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Featured Application: The optical soliton solutions obtained in this research paper may be of
concern and useful in many fields of science, such as mathematical physics, applied physics,
nonlinear science, and engineering.

Abstract: In this paper, the cubic-quartic nonlinear Schrödinger and resonant nonlinear Schrödinger
equation in parabolic law media are investigated to obtain the dark, singular, bright-singular combo
and periodic soliton solutions. Two powerful methods, the

(
m + G′

G

)
improved expansion method

and the exp(−ϕ (ξ)) expansion method are utilized to construct some novel solutions of the governing
equations. The obtained optical soliton solutions are presented graphically to clarify their physical
parameters. Moreover, to verify the existence solutions, the constraint conditions are utilized.

Keywords: cubic-quartic Schrödinger equation; cubic-quartic resonant Schrödinger equation;
parabolic law

1. Introduction

In the current century, many entropy problems have been expressed by using mathematical
models that are nonlinear partial differential equations. New results in the last few years have shown
that the relation between non-standard entropies and nonlinear partial differential equations can be
applied on new nonlinear wave equations inspired by quantum mechanics. Nonlinear models of
the celebrated Klein–Gordon and Dirac equations have been found to admit accurate time dependent
soliton-like solutions with the shapes of the so-called q-plane waves. Such q-plane waves are
generalizations of the complex exponential plane wave solutions of the linear Klein–Gordon and
Dirac equations [1]. Wave progressing of soliton forming and its application in the differential
equation has been noticeable in the last few years. The physical phenomena of nonlinear partial
differential equations (NLPDEs) may connect to many areas of sciences, for example plasma physics,
optical fibers, nonlinear optics, fluid mechanics, chemistry, biology, geochemistry, and engineering
sciences. The nonlinear Schrödinger equations describe wave propagation in optical fibers with
nonlinear impacts [2–4].
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Various numeric and analytic techniques have been used to seek solutions for nonlinear
differential equations such as the homotopy perturbation scheme [5], the Adams–Bashforth–Moulton
method [6], the shooting technique with fourth-order Runge–Kutta scheme [7–10], the group
preserving method [11], the finite forward difference method [12,13], the Adomian decomposition
method [14,15], the sine-Gordon expansion method [16–18], the modified auxiliary expansion
method [19], the modified exp(−ϕ (ξ)) expansion function method [20,21], the improved Bernoulli
sub-equation method [22,23], the Riccati–Bernoulli sub-ODE method [24], the modified exponential
function method [25], the improved tan(φ (ξ) /2) [26,27], the Darboux transformation method [28,29],
the double

(
G′
G , 1

G′

)
expansion method [30,31], the

(
1

G′

)
expansion method [32,33], the decomposition

Sumudu-like-integral transform method [34], and the inverse scattering method [35].
In recent years, many researchers have carried out investigations on the governing models in

optical fibers. The nonlinear Schrödinger equation, involving cubic and quartic-order dispersion terms,
has been investigated to seek the exact optical soliton solutions via the undetermined coefficients
method [36], the modified Kudryashov approach [37], the complete discrimination system method [38],
the generalized tanh function method [39], the sin-cosine method, as well as the Bernoulli equation
approach [40], the semi-inverse variation method [41], a simple equation method [3], and the extended
sinh-Gordon expansion method [42].

Now, optical solitons are the exciting research area of nonlinear optics studies, and this research
field has led to tremendous advances in their extensive applications. It is identified that the dynamics
of nonlinear optical solitons and Madelung fluids are based on the generalized nonlinear Schrödinger
dispersive equation and resonant nonlinear Schrödinger dispersive equation. In the research of chirped
solitons in Hall current impacts in the field of quantum mechanics, a specific resonant term must be
given [43].

