are difficult to implement. Therefore, with a single transceiver, only ED
sensing is performed in the secondary channel. To the best of our knowledge, today’s common WLAN
implementation already employs such ED sensing in secondary channels for wide-bandwidth channel
operation. Since fairness must be considered more seriously in OCB communication environments than
BSS communication environments, new back-off procedures with ED sensing in secondary channels
need to be designed. Since fairness and medium access delays have a trade-off relationship, in the
design of the proposed variant schemes, the joint optimization of both aspects must be considered.

3.2.1. Modified Conventional Wideband Channel Access Scheme with AIFS Period (Start AIFS +
End AIFS)

Since the conventional AIFS-based wideband channel access scheme does not perform back-off

operations in secondary channels, in order to consider fairness carefully in secondary channels under
an OCB environment, the conventional AIFS-based wideband channel access scheme must be modified.
The modification of the conventional AIFS method includes the sensing of both 10-MHz channels
before performing the back-off procedure, as illustrated in Figure 6.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18 
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Figure 6. Access variant scheme for 20-MHz channel with modification of conventional wideband
channel access scheme.

As in the conventional AIFS method, channel sensing in the primary channel can be performed
with PD and ED sensing. In the proposed modification, since the modified conventional wideband
channel access scheme only requires one transceiver, ED-based channel sensing can only be used in
the secondary channel because PD sensing in the secondary channel is not general. When a busy
channel is detected with ED sensing in the secondary channel, the busy-channel duration cannot be
known. Therefore, in order to minimize the impact of 20-MHz frame transmission using the secondary
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channel and protect the ongoing frame transaction (i.e., data frame + ACK) of the secondary channel, a
relatively long waiting period of the EIFS duration must be applied. The rest of the channel access
procedure after the back-off operation is conducted as in the conventional AIFS-based wideband
channel access method.

3.2.2. Sensing of 20-MHz Channel for all Durations of Back-Off Procedure (All Back-Off EIFS)

Another 20-MHz channel access variant scheme is the modification of the proposed channel access
method described in Section 3.1.2 to allow for one-transceiver design. In order to guarantee fairness,
20-MHz channel sensing for the duration of the back-off procedure is performed, as in the proposed
method. Since this scheme also requires one transceiver, ED sensing can only be performed on the
secondary channel during the back-off procedure. In this scheme, the 20-MHz channel is determined to
be idle when each 10-MHz channel is sensed to be idle as a result of PD and ED sensing in the primary
channel and ED sensing in the secondary channel. When a station has data to transmit using a 20-MHz
channel, AIFS sensing and a back-off procedure are performed in the 20-MHz band, which can ensure
a channel idle state for each decrement of the back-off counter. Since only ED sensing can be applied to
the secondary channel, any detected busy state invokes EIFS duration waiting, as shown in Figure 7.
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4. Delay Analysis of All Back-Off AIFS Channel Access Scheme

The performance of 20-MHz transmission can be measured with two metrics: 1. fairness with
other devices transmitting a 10-MHz frame in a secondary channel, and 2. the throughput of frames
transmitted using a 20-MHz channel. The fairness metric can be measured by the mean access delay
of frames carried in a 10-MHz frame in the secondary 10-MHz band. The throughput metric can be
measured by the mean access delay and frame transmission latency carried in the 20-MHz channel.

For simplicity, in the performance analysis, there are several assumptions: full buffer traffic
and one AC with the same AIFS number (AIFSN) and contention window value. The mathematical
modeling of this paper is based on the Markov chain modeling in [20]. In addition, the transmitted
frame size in each 10-MHz band is assumed to be the same in every transmission.

Since the total latency is the sum of the access delay, frame transmission delay, and additional
delay for retransmission, the average value of the latency can be expressed as

Lw = dw + Tw + (mean retransmission delay), (1)

where Lw is the mean latency, dw is the mean access delay, and Tw is the mean transmission delay of the
20-MHz frame transmission. When the transmitted frame is a broadcast frame, the retransmission
delay can be omitted.

