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Abstract: As an intelligent material, piezoelectric materials have been widely used in many intelligent
fields, especially in the analysis and design of sensors and actuators; however, the vibration problems
of the corresponding structures made of the piezoelectric materials are often difficult to solve
analytically, because of their force–electric coupling characteristics. In this paper, the biparametric
perturbation method was used to solve the free damping vibration problem of piezoelectric cantilever
beams, and the perturbation solution of the problem solved here was given. A numerical example was
given to discuss the influence of the piezoelectric properties on the vibration of piezoelectric cantilever
beams. In addition, related vibration experiments of the piezoelectric cantilever beams were carried
out, and the experimental results were in good agreement with the theoretical results. The results
indicated that the biparametric perturbation solution obtained in this study is effective, and it may
serve as a theoretical reference for the design of sensors and actuators made of piezoelectric materials.

Keywords: free damping vibration; cantilever beam; piezoelectric materials; biparametric
perturbation method; experimental verification

1. Introduction

Piezoelectric materials, as an intelligent material, have been widely used in the manufacture of
many intelligent devices, such as sensors, actuators, and transducers [1–3]. The working principle
of piezoelectric sensors and piezoelectric actuators depends mainly on the conversion between force
and electricity in the vibration process of piezoelectric materials [4,5]. Thus, an understanding of the
vibration problems of the piezoelectric structures is the premise for designing piezoelectric sensors
and piezoelectric actuators. However, the vibration problems of the piezoelectric structures are often
difficult to solve analytically, because of the force–electric coupling characteristics of piezoelectric
materials. So, it is necessary and meaningful to find an efficient analytical method for solving the
vibration problems of piezoelectric structures and to give their analytical solutions.

In the existing works, many researchers have studied the vibration problems of piezoelectric
structures, and some achievements have been made. Mahinzare et al. [6] studied the free vibration
of a rotating circular nanoplate made of two directional functionally graded piezo materials (two
directional FGPM) based on the first shear deformation theory (FSDT). Przybylski and Gasiorski [7]
presented theoretical and experimental investigations into the nonlinear flexural vibrations of a structure
composed of a host beam with piezoelectric ceramic actuators symmetrically bonded to its top and
bottom surfaces. Liu et al. [8] studied the dynamic analytical solution of a piezoelectric stack utilized
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in an actuator and a generator based on the linear piezo-elasticity theory. Parashar et al. [9] studied the
nonlinear shear-induced flexural vibrations of piezoceramic actuators. Mukherjee and Chaudhuri [10]
demonstrated the effect of large deformations on piezoelectric materials and structures under time
varying loads. Chen et al. [11] studied the natural vibration and transient response of a functionally
graded piezoelectric material (FGPM) curved beam with a numerical method. Dong et al. [12] discussed
the influence that piezoelectric materials exert on the vibration behavior of a stepped cantilever beam
with surface bonded or embedded piezoelectric materials. Li et al. [13] studied the free vibration of
statically thermal post-buckled functionally graded material beams with surface-bonded piezoelectric
layers subjected to both temperature rise and voltage. Oh et al. [14] investigated the post buckling and
vibration characteristics of a piezolaminated composite plate subjected to thermo-piezoelectric loads.
Li and Shi [15] studied the free vibration of the piezoelectric-elastic laminated beams by combining
the state-space method and differential quadrature method. Lu et al. [16] derived the free vibration
frequency of the state space solution and the solution for a simple support piezoelectric laminated
beam. Chen et al. [17] presented a new method of a state-space-based differential quadrature for free
vibration of generally laminated beams. Kapuria and Alam [18] presented a one-dimensional beam
finite element with electric degrees of freedom for the dynamic analysis of hybrid piezoelectric beams,
using the coupled efficient layer wise theory. The summation of the results of the existing works shows
that there are only a few related vibration experiments of piezoelectric structures, which means that
the reliability of the analytical solution cannot be guaranteed sufficiently. Moreover, there has been no
unified and effective method for solving the vibration problems of piezoelectric structures.