Dispersion and nonlinearity are the two key elements for the propagation of solitons over
intercontinental ranges. Normally, group velocity dispersion (GVD) leveling with self-phase
modulation in a sensitive way allows such solitons to maintain long distance travel. Now, it could occur
that GVD is minuscule and therefore completely overlooked, so in this condition, the dispersion impact
is rewarded for by third-order (3OD) and fourth-order (4OD) dispersion impacts. This is generally
referred to as solitons that are cubic-quartic (CQ). This term was implemented in 2017 for the first time.
This model was later extensively researched through different points of view such as the semi-inverse
variation principle [41], Lie symmetry [44], conservation rules [45], and the system of undetermined
coefficients [37]. Consider the nonlinear Schrödinger and resonant nonlinear Schrödinger equations in
the appearance of 3OD and 4OD without both GVD and disturbance. The equations are as follows:

iut + iαuxxx + βuxxxx + cF
(
|u|2

)
u = 0, (1)

iut + iαuxxx + βuxxxx + cF
(
|u|2

)
u + c3

(
|u|xx
|u|

)
u = 0. (2)

In Equations (1) and (2), u (x, t) is the complex valued wave function and x (space) and t (time)
are independent variables. The coefficients α and β are real constants, while c3 is the Bohm potential
that occurs in Madelung fluids. The Bohm potential term of disturbance generates quantum behavior,
so that quantum characteristics are closely related to their special characteristics. Therefore, we have
the chirped NLSE’s disturbance expression giving us the introduction of the theory of hidden variables.
Therefore, it will be more crucial to retrieve accurate solutions for the development of quantum
mechanics from disturbed chiral (resonant) NLSE [46]. Furthermore, the functional F is a real valued
algebraic function that represents the source of nonlinearity and F

(
|u|2

)
u : C → C. In more detail,

the function F
(
|u|2

)
u is p-times continuously differentiable, so that:
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F
(
|u|2

)
u ∈

∞⋃
m, n=1

Cp
(
(−n, n)× (−m, m) : R2

)
.

Suppose that F (u) = c1u + c2u2, so Equations (1) and (2) can be rewritten as:

iut + iαuxxx + βuxxxx +
(

c1|u|2 + c2|u|4
)

u = 0, (3)

iut + iαuxxx + βuxxxx +
(

c1|u|2 + c2|u|4
)

u + c3

(
|u|xx
|u|

)
u = 0. (4)

Equation (3) was investigated by making c2 = 0 in [47] via the Kudryashov approach.
The conservation laws to obtain the conserved densities for Schrödinger’s nonlinear cubic-quarter
equation have been analyzed in Kerr and power-law media [45]. The undetermined coefficients
method has been employed to construct bright soliton and singular soliton solutions of Equation (1),
when nonlinearity has been taken into consideration in the instances of the Kerr law and power
law [37]. In this study, we use two methods to investigate soliton solutions of the cubic-quartic
nonlinear Schrödinger equation and cubic-quartic resonant nonlinear Schrödinger equation with the
parabolic law, namely Equations (3) and (4).

2. Instructions for the Methods

Assume a nonlinear partial differential equation (NLPDE) as follows:

P (U, Ux, Ut, Uxx, Utt, Utx, . . .) = 0, (5)

and define the traveling wave transformation as follows,

U (x, y, t) = φ (ζ) , ζ = x− νt. (6)

Putting Equation (6) into Equation (5), the outcome is:

N
(
φ, φ′, φ′′, . . .

)
= 0. (7)

For the m + G′(ζ)
G(ζ)

expansion method, we take the trial solution for Equation (7) as follows:

φ (ζ) =
n

∑
i=−n

ai(m + F)i = a−n(m + F)−n + . . . + m a0 + a1 (m + F) + . . . + an(m + F)n, (8)

where ai, i = 0, 1, . . . , n and m are nonzero constants. According to the principles of balance, we find
the value of n. In this manuscript, we define F to be a function as:

F =
G′ (ζ)
G (ζ)

, (9)

where G (ζ) satisfy G′′ + (λ + 2m) G′ + µG = 0.
Putting Equation (8) into Equation (7) by using Equation (9), then collecting all terms with

the same order of (m + F)n, we get the system of algebraic equations for ν, an, n = 0, 1, . . . , n,
λ, and µ. As a result, solving the obtained system, we get the explicit and exact solutions of Equation (5).

