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Abstract: The crop water stress index (CWSI) is one of the parameters measured in deficit irrigation
and it is obtained from crop canopy temperature. However, image segmentation is required for
non-leaf region exclusion in temperature measurement, as it is critical to obtain the temperature
values for the calculation of the CWSI. To this end, two image-segmentation models based on support
vector machine (SVM) and deep learning have been studied in this article. The models have been
trained with different parameters (encoder depth, optimizer, learning rate, weight decay, validation
frequency and validation patience), and several indicators (accuracy, precision, recall and F1 score/dice
coefficient), as well as prediction, training and data preparation times are discussed. The results
of the F1 score indicator are 83.11% for SVM and 86.27% for deep-learning models. More accurate
results are expected for the deep-learning model by increasing the dataset, whereas the SVM model is
worthwhile in terms of reduced data preparation times.

Keywords: deficit irrigation; CWSI; thermography; image segmentation; clustering; SVM;
deep learning; model training

1. Introduction

Water is a limiting factor in arid zones and its optimal management is crucial to ensure
appropriate production levels and the quality of crops. One of the techniques that has been studied
and applied in recent years to reduce water consumption in agriculture is deficit irrigation [1–4],
which requires measurable crop stress parameters. Midday stem water potential (SWP) is the
reference method [5]. However, its measurement is very time consuming and it is not automated yet.
As soil–plant–atmosphere is considered as a continuum [6], several automatically measurable variables
have been proposed to be related to the SWP, so that it can be measured in an indirect way. The crop
water stress index (CWSI) [7,8] is one of the most widely used indicators correlated with SWP and it is
remotely measurable [9].

In order to obtain the CWSI, it is necessary to measure the crop canopy temperature. One of the
methods to deal with this aim is the use of infrared radiometers (IR) [10,11]. However, when installing
an IR in the field no feedback is available to know the proportion of leaves in the measuring cone.
Thermography techniques are an alternative tool to estimate the crop canopy temperature [12–17].
No orientation issues arise since a graphical representation of reality is always available, so that enough
information is provided to decide whether the visualized region is of interest. In either case, a similar
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issue arises: the necessity of discrimination between leaf and non-leaf regions in the field of vision.
They are not capable of distinguishing between the leaves and other elements of the image, such as
branches, trunk, sky or soil. Therefore, the measured temperature does not only correspond to that of
the leaves, but to that of the average of all the elements covered by the field of vision.

It has been demonstrated that the exclusion of the non-leaf image region is critical to obtain
the temperature values for the calculation of the CWSI [17]. To automate this, image-segmentation
techniques would need to be implemented to identify the region of interest. However, the identification
of the leaves in thermal images is a complicated task, even with high-resolution thermal cameras,
whose price would make the system unviable. Thus, the segmentation is posed in visible images.
Subsequently, using augmented reality techniques, correspondence between the processed visible
image and the thermal image would be achieved, allowing the determination of the temperature values
of the leaves exclusively. In this regard, the use of different techniques of colorimetric segmentation by
image processing has been classically proposed in several studies. In particular, these are segmentation
techniques based on colour thresholds [18,19], region identification [19] and watershed [19,20],
that perform image processing using the hue saturation value (HSV), hue saturation intensity (HSI) or
lab colour spaces. Likewise, significant work has been done based on machine-learning techniques with
good results compared to other image processing methods [21]. Specifically, deep learning provides
a great advantage in image processing, since it does not require feature engineering [21] and not only
the colour is involved in the segmentation algorithm, but also the spatial relationship between colours,
giving rise to the notion of shapes.

Currently there are numerous case studies related to the classification of images by means of
machine-learning and deep-learning techniques [22–25]. Nonetheless, the aim of these studies is not as
much the leaves segmentation as the phenotypic classification. In contrast, the problem we pose is
the segmentation of the image to identify a region of interest. Specifically, the region that we seek to
separate from the background is the one that is formed by the multiple leaves of the trees in a real
scenario. Problematic areas due to over- or under-lighting, or withered and pitted leaves can be found.
Besides, leaves themselves may be overlapped [26], be incomplete, or be covered by not interesting
background elements, such us branches, fruits, soils with the presence of weeds and cloudy skies.