The parameter perturbation method is a general analysis method for solving approximate solutions
of nonlinear mechanical problems, which was first used to calculate the influence of the small celestial
body on the motion of the large object, and has been widely used in the theoretical research of physics
and mechanics. Parameter selection is an important problem while using the parameter perturbation
method. In order to solve the difficulty of parameter selection, Chen and Li [19] put forward the
concept of the free parameter perturbation method, that is, there is no need to point out the physical
meaning of the perturbation parameters during perturbation, which provides a new idea for solving
the parameter selection problem of the parameter perturbation method. Lian et al. [20] solved the
Hencky membrane problem without a small-rotation-angle assumption by using a single-parameter
perturbation method. There are many perturbation methods based on a single parameter, which are
not described in detail here. For the difficulty in the selection of the perturbation parameters, another
idea is to select multiple parameters, that is, the so-called “multi-parameter perturbation method”. For
the multi-parameter perturbation method, Nowinski and Ismail [21] solved the cylindrical orthotropic
circular plate problem under a uniform load by using the biparametric perturbation method. The
application of the multi-parameter perturbation method in beam problem was proposed by Professor
Chien [22] in 2002, and the classical Euler–Bernoulli beam equation was solved by using the load and
height difference of the beam as the perturbation parameters. Later, He and Chen [23] simplified the
bending moment by using the quasi linear analysis method, so that the parameter perturbation process
was directly aimed at the algebra equation rather than the integral equation, which greatly simplified
the perturbation process. Recently, He et al. [24,25] comprehensively analyzed the large deflection
problem of beams with a height difference under various boundary conditions, and put forward the
so-called “biparametric perturbation method” definitely, and successfully applied this method to the
solution of the bimodular von-Kármán thin plate equation. So far, the application of the biparametric
perturbation method in the vibration problems of piezoelectric structures has not been reported.

In this study, we will derive the theoretical solution of the free damping vibration problem of
the piezoelectric cantilever beams by the biparametric perturbation method and perform the related
vibration experiments to verify the validity of the theoretical solution presented here. The whole paper
is organized as follows. In Section 2, the mechanical model and the basic equations of the free damping
vibration problem of piezoelectric cantilever beams will be established, the piezoelectric parameter and
damping coefficient will be selected as the perturbed parameters, and the theoretical solution of the
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problem studied here will be given. A comparison of the theoretical solution and the existing solution
will be presented, and the influence of the piezoelectric properties will be analyzed and discussed in
the Section 3. Next, in Section 4, we will show the related vibration experiments of the piezoelectric
cantilever beam and compare the experimental results with the theoretical results. According to the
results mentioned above, some main conclusions will be drawn in Section 5.

2. The Basic Equations and Biparametric Perturbation Solution

2.1. The Mechanical Model and Basic Equations

A piezoelectric strip with isotropy in plane x − y and anisotropy in plane x − z is clamped at
the left end in order to construct a cantilever beam whose length is l, width is b, thickness is h, and
uniformly-distributed mass is m. Then, an initial displacement w0 is given at the right end of the
piezoelectric cantilever beam, and the piezoelectric cantilever beam will generate a free damping
vibration under the drive of the initial displacement, as shown in Figure 1.
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Figure 1. Scheme of the mechanical model of the piezoelectric cantilever beam.