For the (exp− ϕ (ξ)) expansion method, we use the trial solution as follows:

φ (ξ) =
n

∑
i=0

bi(exp (−ϕ (ξ)))i, i = 1, 2, . . . , n (10)
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where bi are non-zero constants. The auxiliary ODE ϕ (ξ) is defined as follows:

ϕ′ (ξ) = exp (−ϕ (ξ)) + µ exp (ϕ (ξ)) + λ. (11)

Solving Equation (11), we have:

Case 1. When ∆ > 0 and µ 6= 0, we get the hyperbolic function solution:

ϕ (ξ) = ln

−λ−
√

∆ tanh
(

1
2

√
∆ (ξ + c)

)
2µ

 . (12)

Case 2. When ∆ < 0 and µ 6= 0, we get the trigonometric function solution:

ϕ (ξ) = ln

−λ +
√
−∆ tan

(
1
2

√
−∆ (ξ + c)

)
2µ

 . (13)

Case 3. When ∆ > 0, µ = 0, and λ 6= 0, we get hyperbolic function solution

ϕ (ξ) = − ln
(

λ

−1 + cosh (λ (ξ + c)) + sinh (λ (ξ + c))

)
. (14)

Case 4. When ∆ = 0, µ 6= 0 and λ 6= 0, we get the rational function solution:

ϕ (ξ) = ln
(
−2− 2λ (ξ + c)

λ2 (ξ + c)

)
. (15)

Case 5. When ∆ = 0, µ = 0, and λ = 0, we get:

ϕ (ξ) = ln (ξ + c) , (16)

where c is the non-zero constant of integration and ∆ = λ2 − 4µ.

3. Application to the
(

m + G′
G

)
Expansion Method

In this section, we use the
(

m + G′
G

)
expansion method for the cubic-quartic nonlinear Schrödinger

and cubic-quartic resonant nonlinear Schrödinger equations.

3.1. The Cubic-Quartic Nonlinear Schrödinger Equation

To solve Equation (3), by the
(

m + G′
G

)
expansion method, we use the following transformation:

u (x, t) = U(ξ)e
i θ

, ξ = x− νt, θ = −κx + ωt. (17)

In the above equation, θ (x, t) symbolize the phase component of the soliton, κ represent the
soliton frequency, while ω denote the wave number, and ν symbolize the velocity of the soliton.
Substitute wave transformation into Equation (3), and separate the outcome equation into real and
imaginary parts. We can write the real part as follows:

−
(

ακ3 − βκ4 + ω
)

U + c1U3 + c2U5 + 3ακU′′ − 6βκ2U′′ + βU(4) = 0, (18)

and the imaginary part can be written as:(
3ακ2 − 4βκ3 + ν

)
U′ − (α− 4βκ)U(3) = 0. (19)

From Equation (19) U′ 6= 0 and U′′′ 6= 0, then:
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ν = 4βκ3 − 3ακ2, α = 4βκ. (20)

Hence, Equation (18) can be rewritten as:(
3βκ4 + ω

)
U − c1U3 − c2U5 − 12βκ2U′′ + 6βκ2U′′ − βU(4) = 0. (21)

Multiplying both sides of Equation (21) by U′ and taking its integration with respect to ξ, we get:

β
(
−12

(
U′′
)2

+ 24U′′′U′
)
+ 6c1U4 + 4c2U6 + 72βκ2(U′)2 −

(
36βκ4 + 12ω

)
U2 = 0. (22)

Finding the balance, we gain n = 1. Replacing this value of balance into Equation (8), we get:

U (ξ) = a−1(m + F)−1 + a0 + a1 (m + F) . (23)

By substituting Equation (23) into Equation (3) by using Equation (9), we get the following
solutions:

Case 1. When a0 = λa1
2 , κ = ∓

√
(2m+λ)2−4µ
√

6
, c1 =

8β((2m+λ)2−4µ)
a2

1
, c2 = − 24 β

a4
1

, a−1 = 0, and ∆ =

(λ + 2m)2 − 4µ, we get an exponential function solution as follows:

u (x, t) = e
i
(√

∆
6 x+ 5

12 β∆2t
)

λa1

2
+ a1

m +
1
2

−2m +

1− 2A1

A1 + A2e
√

∆
(

x− 2
3

√
2
3 β(∆)3/2t

)
√∆− λ



 ,

(24)

which is a dark solution, as shown in Figure 1, A1 and A2 are non-zero numbers, and ∆ > 0. Figure 1
shows that Equation (24) is a dark soliton under the suitable values of parameters.