The segmentation of leaves from natural backgrounds, such as with overlapping leaves or
branches, has been dealt with in several articles [20,27–34]. Nevertheless, a low complexity in the
image composition is noticed in these papers, such as the lack of: light reflections, overlapping leaves,
branches and fruits, or the presence of grass or weeds in the background. This involves a distancing
from the real scenario that can be used in a field measurement. Furthermore, some articles [20,27] are
only focused on a specific leaf centred in the image, but not on multiple leaves. Therefore, a lack of
procedures to efficiently discriminate leaf regions from natural backgrounds in multi-leaf images has
been found.

In this article, a segmentation procedure, that consists of individually classifying each pixel of
an image into the corresponding “leaf” or “non-leaf” class, is proposed. This task is performed by
analysing the individual information of the pixels and their relationship with the neighbours. To this
end, support vector machine (SVM) and deep-learning algorithms have been used and compared in
order to generate an automatic processing model.

2. Materials and Methods

2.1. Materials

To generate the segmentation model, a set of pictures for training was obtained. Different species
of fruit trees were the target of the research: lemon (Citrus limon), orange (Citrus sinensis), almond
(Prunus dulcis), olive (Olea europaea), loquat (Eriobotrya japonica), fig (Ficus carica), cherry (Cerasus) and
walnut (Juglans regia) trees. The pictures were collected by means of mobile devices (smartphones) in
different locations of city and countryside in Murcia, Spain (37◦59′32.064” N 1◦7′50.356” W). The images
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were taken throughout winter and spring at several times of the day, from morning to afternoon,
covering the range of different lighting scenarios. Several resolutions were found: 3264 × 2448,
3264 × 1836, 1600 × 1200 and 1600 × 900 pixels. The datasets consisted of 251 pictures for SVM and
121 pictures for deep learning. The data processing and models training were performed by means of
a computer with Intel® Core i5-8600K, 16 GB RAM and GTX 1070 Ti GPU/8 GB GDDR5 equipped
with MATLAB 2018b (The MathWorks, Inc., Natick, MA, USA) [35]. GIMP (GNU image manipulation
program) 2.10.10 software [36] was used for image masks refining.

2.2. Methods

Two different alternatives were proposed in order to obtain the image segmentation model: a SVM
model together with a clustering-based dataset generation and a Deep Learning model.

2.2.1. Support Vector Machine (SVM) + Clustering

The proposed SVM + Clustering method consisted of several steps, as presented in Figure 1.
To build the dataset for training, image masks that discriminate leaf and non-leaf pixels were needed.
Since building this is a really time-consuming task if done manually, a clustering pre-process was
implemented as an alternative to facilitate the dataset generation.
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Figure 1. Support vector machine (SVM) method diagram.

As it is a supervised method, input-output pairs of data are required for SVM training. The output
was defined as a binary value that classifies every pixel as leaf (“1”) or non-leaf (“0”). In the case
of inputs, the original pictures were taken in the Red-Green-Blue (RGB) colour space. Nonetheless,
other colour spaces were used, as more relevant information for segmentation can be obtained [37,38].
Thus, a hybrid colour space formed by some channels of several colour spaces was defined. The colour
spaces considered were: RGB, I1I2I3, HSV and CIE (International Commission on Illumination) L*a*b*.
The procedure for choosing the channels consisted of representing each of them in a grayscale picture
together with its histogram for different test images. This allowed visual determination of their
sensitivity to discern between the leaves and the background. Finally, the hybrid colour space consisted
of the selected channels: I3 from I1I2I3, a* and b* from CIE L*a*b*, and H from HSV.