From the literature [26], we can know that the free damping vibration equation of a general
cantilever beam with equal cross section is as follows:

EIy
∂4w(x, t)
∂x4

+ m
∂2w(x, t)
∂t2 + c

∂w(x, t)
∂t

= 0, (1)

in which EIy is the bending stiffness, c is the damping parameter, and c = 2ξmω, in which, ξ is the
damping ratio and ω is the vibration frequency. The boundary conditions are as follows: w(x, t) = 0

∂w(x,t)
∂x = 0

, at x = 0 (2)

and  EIy
∂2w(x,t)
∂x2 = 0

EIy
∂3w(x,t)
∂x3 = 0

, at x = l (3)

and the initial conditions are as follows: w(x, t) = w0
∂w(x,t)
∂t = 0

, at x = l, t = 0. (4)

It should be noted that the beam considered here is a piezoelectric beam, thus E should be
the equivalent elastic modulus under the coupling of the elastic and piezoelectric properties in a
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one-dimensional pure bending problem. The constitutive relations of the piezoelectric materials are, in
a two-dimensional case, as follows:

εx = s11σx + s13σz + d31Ez

εz = s13σx + s33σz + d33Ez

γzx = s44τzx + d15Ex

(5)

and {
Dx = d15τzx + λ11Ex

Dz = d31σx + d33σz + λ33Ez
, (6)

in which, σx, σz, and τzx are the stress components; Dx and Dz are the electric displacement components;
εx, εz, and γzx are the strain components; Ex and Ez are the electric field intensity components; s11, s13,
and s33 are the flexibility coefficients; d31, d33, and d15 are the piezoelectric coefficients; and λ11 and λ33

are the dielectric coefficients. For a one-dimensional pure bending problem, there is no stresses σz and
τzx, as well as the corresponding strain εz and γzx, only existing σx and εx, from the point of view of
deformation. Thus, the constitutive relations can be simplified as follows:

εx = s11σx + d31Ez

εz = 0
γzx = 0

(7)

and {
Dx = λ11Ex

Dz = d31σx + λ33Ez
. (8)

Generally, Dx � Dz and Dz are very small a in one-dimensional problem. Thus, we can suppose Dz ≈ 0.
From Equations (7) and (8), we may obtain the following:

Ez = −
d31

λ33
σx. (9)

Substituting Equation (9) into Equation (7), one has the following:

εx = (
s11λ33 − d31

2

λ33
)σx =

σx

λ33/(s11λ33 − d31
2)

=
σx

E′
. (10)

From Equation (10), we can know the equivalent elastic modulus is as follows:

E′ = 1/(s11 −
d31

2

λ33
). (11)

Thus, we can obtain the free damping vibration equation of the piezoelectric cantilever beam,
only by substituting E′ for E in Equation (1), as follows:

E′Iy
∂4w(x, t)
∂x4

+ m
∂2w(x, t)
∂t2 + c

∂w(x, t)
∂t

= 0. (12)

2.2. The Biparametric Perturbation Solution

The basic equation, boundary conditions, and initial conditions are given above. Now, let us solve
the basic equation. In order to solve Equation (12), the variable separation is required firstly, suppose
the following:

w(x, t) = v(x)Y(t). (13)
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Substituting Equation (13) into Equation (12), it can be obtained that

E′IyY(t)
∂4v(x)
∂x4

+ mv(x)
∂2Y(t)
∂t2 + cv(x)

∂Y(t)
∂t

= 0. (14)

By simplifying Equation (14), it can be transformed into the following:

v(4)(x)
v(x)

+
mY′′ (t) + cY′(t)

E′IyY(t)
= 0. (15)

Here, we let
v(4)(x)

v(x)
= −

mY′′ (t) + cY′(t)
E′IyY(t)

= D4, (16)

in which D is the unknown constants. Two differential equations can be obtained, and they are
as follows:

v(4)(x) −D4v(x) = 0 (17)

and
Y′′ (t) +

c
m

Y′(t) +ω2Y(t) = 0, (18)

in which ω2 = D4E′Iy/m. It is assumed that the solution of Equation (17) is in the form of

v(x) = Kesx. (19)

From Equations (17) and (19), we can obtain the following:

v(x) = K1eiDx + K2e−iDx + K3eDx + K4e−Dx. (20)

Converting Equation (20) into the form of the trigonometric function and hyperbolic function, one has
the following:

v(x) = A1 sin(Dx) + A2 cos(Dx) + A3sinh(Dx) + A4 cosh(Dx). (21)