Figure 1. 3D surface of Equation (24), which is a dark optical soliton solution plotted when A1 =

1, A2 = 0.3, β = 0.2, a1 = 0.4, λ = 1, m = 1, µ = −1, and t = 2 for 2D.
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Case 2. When a0 = − λa−1
2m(m+λ)−2µ

, a1 = 0, a2 = 12ω

5((2m+λ)2−4µ)
2 , κ =

√
(2m+λ)2−4µ
√

6
, c1 =

96(−m(m+λ)+µ)2ω

5((2m+λ)2−4µ)a2
−1

, c2 = − 288(−m(m+λ)+µ)4ω

5((2m+λ)2−4µ)
2
a4
−1

, and ∆ = (λ + 2m)2 − 4µ, we obtain an exponential

function solution:

u (x, t)=
a−1 e

i

(
− x
√

(2m+λ)2−4µ√
6

+tω

)

m + 1
2

−2m +

1− 2A1

A1+A2e

√
∆

x+
8
√

2
3 ω

5
√

∆
T



√∆− λ


+

λa−1 e
i

(
− x
√

(2m+λ)2−4µ√
6

+tω

)

2m (m + λ)− 2µ
, (25)

which is a soliton solution, as shown in Figure 2, A1 and A2 are non-zero numbers, and ∆ > 0.
With the suitable values, Figure 2 presents that Equation (25) is a singular soliton.

Figure 2. 3D surface of Equation (25), which is a singular soliton solution plotted when A1 = 2, A2 =

3, β = 6, a−1 = 6, λ = 1, m = 1, µ = −1, and t = 2 for 2D.

Case 3. When a−1 = − i
√

3 c1(m(m+λ)−µ)√
c2((2m+λ)2−4µ)

, a0 = i
√

3 c1λ

2
√

c2((2m+λ)2−4µ)
, a1 = 0, ω = − 5c1

2

32c2
, κ =

∓
√
(2m+λ)2−4µ
√

6
, γ = − 3c1

2

8c2((2m+λ)2−4µ)
2 , and ∆ = (λ + 2m)2 − 4µ, we have an exponential

function solution:

u (x, t)=e
i
(
− 5c2

1
32c2

t+
√

∆√
6

x
)


i
√

3
√

c1λ

2
√

c2∆
−

i
√

3
√

c1 (m (m + λ)− µ)m + 1
2

−2m +

1− 2A1

A1+A2e

√
∆

(
x+

c2
1t

2
√

6c2
√

∆

)
√∆− λ


√c2∆


,

(26)
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which is a soliton solution, as shown in Figure 3, A1 and A2 are non-zero numbers, and ∆ > 0.
Considering some values of parameters, Figure 3 shows singular soliton solution.

Figure 3. 3D surface of Equation (26), which is a singular soliton solution plotted when A1 = 0.3, A2 =

2, c1 = 0.3, c2 = 2, λ = 1, m = 1, µ = −1, and t = 2 for 2D.

3.2. The Cubic-Quartic Resonant Nonlinear Schrödinger Equation

To solve Equation (4), by the
(

m + G′
G

)
expansion method, we consider wave transformation

Equation (17). Replacing Equation (17) into Equation (4) and separating the outcome equation into
real and imaginary parts, we can write the real part as follows:(

κ3 (α− βκ) + ω
)

U − c1U3 − c2U5 − (c3 + 3κ (α− 2βκ))U′′ − βU(4) = 0, (27)

and the imaginary part can be written as:(
3ακ2 − 4βκ3 + ν

)
U′ − (α− 4βκ)U′′′ = 0. (28)

From Equation (28) U′ 6= 0 and U′′′ 6= 0, then:

ν = 4βκ3 − 3ακ2, α = 4βκ. (29)

Hence, Equation (27) can be rewritten as:(
3βκ4 + ω

)
U − c1U3 − c2U5 −

(
c3 + 6βκ2

)
U′′ − βU(4) = 0. (30)