Clustering

The clustering pre-process consisted of applying a k-means method to define several centroids
and an index matrix from the pictures. All the original pixels were classified with an index depending
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on the centroid they belonged to. A number of 20 centroids was chosen arbitrarily. To build the
dataset output a graphical user interface (GUI) where every picture is loaded and the index matrix is
applied as a mask was developed. As shown in Figure 2, the interface allowed to manually enable or
disable the pixels associated with each cluster by using checkboxes, automatically updating the picture
and defining the supervised output. Aside from facilitating the task to create the dataset, the use of
clustering led to normalization of pictures from different resolutions avoiding an unbalanced dataset.
The output distribution of the dataset obtained was 53.73% leaf and 46.27% non-leaf.
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b. SVM Training

In order to train the SVM model, the dataset was split into 80% for the training set and 20% for
the validation set, and a fixed test set was defined from seven new pictures. The validation set was
used to optimize the weight decay of the SVM model. To do this, training was carried out by using the
training set with different weight decay values within a defined range and the model’s performance
was evaluated by using the validation set. The final resulting model trained with the optimal weight
decay together with the test set were used to evaluate the real model accuracy. The whole procedure
was repeated 50 times arbitrarily, so that the distribution of the dataset was different for each iteration.
Finally, the optimal model was selected as that with the best test accuracy.

2.2.2. Deep Learning

Mask Generation

In the case of deep learning, the pictures were taken as model inputs and the binary images as
output masks. To generate the masks, the clustering process for SVM described above was used in
a first step. The accuracy of this method is limited due to a finite number of clusters and the clustering
error itself. Therefore, in order to obtain ground-truth masks with sufficient accuracy, a manual edition
was performed by using GIMP software in a second step, as shown in Figure 3. This task consisted of
correcting the erroneous classification of regions on the mask after clustering by manually colouring
the pixels. For this procedure, a remarkable cost in terms of time was required.

Data Augmentation

The main problem when deep-learning training is performed is the amount of data available.
With a view to enlarge the dataset and provide more information for model training, data augmentation
was applied. This procedure made it possible to create new training data artificially from the original
pictures. It consisted of basic geometric transformations, such as translations or turns, on the pictures
and their respective masks. In this article, the data augmentation applied to the original pictures
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consisted of: a square crop centred on the picture, two square crops originating at the two ends,
three horizontal flips corresponding to the crops previously obtained and two rotations of 20◦ in both
directions with a subsequent square crop. Thus, the dataset was enlarged eight times resulting in a total
of 968 pictures. These pictures were resized to a resolution of 480 × 480 pixels for training.
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Test Set

For testing purposes, seven masks were generated from seven different pictures. These pictures
had a resolution of 3264 × 1836 pixels and were too big to be able to make predictions with the model.
Therefore, they were divided into four quadrants of 1632 × 918 pixels each. This allowed to obtain
a larger number of pictures to make predictions and no information from the original pictures was lost.
Finally, the test set was composed of a total of 28 pictures.

Deep-Learning Parameters and Training

A SegNet network architecture [39] was chosen for the deep-learning model. SegNet is
a convolutional neural network for semantic image segmentation. The network input layer size
was defined as 480 × 480. Twenty two different models were trained employing different parameter
configurations, which are detailed in Tables A1 and A2. The parameters modified were: Encoder
Depth, optimizer, learning rate, weight decay, validation frequency and validation patience. Moreover,
the image enhancement pre-process of contrast-limited adaptive histogram equalization (CLAHE) was
also applied in training images for some models. The objective of this procedure was to emphasize
the contrast of the image. The CLAHE pre-process was implemented in HSV colour space training
images and then converted back to RGB. The data set (training set + validation set) was split in 90 and
10%, respectively. The distribution of pictures in training and validation set was randomly repeated
30 times to cover different configurations of the dataset. The best model was chosen according to the
test accuracy.