Similarly, the mean latency of frame transmission in the primary 10-MHz channel is the sum of
the access delay and mean transmission delay, Tp, and the mean latency of the frame transmission in
the secondary 10-MHz channel is the sum of the access delay and transmission delay in the secondary
channel, Ts. Since the same transmission delay value is used, Tp = Ts in the analysis.
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To obtain the access delay of frames carried in 20-MHz channels in the all back-off AIFS scheme,
the transmission probability of each station should be calculated. Since the channel access scheme of all
back-off AIFS includes an EDCA back-off operation with the modification of the channel state decision,
the Markov-chain state transition diagram is the same as the Markov-chain diagram depicted in [20],
with the assumption of the same AC. Based on the approach in [20], the transmission probability can
be calculated as the sum of state probabilities with back-off counter 0, which is expressed as

τw =
m∑

i=0

bi,0, (2)

where bi,0 is the state probability of the ith back-off procedure with back-off counter 0 of the Markov
chain as defined in reference [20].

From the transmission probability τw, the probability of frame transmission in a 20-MHz channel
by k stations in each slot, Pw(k), can be defined as

Pw(k) =
(

Nw

k

)
τk

w · (1− τw)
Nw−k, (3)

where Nw is the number of stations with buffered data to transmit using 20-MHz frames.
Since a collision occurs when two or more stations transmit frames in one slot, the collision

probability of 20-MHz frame transmission in one slot Pcol
w can be derived as

Pcol
w = 1− Pw(0) − Pw(1). (4)

Similarly, the transmission probabilities transmitted in primary and secondary 10-MHz bands τp

and τs can be calculated using the same scheme of Equation (2) from the model in reference [20]. The
transmission probabilities of 10-MHz frames by k stations in each 10-MHz band in one slot Pp(k) and
Ps(k) can be derived as

Pp(k) =
(

Np

k

)
τk

p · (1− τp)
Np−k, (5)

Ps(k) =
(

Ns

k

)
τk

s · (1− τs)
Ns−k, (6)

where Np and Nw denote the number of stations having buffered frames to transmit using 10-MHz frames
in the primary and secondary channels, respectively. As in Equation (4), the collision probabilities
of 10-MHz frame transmission in the primary channel and secondary channel can be obtained as
Pcol

p = 1− Pp(0) − Pp(1) and Pcol
s = 1− Ps(0) − Ps(1), respectively.

The mean access delay of frames transmitted in the 20-MHz channel, dw, can be converted to

dw = AIFS + E [length of a slot time for a 20 MHz frame]/τw, (7)

where AIFS = SIFS + AIFSN · aSlotTime.
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Assuming that Tp = Ts, E [length of a slot time for a 20 MHz frame] is calculated as

E[length of a slot time for a 20MHz frame] = Pp(0) · Ps(0) · Pw(0) · aSlotTime
+Pp(0) · Ps(0) · Pw(1) · (Tw + AIFS + aSlotTime)
+Pp(1) · Ps(0) · Pw(0) ·ms(Tp + AIFS + aSlotTime)
+Pp(0) · Ps(1) · Pw(0) ·mp(Ts + AIFS + aSlotTime)
+Pp(1) · Ps(1) · Pw(0) · (Tp + AIFS + aSlotTime)
+Pcol

p · Ps(0) · Pw(0) ·ms(Tp + EIFS + aSlotTime)
+Pp(0) · Pcol

s · Pw(0) ·mp(Tp + EIFS + aSlotTime)
+Pcol

p · Pcol
s · Pw(0) · (Tp + EIFS + aSlotTime)

+Pp(1) · Pcol
s · Pw(0) · (Tp + AIFS + aSlotTime + mp(EIFS−AIFS))

+Pcol
p · Ps(1) · Pw(0) · (Tp + AIFS + aSlotTime + ms(EIFS−AIFS))

+Pp(0) · Ps(0) · Pcol
w · (Tw + EIFS + aSlotTime)

+(1− Pp(0) · Ps(0)) · (Pw(1) + Pcol
w ) · (max(Tw, Tp) + EIFS + aSlotTime)

(8)

where ms(x) is the mean holding time for the secondary channel for duration x, and mp(x) is the mean
holding time for the primary channel for duration x.