Multiplying both sides of Equation (30) by U′ and integrating it once with respect to ξ, we get:

(
36βκ4 + 12ω

)
U2 − 6c1U4 − 4c2U6 −

(
12c3 + 72βκ2

) (
U′
)2

+ β
(

12
(
U′′
)2 − 24U′U′′′

)
= 0. (31)

Finding the balance, we gain n = 1. Putting this value into Equation (8), we get the same result of
Equation (23). Substituting Equation (23) with Equation (9) into Equation (4), we get the following
solutions:
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Case 1. When a−1 = − 2(m(m+λ)−µ)a0
λ , a1 = 0, ω = 1

2 β

(
−6κ4 +

(
(2m + λ)2 − 4µ

)2
)

,

c1 =
2βλ2((2m+λ)2−4µ)

a2
0

, c2 = − 3βλ4

2a4
0

, and c3 = β
(
−6κ2 + (2m + λ)2 − 4µ

)
, we obtain the

following solutions:

Solution 1. In the case ∆ > 0, we have an exponential function solution:

u (x, t)=ei
(
−κx+ 1

2 β
(
−6κ4+((2m+λ)2−4µ)

2)
t
)

a0 −
2 (m (m + λ)− µ) a0(

m + 1
2

(
−2m +

(
1− 2A1

A1+A2e
√

∆(x+8βκ3t)

)√
∆− λ

))
λ

 .
(32)

Considering some values of parameters, Figure 4 shows singular soliton solution.

Figure 4. 3D figure of Equation (32), which is a singular soliton solution plotted when A1 = 1, A2 =

3, λ = 1, m = 1, µ = −1, β = 0.2, a0 = 0.2, κ = 0.01, and t = 2 for 2D.

Solution 2. In the case ∆ < 0, we have a trigonometric function solution:

u (x, t)=e−iκx+ 1
2 iβ
(
−6κ4+((2m+λ)2−4µ)

2
t
)

a0 +
4a0

(
m2 + mλ− µ

)
(A2 cos (α) + A1 sin (α))

λ
((
−A1
√
−∆ + A2λ

)
cos (α) +

(
A2
√
−∆ + A1λ

)
sin (α)

)
 ,

(33)

which is α = 1
2

√
−∆

(
x + 8βκ3t

)
.

Periodic singular solution is plotted in Figure 5.

Case 2. When a−1 = 0, a1 = 2a0
λ , ω = 1

2 β

(
−6κ4 +

(
(2m + λ)2 − 4µ

)2
)

, c1 =
2βλ2((2m+λ)2−4µ)

a2
0

,

c2 = − 3βλ4

2a4
0

, and c3 = β
(
−6κ2 + (2m + λ)2 − 4µ

)
, we obtain the following solutions:

Solution 1. In the case ∆ > 0, we get dark solution, as shown in Figure 6 :
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u (x, y)=ei
(
−κx+ 1

2 β
(
−6κ4+((2m+λ)2−4µ)

2)
t
)

a0 +

2
(

m + 1
2

(
−2m +

(
1− 2A1

A1+A2e
√

∆(x+8βκ3t)

)√
∆− λ

))
a0

λ

 .
(34)

Figure 6 shows the dark structure this solution.

Figure 5. 3D surface of Equation (33), which is a periodic singular soliton solution plotted when
A1 = 1, A2 = 2, λ = 1, m = 1

2 , µ = 2, β = 0.1, a0 = 2, κ = 0.1, and t = 2 for 2D.

Figure 6. 3D surface of Equation (34), which is a dark soliton solution plotted when A1 = 1, A2 = 3,
λ = 1, m = 1, µ = −1, β = 0.2, a0 = 0.2, κ = 0.01, and t = 2 for 2D.

Solution 2. In the case ∆ < 0, we have a trigonometric function solution:
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u (x, t)=e−ixκ+ 1
2 iβ
(
−6κ4+((2m+λ)2−4µ)

2)
t√−∆

(
A1 cos

(
1
2

√
−∆

(
x + 8βκ3t

))
− A2a0 sin

(
1
2

√
−∆

(
x + 8βκ3t

)))
λ
(

A2 cos
(

1
2

√
−∆ (x + 8βκ3t)

)
+ A1 sin

(
1
2

√
−∆ (x + 8βκ3t)

))
 .