Substituting Equation (21) into Equations (2) and (3), respectively, we can obtain the following

A2 = −A4, (22)

A1 = −A3, (23)

A2 = −
sin Dl + sinhDl
cos Dl + cosh Dl

A1 (24)

and
1 + cos(Dl) cosh(Dl) = 0. (25)

Thus, the solution of Equation (17) is

v(x) = A1[sin Dx− sinhDx +
sin Dl + sinhDl
cos Dl + cosh Dl

(cosh Dx− cos Dx)]. (26)

in which D = 4
√
ω2m/IyE′.

Substituting Equation (11) into Equation (18), we can obtain the following:

(mλ33s11 −md31
2)

d2Y
dt2 + (λ33s11 − d31

2)c
dY
dt

+ D4λ33IyY = 0. (27)
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Here, we used the biparametric perturbation method to solve Equation (27), and selected (d31)
2 and c

as the perturbation parameters, thus the Y(t) can be expressed as follows

Y(t) = Y0
0(t) + YI

1(t)(d31)
2 + YI

2(t)c + YII
1 (t)(d31)

4 + YII
2 (t)(c)

2 + YII
3 (t)c(d31)

2. (28)

Substituting Equation (28) into Equation (27), and comparing the coefficients of [(d31)
2]

0
and c0, we

may obtain the zero-order perturbation equation

d2Y0
0

dt2 +
D4Iy

ms11
Y0

0 = 0. (29)

The corresponding initial conditions are as follows{
v(x)Y0

0(t) = w0

v(x)Y0
0
′(t) = 0

, at x = l, t = 0. (30)

The solution of Equation (29) is as follows

Y0
0(t) = B1 sin(ω1t) + B2 cos(ω1t), (31)

in whichω1 =
√

D4Iy/ms11,ω1 is the vibration frequency of the cantilever beam without a piezoelectric
property, and B1 and B2 are the undetermined constants that can be determined by Equation (30).
Substituting Equation (31) into Equation (30), one has the following:

B1 = 0, B2 =
w0

A1[sin Dl− sinhDl + sin Dl+sinhDl
cos Dl+cosh Dl (cosh Dl− cos Dl)]

. (32)

Comparing the coefficients of (d31)
2 and (c)1, we may obtain the first-order perturbation equations

as follows,
For (d31)

2:

mλ33s11
d2YI

1

dt2 −m
d2Y0

0

dt2 + D4λ33IyYI
1 = 0. (33)

The corresponding initial conditions are as follows:
v(x)YI

1 = 0

v(x)
dYI

1
dt = 0

, at x = l, t = 0. (34)

Solving Equation (33), we may obtain the following:

YI
1(t) = B3 sin(ω1t) + B4 cos(ω1t) −

ω1

2λ33s11
B2t sin(ω1t), (35)

in which B3 and B4 are the undetermined constants that can be determined by Equation (34). Substituting
Equation (35) into Equation (34), one has the following

B3 = 0, B4 = 0. (36)

For (c)1:
d2YI

2

dt2 +
1
m

dY0
0

dt
+

D4Iy

ms11
YI

2 = 0. (37)
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The corresponding initial conditions are as follows
v(x)YI

2 = 0

v(x)
dYI

2
dt = 0

, at x = l, t = 0. (38)

Solving Equation (37), gives the following

YI
2(t) = B5 sin(ω1t) + B6 cos(ω1t) −

1
2m

B2t cos(ω1t), (39)

in which B5 and B6 are undetermined constants, which can be determined by Equation (38). From
Equations (38) and (39), we can obtain the following:

B5 =
1

2mω1
B2, B6 = 0. (40)

Comparing the coefficients of (d31)
4, (c)2, and c(d31)

2, we may obtain the second-order perturbation
equations as follows,

For (d31)
4:

mλ33s11
d2YII

1

dt2 −m
d2YI

1

dt2 + D4λ33IyYII
1 = 0. (41)