3. Results

3.1. Results and Predictions on Test Pictures

In order to compare the results between the different models generated, an accuracy indicator
was defined as the percentage of pixels correctly classified over the total of the image:

tp = true positive; tn = true negative; fp = false positive; fn = false negative

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

The evaluation is made not only between the best models obtained for SVM and deep-learning,
but also between several models generated with different parameters in both cases. For the SVM model,
the results were obtained with different dataset sizes: 50, 122, 190 and 251 training images. SVM test
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accuracy results are presented in Table 1. For every size, the mean test accuracy of all 50 models
iteratively generated with different dataset distributions was calculated, although only the mean
test accuracy of the best model is presented in Table 1. Model number 4, which is the one that was
trained with a larger dataset, was found to be the one with the best average accuracy (83.09%) and the
best average accuracy for all the iterations of generation of the model (82.53%). Moreover, model 4
was determined as the best model, with the highest accuracy in 64.29% of the test pictures. The best
model indicator was defined as the percentage of test pictures that present the best result with each
model. This percentage was also reached considering 1% better test accuracy results for the model 4.
Quantifying this evolution of percentages reveals small differences between model 4 and the rest in the
cases it is not the best, presenting a higher accuracy or up to 1% lower in 89.29% of the test pictures.
As expected, the accuracy of the model grows as the number of training examples increases.

Table 1. Support vector machine (SVM) test accuracy results.

SVM 1 2 3 4

Images 50 122 190 251
Mean Test Accuracy of the best model (%) 74.90 77.95 82.48 83.09

Best model (%) 1 3.57 10.71 21.43 64.29
Best model 4 @1% (%) 2 3.57 7.14 0.00 89.29

Mean Test Accuracy of Model Generation Iterations (%) 73.71 76.59 81.20 82.53
1 Percentage of the pictures that present the best result with each model. 2 Best model considering 1% better the
model number 4.

Focusing on the best SVM model obtained, whose learning curve is shown in Figure 4, a case
of high bias is observed, which may indicate an underfitting problem. The model does not fit the
data sufficiently, it lacks information and requires more parameters to reduce the error. Specifically,
method limitations were observed with regard to the clustering and SVM structure. Clustering for
data preparation and SVM training are strictly conducted by the colour space parameters of the pixels,
which seem to be insufficient for the segmentation. The problem does not apparently be related to the
selection of channels or colour spaces, neither with the absence to add one of them, but with the nature
of the method. Additional procedures are required for a segmentation that performs an analysis based
on regions and textures.
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In the case of the deep-learning model, trainings were performed with different dataset
configurations, network architecture parameters and training options, which are presented in Tables A1
and A2. The results for each model are shown in Tables 2 and 3. Mean test accuracy of all 30 models
generated iteratively with different dataset distributions was calculated, as well as the mean test
accuracy of the best model. According to the results, model 13, with an accuracy of 85.05%, was found
to be the best. Model 15 has a very similar accuracy (84.90%), obtained with a double value of
validation patience parameter. Furthermore, the comparison of accuracy between models 11 (83.07%)
and 10 (84.67%) demonstrates that the application of the image enhancement pre-process of CLAHE
did not improve the results.

Table 2. Deep-learning test accuracy results (1/2).

Deep Learning 1 2 3 4 5 6 7 8 9 10 11

Mean Test Accuracy of the best
model (%) 78.21 79.81 81.96 83.53 82.30 82.91 84.61 84.49 82.94 84.67 83.07

Mean Test Accuracy of Model
Generation Iterations (%) 69.13 75.34 70.60 78.38 79.70 76.44 79.23 78.78 79.22 79.79 80.44

Table 3. Deep-learning test accuracy results (2/2).