(35)

Periodic singular solution is plotted in Figure 7.

Figure 7. 3D figure of Equation (35), which is a periodic singular soliton solution plotted when
A1 = 1, A2 = 2, λ = 1, m = 1

2 , µ = 2, β = 0.1, a0 = 0.2, κ = 0.1, and t = 2 for 2D.

4. Application to the Exp (−ϕ (ξ)) Expansion Method

In this section, we apply the exp(−ϕ (ξ)) expansion method to the cubic-quartic nonlinear
Schrödinger and resonant nonlinear Schrödinger equations.

4.1. The Cubic-Quartic Nonlinear Schrödinger Equation

To apply this method on the cubic-quartic nonlinear Schrödinger equation, Equation (3), we
utilize the same wave transformation of Equation (17). As a result, we get Equation (22). Finding the
balance, we gain n = 1. By inserting the value of the balance into Equation (10), we get:

U (ξ) = b0 + b1e−ϕ(ξ). (36)

Substituting Equation (40) into Equation (22) and setting each summation of the coefficients of the
exponential identities of the same power to be zero, we discuss the following cases of the solutions.

Case 1. When b0 = λb1
2 , c1 =

8a2(λ2−4µ)
b2

1
, c2 = − 24a2

b4
1

, κ = −
√

λ2−4µ√
6

, and ω = 5
12 a2

(
λ2 − 4µ

)2, we get

the following solutions:

Solution 1. In the case λ2 − 4µ > 0 and µ 6= 0, we have a hyperbolic function solution:
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u (x, t) = e
i

(√
λ2−4µ√

6
x+ 5

12 a2(λ2−4µ)
2
t

)
λb1

2
+

2µb1

−λ−
√

λ2 − 4µ tanh
[

1
2

(
c + x− 2

3

√
2
3 a2(λ2 − 4µ)

3/2t
)√

λ2 − 4µ

]
 .

(37)

This is a dark soliton solution, as shown in Figure 8.

Figure 8. 3D surface of Equation (37), which is a bright singular combo soliton solution plotted when
b1 = 0.2, β = 0.2, c = 1, λ = 3, µ = 1, and t = 2 for 2D.

Solution 2. When λ2 − 4µ > 0, µ = 0, and λ 6= 0, we have hyperbolic function solutions:

u (x, t)=e
i
(

5
12 βλ4t+

√
λ2√
6

x
)

λb1

2
+

λb1

−1 + cosh
(

λ

(
c + x− 2

3

√
2
3 β(λ2)

3/2t
))

+ sinh
(

λ

(
c + x− 2

3

√
2
3 β(λ2)

3/2t
))

 .
(38)

This is a bright singular combo soliton solution, as shown in Figure 9.
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Figure 9. 3D surface of Equation (38), which is a bright singular combo soliton solution plotted when
b1 = 0.04, β = 0.2, c = 0.2, λ = 1, µ = 0, and t = 2 for 2D.

Case 2. When b0 =
√

3
√

c1λ

2
√
−c2(λ2−4µ)

, b1 =
√

3
√

c1√
−c2(λ2−4µ)

, κ = −
√

λ2−4µ√
6

, ω = − 5c1
2

32c2
, and β = − 3c2

1

8c2(λ2−4µ)
2 ,

we get the following solutions:

Solution 1. When λ2 − 4µ > 0 and µ 6= 0, we get a dark solution, as shown in Figure 10:

u (x, t)=e
i

(
− 5c2

1
32c2

t+

√
λ2−4µ√

6
x

)

√

3
√

c1

(
λ2 − 4µ + λ

√
λ2 − 4µ tanh

(
c2

1t
4
√

6c2
+ 1

2 (c + x)
√

λ2 − 4µ

))
2
√
−c2 (λ2 − 4µ)

(
λ +

√
λ2 − 4µ tanh

(
c2

1t
4
√

6c2
+ 1

2 (c + x)
√

λ2 − 4µ

))
 .