The corresponding initial conditions are as follows
v(x)YII

1 = 0

v(x)
dYII

1
dt = 0

, at x = l, t = 0. (42)

From Equation (41), it can be obtained that

YII
1 = B7 sin(ω1t) + B8 cos(ω1t) −

3ω1

8(λ33s11)
2 B2t sin(ω1t) −

(ω1)
2

8(λ33s11)
2 B2t2 cos(ω1t), (43)

in which B7 and B8 are undetermined constants, which can be determined by Equation (42). Substituting
Equation (43) into Equation (42), one has the following

B7 = 0, B8 = 0. (44)

For (c)2:
d2YII

2

dt2 +
D4Iy

ms11
YII

2 = −
1
m

dYI
2

dt
. (45)

The corresponding initial conditions are as follows:
v(x)YII

2 = 0

v(x)
dYII

2
dt = 0

, at x = l, t = 0. (46)

Solving Equation (45), we may obtain the following

YII
2 (t) = B9 sin(ω1t) + B10 cos(ω1t) +

1

8(m)2 B2t2 cos(ω1t) −
1

8(m)2ω1
B2t sin(ω1t), (47)
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in which B9 and B10 are the undetermined constants, which can be determined by Equation (46).
Substituting Equation (47) into Equation (46), gives the following

B9 = 0, B10 = 0. (48)

For c(d31)
2:

d2YII
3

dt2 +
D4Iy

ms11
YII

3 =
1

mλ33s11
B2(ω1)

2t cos(ω1t). (49)

The corresponding initial conditions are as follows:
v(x)YII

3 = 0

v(x)
dYII

3
dt = 0

, at x = l, t = 0. (50)

From Equation (49), we can obtain the following:

YII
3 = B11 sin(ω1t) + B12 cos(ω1t) +

1
4mλ33s11

B2ω1t2 sin(ω1t) +
1

4mλ33s11
B2t cos(ω1t). (51)

in which B11 and B12 are undetermined constants, which can be determined by Equation (50).
Substituting Equation (51) into Equation (50), one has the following:

B11 = −
1

4mλ33s11ω1
B2, B12 = 0. (52)

Substituting the determined Y0
0(t), YI

1(t), YI
2(t), YII

1 (t), YII
2 (t), and YII

3 (t) into Equation (28), Y(t) can be
written as follows

Y(t) = B2{cos(ω1t) − ω1
2λ33s11

t sin(ω1t)(d31)
2 + [ 1

2mω1
sin(ω1t) − 1

2m t cos(ω1t)]c

−[ 3ω1

8(λ33s11)
2 t sin(ω1t) + (ω1)

2

8(λ33s11)
2 t2 cos(ω1t)](d31)

4 + [ 1
8(m)2 t2 cos(ω1t)

−
1

8(m)2ω1
t sin(ω1t)](c)2 + [ 1

4mλ33s11
ω1t2 sin(ω1t) + 1

4mλ33s11
t cos(ω1t)

−
1

4mλ33s11ω1
sin(ω1t)]c(d31)

2
}

. (53)

Substituting Equations (26) and (53) into Equation (13), we can obtain the following:

w(x, t) = B2A1[sin Dx− sinhDx + sin Dl+sinhDl
cos Dl+cosh Dl (cosh Dx− cos Dx)]{cos(ω1t)

−
ω1

2λ33s11
t sin(ω1t)(d31)

2 + [ 1
2mω1

sin(ω1t) − 1
2m t cos(ω1t)]c− [ 3ω1

8(λ33s11)
2 t sin(ω1t)

+
(ω1)

2

8(λ33s11)
2 t2 cos(ω1t)](d31)

4 + [ 1
8(m)2 t2 cos(ω1t) − 1

8(m)2ω1
t sin(ω1t)](c)2

+[ 1
4mλ33s11

ω1t2 sin(ω1t) + 1
4mλ33s11

t cos(ω1t) − 1
4mλ33s11ω1

sin(ω1t)]c(d31)
2
}

. (54)