Since busy-channel states may occur in the primary channel and the secondary channel in a
cascaded manner, the mean holding time for the secondary channel, ms(x), can be obtained by a
recursive function:

ms(x) = x +
∑dx/aSlotTimee

i=1 (Ps(0))
i−1Ps(1)mp(Tsch_AIFS–x + i× aSlotTime)

+
∑dx/aSlotTimee

i=1 (Ps(0))
i−1Pcol

s mp(Tsch_EIFS–x + i× aSlotTime)
(9)

for x ≤ Tsch_AIFS, and

ms(x) = x +
∑ns(x)

j=1 (Ps(0))
j−1Ps(1)(mp(x− Tsch_AIFS − j× aSlotTime) − x + Tsch_AIFS + j× aSlotTime)

+
∑d(x−ns(x)×aSlotTime)/aSlotTimee

i=1 (Ps(0))
ns(x)(Ps(0))

i−1Ps(1)mp(Tsch_AIFS–(x− ns(x) × aSlotTime) + i× aSlotTime)
+

∑dx/aSlotTimee
i=1 (Ps(0))

i−1Pcol
s mp(Tsch_EIFS–x + i× aSlotTime), ns(x) =

⌊
(x− Tsch_AIFS)/aSlotTime

⌋ (10)

where Tsch_AIFS < x ≤ Tsch_EIFS and Tsch_AIFS = Ts + AIFS + aSlotTime and Tsch_EIFS = Ts + EIFS +

aSlotTime.
The mean holding time for the primary channel, mp(x), can be calculated in the same way as (9)

and (10), with the substitution of Ps(k), Pcol
s , mp(x), Tsch_AIFS, and Tsch_EIFS for Pp(k), Pcol

p , mp(x), Tpch_AIFS,
and Tpch_EIFS when Tpch_AIFS = Tp + AIFS + aSlotTime and Tpch_EIFS = Tp + EIFS + aSlotTime.

The mean access delay of frames carried in the secondary 10-MHz channel, dp, can be converted to

dp = AIFS + E [length of a slot time in primary 10 MHz]/τp, (11)

where E [length of a slot time in primary 10 MHz] is calculated as

E[length of a slot time in primary 10 MHz] = Pp(0) · Iwp(0) · aSlotTime
+Pp(1) · Iwp(0) · (Tp + AIFS + aSlotTime)
+Pp(0) · Iwp(1) · (Tw + AIFS + aSlotTime)
+Pcol

p · Iwp(0) · (Tp + EIFS + aSlotTime)
+Pp(0) · Icol

wp · (Tw + EIFS + aSlotTime)
+

{
(1− Pp(0)) · (1− Iwp(0))

}
· (max(Tp, Tw) + EIFS + aSlotTime)

(12)

where Iwp(k) is the interference probability to the primary channel by the 20-MHz frame sent by k
stations.
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When iwp denotes the interference probability to primary channel by a certain station transmitting
a 20-MHz frame, Iwp(k) can be derived as

Iwp(k) =
(

Nw

k

)
ikwp · (1− iwp)

Nw−k (13)

and Icol
wp = 1− Iwp(0) − Iwp(1).
Since a backoff counter decreases only when both channels are in the idle state in the all backoff

AIFS scheme, the interference probability by a certain station transmitting a 20-MHz frame, iwp, can be
written as

iwp = psidle(AIFS + aSlotTime) · τw, (14)

where psidle(AIFS + aSlotTime) is the channel idle probability of the secondary channel for AIFS +

aSlotTime, and is approximated as

psidle(AIFS + aSlotTime) ≈ (
ds − aSlotTime

ds
)
d

AIFS+aSlotTime
aSlotTime e·Ns

. (15)