Deep Learning 12 13 14 15 16 17 18 19 20 21 22

Mean Test Accuracy of the best
model (%) 83.90 85.05 83.55 84.90 84.14 83.34 83.13 83.60 84.16 78.01 80.60

Mean Test Accuracy of Model
Generation Iterations (%) 80.51 80.26 78.28 80.66 80.99 67.56 77.26 78.98 80.61 67.27 73.66

Valuable information is obtained from the training curves, as presented in Figure 5 for model 13.
A high variability in accuracy is observed during training due to the differences presented between
training images. As previously stated, the objective was to generate a segmentation model capable
of working with pictures that included complex backgrounds and regions with problematic lighting.
These pictures with characteristics that are more difficult to discriminate are responsible for the fact
that poor results are frequently produced during training.
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Once the best model was chosen, training was executed employing the same parameters with
different dataset sizes in order to analyse the evolution of the test accuracy. The aim was to predict the
possibility of model improvement in case we were to add new training pictures. The dataset size varied
between 20 and 121 original images, i.e., 160 and 968 images after applying data augmentation,
with 10 original images steps. The test accuracy indicator obtained from each case evidenced
an enhancement as the dataset size increased, as shown in Figure 6. This trend suggests that by
increasing the size of the training set, a more accurate model could be achieved.
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To perform a comparison between the best models found for SVM and deep-learning, the following
indicators were defined.

Precision =
tp

tp + fp
(2)

Recall =
tp

tp + fn
(3)

F1 = 2
precision·recall

precision + recall
(4)

where tp is the number of true positives, fp the number of false positives and fn the number of
false negatives.

The deep-learning model has a better average result on accuracy, recall and F1 score, whereas the
SVM model presents a better average precision, as shown in Table 4. This means that the deep-learning
model is less restrictive, generating a lower number of false negatives, which leads to a 5.16% higher
recall. However, as it is less restrictive, more false positives are also found, which lowers the precision
to 2.19%. Taking into account the accuracy and F1 score, it can be determined that the best model is the
deep learning one. Moreover, the percentages of the test pictures that have the best result with each
model have also been obtained for each indicator and presented in the ‘Best model’ row of Table 4.
In this case, the best result is achieved by the SVM model except for recall. However, as it can be seen
in the following row, the percentages of best model vary significantly in favour of the deep-learning
model if it is considered to be the best model with a higher result or up to 3% lower. In contrast,
if we proceed in the same way by favouring the SVM model with the same percentage, the results
are not improved so substantially. These improvements derived from the 3% favouring in each case
are summarised in the last row of Table 4. The enhancement in the percentage of test pictures that
obtain their best result for each model, on average for all indicators, would be 15.18% for SVM and
42.86% for deep learning. These results serve as an argument to define the deep-learning model as
a priority when it comes to improving it in future work, since a small improvement in the indicators
(3%) would lead to a significant improvement in the comparative results with the SVM model, in terms
of percentage of best model (42.86%).
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Table 4. SVM and deep-learning results.

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

SVM 4
Deep

Learning
13

SVM 4
Deep

Learning
13

SVM 4
Deep

Learning
13

SVM 4
Deep

Learning
13

Mean 83.09 85.05 90.54 88.35 81.12 86.28 83.11 86.27
Best model (%) 64.29 35.71 85.71 14.29 46.43 53.57 64.29 35.71

Best model Deep Learning
@3% (%) 1 17.86 82.14 42.86 57.14 14.29 85.71 14.29 85.71

Best model SVM @3% (%) 2 82.14 17.86 92.86 7.14 64.29 35.71 82.14 17.86
Improvement (%) 3 17.86 46.43 7.14 42.86 17.86 32.14 17.86 50.00
1 Best model considering Deep Learning 3% better. 2 Best model considering SVM 3% better. 3 Difference between
Best model and Best model @3%.

In Figure 7, an example of the image segmentations made by the models for a test picture is
shown. The segmentation mask of the model is overlaid on the original picture, assigning the green
and yellow colours to “leaf” and “non-leaf” classes, respectively. The mask of the model’s errors is
overlaid on the original picture, assigning blue to the false positives (they are not leaves, but have been
classified as such) and red to the false negatives (they are leaves, but have not been classified as such).
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3.2. Prediction, Training and Data Preparation Time

Not only performance but time cost of the models should be accounted since economic and technical
restrictions have to be considered. Prediction, training and data preparation times were analysed in
order to evaluate the feasibility of the methods and to underscore the differences between them.