Equations (32) and (54) can be transformed into the following:

w(x, t) =
w0[sin Dx−sinhDx+ sin Dl+sinhDl

cos Dl+cosh Dl (cosh Dx−cos Dx)]

[sin Dl−sinhDl+ sin Dl+sinhDl
cos Dl+cosh Dl (cosh Dl−cos Dl)]

{cos(ω1t)

−
ω1

2λ33s11
t sin(ω1t)(d31)

2 + [ 1
2mω1

sin(ω1t) − 1
2m t cos(ω1t)]c− [ 3ω1

8(λ33s11)
2 t sin(ω1t)

+
(ω1)

2

8(λ33s11)
2 t2 cos(ω1t)](d31)

4 + [ 1
8(m)2 t2 cos(ω1t) − 1

8(m)2ω1
t sin(ω1t)](c)2

+[ 1
4mλ33s11

ω1t2 sin(ω1t) + 1
4mλ33s11

t cos(ω1t) − 1
4mλ33s11ω1

sin(ω1t)]c(d31)
2
}

. (55)
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The vibration frequency of the piezoelectric cantilever beam is as follows:

ω =

√
D4E′Iy

m
. (56)

in which D can be determined by Equation (25). Thus, the free damping vibration problem of the
piezoelectric cantilever beams is solved.

3. Comparison with the Existing Theory

To verify the validity of the theoretical solution obtained in this paper, we compared the solution
presented here with the solution in the literature [26]. In the literature [26], the solution of the free
vibration of the general cantilever beam is given. In order to facilitate the comparison, we degraded
the problem solved here to the problem of the general cantilever beam, that is, let

d31 = 0, c = 0. (57)

Substituting Equation (57) into Equations (55) and (56), respectively, we may obtain the following

w′(x, t) =
[sin Dx− sinhDx + sin Dl+sinhDl

cos Dl+cosh Dl (cosh Dx− cos Dx)]

[sin Dl− sinhDl + sin Dl+sinhDl
cos Dl+cosh Dl (cosh Dl− cos Dl)]

w0 cos(ω1t) (58)

and

ω′ =

√
D4Iy

ms11
. (59)

From Equation (32), w′(x, t) can be transformed into the following

w′(x, t) = B2 cos(ω1t)A1[sin Dx− sinhDx +
sin Dl + sinhDl
cos Dl + cosh Dl

(cosh Dx− cos Dx)]. (60)

For general materials, one has the following:

E =
1

s11
. (61)

Thus, we can obtain the following:

ω′ =

√
D4EIy

m
. (62)

Comparing Equations (60) and (62) with the expressions of the vibration displacement and
frequency presented in the literature [26], it can be found that they are exactly the same. This shows
that the solution in this paper, to a certain extent, is effective.

Equation (56) is the expression of the vibration frequency of the piezoelectric cantilever beam, and
Equation (62) is the expression of the vibration frequency of the cantilever beam without piezoelectric

properties. Comparing Equations (56) and (62), it can be found thatω′ =
√

D4EIy/m ω =
√

D4E′Iy/m.
This shows that the piezoelectric properties will increase the vibration frequency of the free vibration
of the piezoelectric cantilever beams.