Similarly to Equation (11), the mean access delay of frames carried in the primary 10-MHz channel,
ds, can be converted to

ds = AIFS + E [length of a slot time in secondary 10 MHz]/τs, (16)

where E [length of a slot time in secondary 10 MHz] is calculated as

E[length of a slot time in sec ondary 10 MHz] = Ps(0) · Iws(0) · aSlotTime
+Ps(1) · Iws(0) · (Ts + AIFS + aSlotTime)
+Ps(0) · Iws(1) · (Tw + AIFS + aSlotTime)
+Pcol

s · Iws(0) · (Ts + EIFS + aSlotTime)
+Ps(0) · Icol

ws · (Tw + EIFS + aSlotTime)
+

{
(1− Ps(0)) · (1− Iws(0))

}
· (max(Ts, Tw) + EIFS + aSlotTime)

(17)

where Iws(k) is the interference probability to the secondary channel by the 20-MHz frame sent by k
stations. From the interference probability to secondary channel by 20-MHz frame transmission, iws,
Iws(k) can be derived as

Iws(k) =
(

Nw

k

)
ikws · (1− iws)

Nw−k (18)

and Icol
ws = 1− Iws(0) − Iws(1), where iws is derived as

iws = ppidle(AIFS + aSlotTime) · τw, (19)

where ppidle(AIFS + aSlotTime) is the channel idle probability of the primary channel for AIFS +

aSlotTime, and is approximated as

ppidle(AIFS + aSlotTime) ≈ (
dp − aSlotTime

dp
)
d

AIFS+aSlotTime
aSlotTime e·Np

. (20)

In order to show that the analysis is accurate, a brief simulation is performed under full-buffered
traffic and simulation result is compared with analysis values. As a main consideration point of the
proposed method is the fairness with 10-MHz transmissions on the secondary channel, the analysis
result of the mean access delay of 10-MHz transmissions in the secondary channel is compared with the
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simulation result. As shown in Figure 8, the analysis can be verified as accurate by comparing it with the
simulation result in terms of the mean access delay of 10-MHz transmissions in the secondary channel.
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However, the main assumption in the analysis is full-buffered environment, where each STA
always has data to transmit. Since the full buffer assumption causes too heavy load in each channel,
the simulation is performed with reduced number of STAs.

5. Results

In order to investigate the performance of the proposed channel-access schemes in terms of the
fairness and efficiency (latency) of the 20-MHz frame defined in IEEE 802.11bd, rigorous simulations
are performed. The time driven simulator implemented using MATLAB is utilized in the performance
evaluation. In the simulation, 20-MHz channel is composed of two contiguous 10 MHz-channels
and each 10-MHz channel has two states: channel busy state and channel idle state. Multiple
STAs independently perform channel access when frames are generated with their interarrival times
following an exponential distribution. Two kinds of STAs are implemented: STAs performing 10-MHz
channel access and STAs performing 20-MHz channel access following the schemes in this paper.
The transmission of each STA changes the state of the corresponding channel(s) to channel busy
state. In case of 20-MHz channel access, upon successful channel access, both primary and secondary
channels become channel busy state. If 20-MHz frame transmissions are unfair, i.e., greedy with
the 10-MHz frame transmissions of the secondary channel, then the 10-MHz frame transmitted in
the secondary channel has a longer medium access delay than 10-MHz frames with only channel
contention. In order to clearly measure the fairness performance, the traffic of the secondary 10-MHz
channel is set to be congested. To implement the different levels of channel load, different number of
STAs generating background 10 MHz frames is employed.

Under such environments, the mean access delays of frames in the secondary channel for the
proposed schemes are compared. Since fairness and efficiency need to be jointly designed, the latency
performance of the proposed schemes is also investigated. The best scheme is that which provides the
minimum impact on the secondary 10-MHz frame transmissions and short channel access delays of
20-MHz frame transmissions. In order to investigate the efficiency of the proposed schemes, the mean
access delays of 20-MHz frames of the proposed schemes are compared.