The prediction time of the model for image segmentation is crucial to determine the feasibility of
its implementation in a future field application. Additionally, it must be noted that the computing
power in this case would be significantly lower if it were not performed remotely. The average times
for the segmentation of the test pictures executed by SVM models are presented in Table 5. According
to results, SVM prediction time increases with the number of training images. The larger the dataset,
the more complex and heavier the model is, so the prediction requires a higher computational cost.
In the case of deep-learning models, prediction times are affected by the encoder depth parameter,
which defines the number of network layers. Table 5 summarizes the average prediction times for
trained deep-learning models with the same encoder depth values.

Table 5. SVM and deep-learning prediction time.

SVM
Images 50 122 190 251

Prediction Time (s) 3.90 11.69 23.35 31.78

Deep Learning Encoder Depth 2 4 5 6

Prediction Time (s) 0.701 0.745 0.750 0.761

From the average prediction times of the test pictures in the best SVM and deep-learning models,
which are shown in Table 6, it is appreciated that the SVM model takes approximately 42 times more
prediction time. The SVM model is simpler, but requires individual prediction of each of the pixels
that make up the picture. In contrast, the deep-learning model with the SegNet network architecture
based on the encoder-decoder structure is more agile in prediction.

Table 6. SVM and deep-learning prediction time.

Model SVM 4 Deep Learning 13

Images 251 121
Prediction Time (s) 31.78 0.76

The time needed for models training is not a determining parameter to consider in the comparison
between models, since it is a machine processing time and it is performed only once. However, it is
interesting to take this into account as excessively high times could be a problem for future training with
a greater number of pictures. Table 7 shows how the training time of SVM models rises as the dataset
increases, as expected. In the case of the deep-learning model, the training time depends on the number
of training images that compose the dataset, added to the validation frequency and validation patience
parameters that define the stop criteria, as well as the learning rate and the regularization value.

Table 7. SVM training time.

SVM 1 2 3 4

Images 50 122 190 251
Train Time (s) 0.47 3.50 8.66 15.17

Based on the results of the best SVM and deep-learning models, which are indicated in Table 8,
the SVM model takes approximately 67 times less training time. The SVM model is simpler and its
training does not require the computational capacity that the deep-learning model does.
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Table 8. SVM and deep-learning training time.

Model SVM 4 Deep Learning 13

Images 251 121
Train Time (min) 0.25 16.75

The time it takes to prepare the data for training is a key factor in the process. This can be
a bottleneck and the most determinant procedure, as the resulting model will be as good as the data
we are training with. The data preparation times are then compared for both methods in Table 9.
In the case of SVM, the computation time of the clustering and the time of manual classification of the
clusters by means of the GUI are taken into account. Instead, for the deep-learning model it is necessary
to add to the time for mask generation in the previous process, the manual editing time to adjust it
perfectly. It is obtained that for each picture the preparation time of the SVM model is significantly
lower (27 times) than that of the deep learning one. The manual editing time of the ground-truth mask
represents the biggest stumbling block in this process. If these times are considered for all the pictures
used in both cases, the total time is approximately 10 hours for SVM (251 pictures) and 126 hours for
deep learning (121 pictures). The deep learning model required 116 hours more time for half of the
training images.

Table 9. SVM and deep-learning data preparation time per image.

Model SVM Deep Learning

Clustering (min) 0.33 0.33
Cluster Classification (min) 2 2

GIMP (min) - 60
Data Preparation Time (min) 2.33 62.33

4. Discussion

In general, the segmentation methods performed accurately with elements such as trunks,
branches, sky and clouds. False positives were found with green fruits and green branches. Besides,
false negatives with leaves in regions of problematic illumination have also been reported.

SVM has been demonstrated to be limited in this application. Despite having a much shorter data
preparation time, significantly improvement in prediction is not expected, no matter how much the
dataset size is increased. Neither does it seem promising to study new hybrid colour spaces composed
by other channels or to add new ones. This limitation lies in the clustering method itself, rather than
in the data.