4. Experimental Verification and Discussion

4.1. The Experiments of Piezoelectric Cantilever Beams

In order to further verify the validity of the theoretical solution obtained in this paper, we carried
out the related experiments of the free damping vibration of the piezoelectric cantilever beams. The



Appl. Sci. 2020, 10, 215 10 of 14

experimental specimens used in this experiment are a PbZrTiO3-5 (generally abbreviated as PZT-5)
piezoelectric ceramic sheet with a size of 60 mm × 20 mm × 0.1 mm, and a density of 7500 kg·m3, as
shown in Figure 2a. Its physical constants are shown in Table 1. The experimental specimen is fixed
and clamped by pliers and supporting devices, and the clamping length is 10 mm, that is, the effective
length of the piezoelectric cantilever beam is 50 mm, as shown in Figure 2b. The time–displacement
curves of the piezoelectric cantilever beam are measured by a non-contact laser displacement sensor
(from ZSY Group Ltd., London, UK), as shown in Figure 3a. The overall measuring device is shown in
Figure 3b.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 

For general materials, one has the following: 

11

1E
s

= . (61)

Thus, we can obtain the following: 

4
yD EI

m
ω′ = . (62)

Comparing Equations (60) and (62) with the expressions of the vibration displacement and 
frequency presented in the literature [26], it can be found that they are exactly the same. This shows 
that the solution in this paper, to a certain extent, is effective. 

Equation (56) is the expression of the vibration frequency of the piezoelectric cantilever beam, 
and Equation (62) is the expression of the vibration frequency of the cantilever beam without 
piezoelectric properties. Comparing Equations (56) and (62), it can be found that 

4 4/ /y yD EI m D E I mω ω′ ′= < = . This shows that the piezoelectric properties will increase the 

vibration frequency of the free vibration of the piezoelectric cantilever beams. 

4. Experimental Verification and Discussion 

4.1. The Experiments of Piezoelectric Cantilever Beams 

In order to further verify the validity of the theoretical solution obtained in this paper, we 
carried out the related experiments of the free damping vibration of the piezoelectric cantilever 
beams. The experimental specimens used in this experiment are a PbZrTiO3-5 (generally 
abbreviated as PZT-5) piezoelectric ceramic sheet with a size of 60 mm × 20 mm × 0.1 mm, and a 
density of 7500 kg·m3, as shown in Figure 2a. Its physical constants are shown in Table 1. The 
experimental specimen is fixed and clamped by pliers and supporting devices, and the clamping 
length is 10 mm, that is, the effective length of the piezoelectric cantilever beam is 50 mm, as shown 
in Figure 2b. The time–displacement curves of the piezoelectric cantilever beam are measured by a 
non-contact laser displacement sensor (from ZSY Group Ltd., London, UK), as shown in Figure 3a. 
The overall measuring device is shown in Figure 3b. 

 
(a) 

 
(b) 

Figure 2. Scheme of the experimental specimens and piezoelectric cantilever beam: (a) PZT-5 
piezoelectric ceramic specimens; (b) the piezoelectric cantilever beam. 

After the experiment device was assembled, loads of 5, 10, and 20 g were applied to the 
cantilever end of the piezoelectric cantilever beam, respectively. The corresponding displacements 
of the cantilever end under three levels of load were 0.475, 0.750, and 1.342 mm, respectively. Then, 
the instantaneous unloading was performed to cause the piezoelectric cantilever beam to generate 
free vibration under the drive of the initial displacement of the cantilever end. The 

Figure 2. Scheme of the experimental specimens and piezoelectric cantilever beam: (a) PZT-5
piezoelectric ceramic specimens; (b) the piezoelectric cantilever beam.

Table 1. Physical properties of the PZT-5 materials [27].

Elastic Constant
(10−12 m2

·N−1)
Piezoelectric Constant

(10−12 C·N−1)
Dielectric Constant

(10−8 F·m−1)

s11 s12 s13 s33 s44 d31 d33 d15 λ11 λ33
16.4 −5.74 −7.22 18.8 47.5 −172 374 584 1.505 1.531
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After the experiment device was assembled, loads of 5, 10, and 20 g were applied to the cantilever
end of the piezoelectric cantilever beam, respectively. The corresponding displacements of the
cantilever end under three levels of load were 0.475, 0.750, and 1.342 mm, respectively. Then, the
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instantaneous unloading was performed to cause the piezoelectric cantilever beam to generate free
vibration under the drive of the initial displacement of the cantilever end. The time–displacement
curves of the piezoelectric cantilever beam under these three initial displacements were recorded by a
non-contact laser displacement sensor.