The mean access delay is the main component that causes latency in a broadcast environment,
which is the typical communication environment of V2X. In the simulation, stations generate a frame to
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transmit with their interarrival times following an exponential distribution with an average interarrival
time of 100 ms. For simplicity, an ideal channel is assumed, and all traffic is assumed for one AC.
In addition, for simplicity, only broadcast frames, which do not require ACK, are transmitted in
the simulation because the main type of V2X message is a broadcast message among many V2X
applications [21]. As the effect of fairness can be clearly measured under a highly congested environment
in the secondary channel, the simulation is performed under high traffic in the secondary channel and
low traffic in the primary channel. Therefore, in the simulation, 200 stations transmit 10-MHz frames
in the secondary channel, and 10 stations transmit 10-MHz frames in the primary channel. The other
simulation parameters are listed in Table 1.

Table 1. Simulation Parameters.

Name Value

Frame Length (10-MHz frame) 500 Bytes
Frame Length (20-MHz frame) 2000 Bytes

AC AC_BE
MCS 2

Figure 9 shows mean and standard deviation of the medium access delay of 10-MHz frames
transmitted in the secondary channel and mean and standard deviation of the medium access delay
of 20-MHz frames as the number of stations transmitting 20-MHz frames increases from 10 to 200.
As in Figure 9a,c, the proposed 20-MHz channel access scheme, the all back-off AIFS scheme, provides
the minimum impact on the medium access delay of 10-MHz frames transmitted in the secondary
channel in terms of mean and standard deviation. The standard deviation of all back-off AIFS scheme
provides smaller standard deviation than the conventional method, providing the minimum impact on
the number of 10-MHz transmissions with high contention delay caused by 20-MHz transmissions.
Since all back-off AIFS has good performance in terms of the medium access delay of 10-MHz
transmission, it will be beneficial when delay sensitive data are transmitted using 10-MHz bandwidth
in V2X applications. Thus, the proposed scheme provides the maximum fairness with 10-MHz frame
transmissions in the secondary channel.

In addition, the all back-off AIFS scheme shows good delay performance, in terms of mean and
standard deviation of the medium access delay of 20-MHz frames. If there is a design limitation with
one receiving antenna and the decoder, the proposed scheme cannot be used, and the alternative
channel access schemes described in Section 3.2 should be used. When the station includes only one
receiving antenna and decoder, trade-off occurs between the medium access delay of 10-MHz frames
in the secondary channel and the medium access delay of 20-MHz frames depending on the channel
access scheme with ED sensing of the secondary channel.

Specifically, when the conventional AIFS scheme is applied to the channel access of a 20-MHz
frame, fair contention with 10-MHz frame transmissions including stations using IEEE 802.11p is not
possible. On the other hand, the start AIFS + end AIFS scheme and all back-off EIFS scheme ensure
fairness and low impact on 10-MHz frame transmissions in the secondary channel. However, the EIFS
sensing procedure in such channel access schemes (start AIFS + end AIFS scheme and all back-off EIFS
scheme) causes overprotection of 10-MHz frames transmitted in the secondary channel. This results in
a large medium access delays in the transmission of 20-MHz frames.

In order to measure the performance of the proposed channel access method clearly, channel load
in each 10-MHz channel needs to be considered. Medium access delay is highly affected by channel
load in each 10-MHz channel. Because two 10-MHz channels are considered and high channel load
clearly shows the impact on the performance, two cases for the channel load are considered: high
channel load in the primary channel and high channel load in the secondary channel. The simulation
results of Figure 9 show how high channel load in the secondary channel affects the performance of
the channel access schemes. In order to show the impact on the channel access schemes in case of high
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channel load in a primary channel, the mean access delay of 10-MHz frames in the secondary channel
is measured as the number of stations transmitting 20-MHz frames increases from 10 to 200 under the
high load condition of the primary channel. As shown in Figure 10, all channel access schemes show
similar performance since 20-MHz channel access is not easily initiated due to a high channel load
condition in the primary channel.
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In order to clearly show how well the proposed scheme performs in terms of channel access
delay, the mean access delay of 20-MHz frames is compared with the mean access delay of 10-MHz
frames under the same channel load level. For 20-MHz frame transmission, the number of stations
transmitting 20-MHz frames increases from 10 to 200 and for 10-MHz frame transmission, the number
of stations transmitting 20-MHz frames increases from 10 to 200 to provide the same channel load
level for both cases. The result in Figure 11 shows the outstanding delay performance of the proposed
scheme in terms of fair contention with 10 MHz transmissions.
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6. Discussion

As described in the previous section, the conventional AIFS scheme, which is a similar approach
to the wideband channel access scheme adopted in IEEE 802.11n and IEEE 802.11ac, does not perform
fair contention with 10-MHz transmissions in the secondary channel. This is because the channel
access procedure of a 20-MHz frame in the conventional AIFS scheme performs a back-off procedure
only in the primary channel, while channel access for 10-MHz frame transmissions in the secondary
channel senses the channel for the entire back-off period.