(39)

Figure 10. 3D surface of Equation (39), which is a dark soliton solution plotted when b1 = 0.2, β =

0.2, c1 = 0.1, c2 = −0.1, c = 1, λ = 3, µ = 1, and t = 2 for 2D.



Appl. Sci. 2020, 10, 219 13 of 20

Solution 2. When λ2 − 4µ > 0 and µ = 0, we get hyperbolic function solution:

u (x, t)=e
i

(
− 5c2

1
32c2

t+

√
λ2−4µ√

6
x

)
√

3
√

c1λ coth
(

1
24 λ

(
12 (c + x) +

√
6c2

1
c2
√

λ2 t
))

2
√
−c2λ2

 . (40)

This is a singular soliton solution, as shown in Figure 11.

Figure 11. 3D figure of Equation (40), which is a singular soliton solution plotted when b1 = 4, β = 0.2,
c1 = 0.1, c2 = −0.1, c = 0.2, λ = 1, µ = 0, and t = 2 for 2D.

4.2. The Cubic-Quartic Resonant Nonlinear Schrödinger Equation

To apply the exp (−ϕ (ξ)) expansion method on the cubic-quartic resonant nonlinear Schrödinger
equation, Equation (4), we utilize the same wave transformation of Equation (17). As a result,
we get Equation (31). Finding the balance, we gain n = 1. Via inserting the value of the balance into
Equation (10), we get the same result of Equation (36). Substituting Equation (36) into Equation (31)
and setting each summation of the coefficients of the exponential identities of the same power to be
zero, we discuss the following cases of solutions.

Case 1. When b1 = 2b0
λ , c1 =

2βλ2(λ2−4µ)
b2

0
, c2 = − 3βλ4

2b4
0

, κ =

√
−c3+β(λ2−4µ)√

6
√

β
, and

ω =
−c32+2c3β(λ2−4µ)+5β2(λ2−4µ)

2

12β , we get the following solutions:

Solution 1. When λ2 − 4µ > 0 and µ 6= 0, we get hyperbolic function solution:

u (x, t)=e
i

−√−c3+β(λ2−4µ)
√

6
√

β
x+

(
−c2

3+2c3β(λ2−4µ)+5β2(λ2−4µ)
2
)

12β t


b0 +

4µb0

λ

(
−λ−

√
λ2 − 4µ tanh

[
1
2

(
c + x +

2
√

2
3 t(−c3+β(λ2−4µ))

3/2

3
√

β

)√
λ2 − 4µ

])
 .

(41)

This is a dark soliton solution, as shown in Figure 12.
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Figure 12. 3D surface of Equation (41), which is a dark soliton solution plotted when b0 = 0.2, β = 0.2,
c3 = 1, c = 1, λ = 3, µ = 1, and t = 2 for 2D.

Solution 2. When λ2 − 4µ < 0 and µ 6= 0, we get trigonometric function solution:

u (x, t)=e
i

− x
√
−c3+β(λ2−4µ)
√

6
√

β
+

t
(
−c2

3+2c3β(λ2−4µ)+5β2(λ2−4µ)
2
)

12β


b0 −

4µb0

λ2 − λ
√
−λ2 + 4µ tan

[
1
2

(
c + x +

2
√

2
3 (−c3+β(λ2−4µ))

3/2

3
√

β
t

)√
−λ2 + 4µ

]
 .

(42)

This is a periodic singular soliton solution, as shown in Figure 13.

Figure 13. 3D surface of Equation (42), which is a periodic singular soliton solution plotted when
b0 = 0.4, β = 0.1, c3 = −5, c = 1, λ = 1, µ = 1, and t = 2 for 2D.
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Solution 3. When λ2 − 4µ > 0 and µ = 0, we get hyperbolic function solution:

u (x, t)=e
i

(
− x
√
−c3+βλ2
√

6
√

β
+

t(−c2
3+2c3βλ2+5β2λ4)

12β

)
b0 +

2b0

cosh

[
λ

(
c + x +

2
√

2
3 t(−c3+βλ2)

3/2

3
√

β

)]
+ sinh

[
λ

(
c + x +

2
√

2
3 t(−c3+βλ2)

3/2

3
√

β

)]
 .