Better results were obtained with deep learning, even using few pictures for training. Due to the
size of the dataset, which represents a limitation, it was not possible for the model to reach the whole
ability to recognize the shapes and textures of the elements of interest. An accuracy improvement by
the deep learning model is expected with a larger training set. Specifically, it is considered important
to add cases for training in which the model has presented poorer results. The objective is to penalize
by means of the dataset the convergence of the training process in a concrete sense. If it contains more
regions with doubtful fruits or branches, the model will be forced to extract differentiating features
that allow its discrimination to be improved in order to optimize the monitoring parameter.

5. Conclusions

A segmentation method to discriminate leaf and non-leaf regions in images has been presented in
this paper. SVM and deep-learning models were proposed to achieve this objective and were found
to have 83.11 and 86.27% F1 score, respectively. The SVM model has shown limitations in terms of
further improvement of results. However, a much shorter data preparation time must be employed.



Appl. Sci. 2020, 10, 202 12 of 15

The deep-learning model was selected as the best option and it is proposed as the one to be developed
in a future work.

Next steps would involve the implementation of the developed model in a portable unit, together
with a thermal camera to measure the leaves temperature at field conditions, and to compare with
other methods. Additionally, future studies should investigate the addition of new segmentation
classes in the model that represent the different elements we can find in the pictures, e.g. one class
for branches, another one for fruits, the sky, etc. The fact of defining an exclusive class for these
elements can facilitate the extraction of their specific characteristics, as opposed to encompassing
them in the background. Moreover, the information to decide according to the relative position of
the classes is also taken into account. Nevertheless, a significant increase of masks generation and
classification time has to be considered. Other interesting options could be the definition of individual
models for different phenotypes, since leaves shape is characteristic of each of them, or the use of a
pre-trained model with initialized weights, which would reduce the necessity of increasing the dataset
size, as previous experience is hoarded. The procedure presented could also be followed to generate a
leaf segmentation model for other species. Image segmentation models proposed here could also be
employed in other applications for the measurement of other ranges of the electromagnetic spectrum
image-based parameters.
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Appendix A

Table A1. Deep-learning model’s parameters (1/2).

Deep Learning 1 2 3 4 5 6 7 8 9 10 11

Images 57 57 57 112 112 112 112 112 112 121 121
Dataset 57 57 57 112 112 112 672 672 896 968 968

Image Enhancement N Y N N Y N N N N N Y
Data Augmentation N N N N N N x6 x6 x8 x8 x8

Encoder Depth 2 2 2 2 2 4 2 2 2 2 2
Optimizer sgdm sgdm sgdm sgdm sgdm sgdm sgdm sgdm sgdm sgdm sgdm

Learning rate 1 × 10−2 1 × 10−2 1 × 10−1 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2

Regularization value 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Validation frequency 20 20 20 20 20 20 20 100 150 150 150
Validation patience 5 5 5 5 5 5 5 5 5 5 5

Table A2. Deep-learning model’s parameters (2/2).

Deep Learning 12 13 14 15 16 17 18 19 20 21 22

Images 121 121 121 121 121 121 121 121 121 121 121
Dataset 968 968 968 968 968 968 968 968 968 968 968

Image Enhancement N N N N N N N N N N N
Data Augmentation ×8 ×8 ×8 ×8 ×8 ×8 ×8 ×8 ×8 ×8 ×8

Encoder Depth 4 5 6 5 5 5 5 5 5 5 5
Optimizer sgdm sgdm sgdm sgdm sgdm sgdm sgdm sgdm sgdm rmsprop adam

Learning rate 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−1 1 × 10−3 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2

Regularization value 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−3 1 × 10−5 1 × 10−4 1 × 10−4

Validation frequency 150 150 150 150 150 150 150 150 150 150 150
Validation patience 5 5 5 10 15 5 5 5 5 5 5
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