The proposed 20-MHz channel access scheme, called the all back-off AIFS scheme, enables fair
contention of both channels despite channel congestion on each channel because of the back-off

procedure that considers the channel states of the primary and secondary channels. In addition, as all
back-off AIFS includes two receivers to enable PD and ED sensing in both channels, overprotection
leading to the performance degradation of 20-MHz frame transmission can be effectively prevented.

On the other hand, if there is one receiver in the station, only ED sensing can be applied to the
secondary channel when PD sensing (decoder) is applied to the primary channel. In such an ED
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sensing case, since the decoding of frames is usually infeasible, a back-off operation in the secondary
channel should be performed based on the EIFS period to provide enough time for the transmitter
of frames in the secondary channel to receive an ACK frame. This EIFS sensing operation is a basic
procedure in the IEEE 802.11 specification whenever frame decoding to acquire the frame transmission
duration fails.

Although the EIFS sensing ensures fairness and ACK frame protection, the EIFS period leads to
the overprotection of 10-MHz frame transmissions in the secondary channel because the channel access
scheme in a 10-MHz frame waits for the AIFS period before resuming the back-off procedure when it
decodes frames and acquires the frame transmission duration. In other words, during the EIFS and
AIFS time difference, the back-off counter is decreased and the transmission of the 10-MHz frame may
be performed in case of expiration of the back-off procedure. Meanwhile, the channel access procedure
for the 20-MHz frame is still waiting for the EIFS period. As a result, the medium access delay of the
10-MHz frame in the start AIFS + end AIFS scheme and all back-off EIFS period is further decreased,
while the delay of the 20-MHz frame transmission is further increased.

7. Conclusions

In this paper, a fair and efficient channel access scheme for a 20-MHz frame in next-generation
WLAN-based V2X communication was proposed. As applications of V2X communication have
proliferated recently, more throughput is required for WLAN V2X communication than the throughput
supported by IEEE 802.11p. As a result, IEEE 802.11bd, the so-called Next-Generation V2X (NGV), was
established. Standardization is being developed to enhance throughput and communication range
performance while maintaining fairness with existing deployed IEEE 802.11p-compliant vehicular
devices. In IEEE 802.11bd, the 20-MHz frame format was proposed to increase channel utilization and
to improve throughput performance.

The channel access scheme for a 20-MHz frame must ensure fair contention with the channel access
procedure of 10-MHz frame transmissions in each 10-MHz channel while providing the acceptable
transmission latency of a 20-MHz frame. The proposed channel access scheme was designed to jointly
optimize fairness and throughput performance. The proposed scheme performs a back-off procedure
for the entire 20-MHz bandwidth with PD and ED sensing of each 10-MHz channel using two receivers,
leading to fair contention with 10-MHz frame transmission and preventing overprotection.

Simulation results showed that the proposed scheme met fairness requirements and provided the
best 20-MHz transmission performance by avoiding overprotection in a secondary channel. In this
paper, alternative 20-MHz channel access schemes were also proposed in order to overcome hardware
limitations. However, if only one receiver can be implemented in the station, since ED sensing can
only be applied to the secondary channel, then a trade-off occurs between the fairness and the delay of
the 20-MHz frame. In alternative 20-MHz channel access schemes, a joint design between fairness and
delay performance was applied in order to provide an acceptable trade-off.

In next-generation WLAN-based V2X communication, with the proposed scheme, the requirements
of future V2X applications can be met by providing the maximum throughput performance and
minimum impact on the extending channel.
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