4.2. Comparison of the Experimental Results and Theoretical Results

The time–displacement curves and the vibration frequency of the piezoelectric cantilever beam
can be obtained by the above-mentioned experiments. In the following, we compared the experimental
results with the theoretical results. Before the comparison, we needed calculate the time–displacement
curves of the theoretical solution under three initial displacements, namely, l = 0.05 m, b = 0.02 m,
h = 0.0001 m, ξ = 0.03, and m = 0.015 kg/m. Thus, from Equations (55) and (56), the vibration
frequency and the time–displacement curves can be obtained, as shown in Table 2 and Figures 4–6.

As can be seen from Table 2, the errors between the vibration frequency measured by the
experiments and the vibration frequency calculated by the theoretical solution are all below 20%, within
the range of allowable error. This indicates that the given vibration frequency expression is correct.

Table 2. Frequency comparison of the experimental results and theoretical results.

Initial Displacements
(mm)

Vibration Frequency

Experimental Results
(rad/s)

Theoretical Results
(rad/s)

Relative Errors
(%)

0.475 123.25 146.12 15.65
0.750 123.25 151.40 18.59
1.342 123.25 139.63 11.01

From Figures 4–6, it can be seen that the differences between the maximum amplitudes of each
vibration period obtained by the experiment and the theory are all small, but there is a certain difference
in the vibration phase. The main reason for the difference of the vibration phase is that the vibration
frequencies obtained by the experiment and theory are not completely equal. In Table 2, the relative
errors of the vibration frequencies obtained by the experiment and the theory have been given, and they
are within the allowable range. So, it can be said that the experimental results are in good agreement
with the theoretical results. This shows that the theoretical solution given in this paper is correct. On
the other hand, it also shows that the biparametric perturbation method used in this paper is effective.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 15 
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Figure 4. The time–displacement curves under the initial displacement of 0.475 mm.
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Figure 5. The time–displacement curves under the initial displacement of 0.750 mm.
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5. Concluding Remarks

In this paper, the free damping vibration problem of piezoelectric cantilever beams was solved
using the biparametric perturbation method, and its theoretical solution was obtained. In addition, the
related experiments were carried out, and the experimental results were compared with the theoretical
results. The following main conclusions can be drawn.

(i) The theoretical solution given in this paper can be degraded to the existing vibration solution
of the general cantilever beam, and the theoretical results are in good agreement with the
experimental results. These indicate that the analytical solution given in this paper is correct, and
the biparametric perturbation method used in this paper is effective.

(ii) From Equation (11), it can be seen that the piezoelectric properties of the piezoelectric materials
will increase the elastic modulus, which is usually known as the piezoelectric stiffening effect
peculiar to piezoelectric materials and structures. As we all know, the greater the elastic modulus,
the higher the vibration frequency. Thus, the piezoelectric properties will increase the vibration
frequency of the piezoelectric cantilever beams.
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(iii) From the perturbation expansion, it is easy to find that the zero-order solution is the solution
of the free vibration of the classical cantilever beam, without the piezoelectric properties and
damping. The influences of the piezoelectric properties and the damping are reflected in the
first-order and second-order perturbation solutions. The analytical characteristic and structural
form of the perturbation solution are beneficial to the parameter analyses of the studied problem.

The method proposed in this study may be extended to multi-physical fields like electric, magnetic,
or thermal fields, in addition to the traditional mechanical field, and these electric, magnetic, or thermal
parameters may be selected as the perturbation parameters. Therefore, the biparametric perturbation,
even the multi-parametric perturbation, method, especially based on perturbation parameters with
certain physical meanings, agree with, to a certain extent, the basic idea of homogenization. Moreover,
the analytical results proposed in this study can provide a theoretical basis and reference for the
analysis and design of sensors and actuators based on the piezoelectric effect.
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