(43)

This is a bright singular combo soliton solution, as shown in Figure 14.

Figure 14. 3D surface of Equation (43), which is a singular soliton solution plotted when b0 = 0.4,
β = 0.2,c3 = −1, c = 0.2, λ = 3, µ = 0, and t = 2 for 2D.

Case 2. When b0 =
√

2
√

βλ2(λ2−4µ)√
c1

, b1 =
2
√

2
√

βλ2(λ2−4µ)√
c1λ , c2 = − 3c2

1

8β(λ2−4µ)
2 , c3 = β

(
−6κ2 + λ2 − 4µ

)
,

and ω = 1
2 β
(
−6κ4 +

(
λ2 − 4µ

)2
)

, we get the following solutions:

Solution 1. When λ2 − 4µ > 0 and µ 6= 0, we get hyperbolic function solution:

u (x, t) =
√

2βλ2 (λ2 − 4µ) e−iκx+ 1
2 iβ
(
−6κ4+(λ2−4µ)

2)
t(

1− 4µ

λ2+λ
√

λ2−4µ tanh
[

1
2 (c+x+8βκ3t)

√
λ2−4µ

]
)

√
c1

.

(44)

This is a dark soliton solution, as shown in Figure 15.
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Figure 15. 3D surface of Equation (44), which is a dark soliton solution plotted when β = 3, c1 = 5,
c = 0.03, λ = 1, µ = 0.1, κ = 0.1, and t = 2 for 2D.

Solution 2. When λ2 − 4µ < 0 and µ 6= 0, we get trigonometric function solution:

u (x, t) =
√

2βλ2 (λ2 − 4µ)e−iκx+ 1
2 iβ
(
−6κ4+(λ2−4µ)

2)
t(

1− 4µ

λ2−λ
√
−λ2+4µ tan

[
1
2 (c+x+8tβκ3)

√
−λ2+4µ

]
)

√
c1

.

(45)

This is a periodic singular soliton solution, as shown in Figure 16.

Figure 16. 3D surface of Equation (45), which is a periodic singular soliton solution plotted when
β = −3, c1 = 5, c = 0.03, λ = 0.1, µ = 1, κ = 0.1, and t = 2 for 2D.

Solution 3. When λ2 − 4µ > 0 and µ = 0, we get the hyperbolic function solution:
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u (x, t) =

√
2e−iκx+ 1

2 iβ(−6κ4+λ4)t√βλ4 coth
(

1
2
(
c + x + 8βκ3t

)
λ
)

√
c1

, (46)

which is a periodic singular solution, as shown in Figure 17.

Figure 17. 3D surface of Equation (46), which is a singular soliton solution plotted when β = 3, c1 = 5,
c = 0.03, λ = 0.1, µ = 0, κ = 0.1, and t = 2 for 2D.

5. Conclusions

In this research, the new dark, singular, bright singular combo soliton, and periodic singular
solutions of the cubic-quantic nonlinear Schrödinger equation and the cubic-quantic resonant nonlinear
Schrödinger equation were shown. Figures 1, 6, 8, 10, 12 and 15 are dark soliton solutions,
Figures 2–4, 11, 14 and 17 are singular soliton solutions, Figures 5, 7, 13 and 16 are periodic singular
solutions, and Figure 9 is bright singular combo soliton solution. The (m + G′/G ) expansion and
exp(−ϕ (ξ)) expansion methods were utilized to study these two models with the parabolic law.
The new solutions verified the main equations after we substituted them into Equations (3) and (4) for
the existence of the equation.

Conte and Musette introduced that wave transformation, which we considered in this paper, protects
the Painleve conditions and its properties [48]. Therefore, it can be seen that all results verified their
physical properties and presented their estimated wave behaviors. Therefore, one can observe that the
wave transformation considered in this paper in Equation (17) satisfies these conditions. We substituted
all solutions to the main equations Equations (3) and (4), and they verified it; the constraint conditions
Equations (20) and (29) were also used to verify this existence. The optical soliton solutions obtained
in this research paper may be of concern and useful in many fields of science, such as mathematical
physics, applied physics, nonlinear science, and engineering.
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