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Abstract: The dishonest participants have many advantages to gain others’ shares by cheating in quantum
secret sharing (QSS) protocols. However, the traditional methods such as identity authentication and
message authentication can not resolve this problem due to the reason that the share has already been
released to dishonest participants before realizing the deception. In this paper, a continuous variable
QSS (CVQSS) scheme is proposed with fairness which ensures all participants can acquire or can not
acquire the secret simultaneously. The quantum channel based on two-mode squeezing states provides
secure communications through which it can send shares successfully, as long as setting the squeezing
and modulation parameters according to the quantum channel transmission efficiency and the Shannon
information of shares. In addition, the Chinese Remainder Theorem (CRT) can provides tunable threshold
structures according to demands of the complex quantum network and the strategy for fairness can be
incorporated with other sharing schemes, resulting in perfect compatibility for practical implementations.

Keywords: quantum secret sharing; fairness; two-mode squeezed vacuum state

1. Introduction

The secret sharing (SS) plays a significant role in cryptography. Since 1999, Hillery et al. [1] firstly
invited SS to the quantum domain by applying three-particle and four-particle GHZ states, more and more
QSS scheme have been proposed [2–4]. Based on the quantum mechanics, the secret distribution can be
ensured unconditional safety.

Conventionally, a (t, n)-threshold secret sharing scheme is built to prohibit (t− 1) or fewer dishonest
participants conspiring for secret. At the same time, the participant has more advantages to steal
the secret than outside eavesdroppers. Hence, compared with other protocols, such as quantum key
distribution [5–7], quantum signature [8], Quantum anonymous voting [9] and so on, the QSS protocols
need to analysis the attack from both inside and outside. But in the previous literatures, it is rarely
discussed how the secret is revealed securely against inner attack [10–13]. Until now, many SS protocols
have been improved to verify participants and check the validity of shares in the recovery phase [14–16],
but the participant who is the last one to release share, would desire to obtain the secret alone by sending
fake share or keeping silence. So, in order to solve this problem without the simultaneously releasing
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constraint, Lin et al. [17] proposed a fair reconstruction, in which Dealer, in addition to the secret shadow,
distributes a check vector, which is used to verify the validity of other participants’ shadows in the
reconstructing process and a certificate vector, which is used to prove the validity of his own shadow to
each participant in classical scenario. Then, in quantum domain, Liu et al. [18] designed a QSS protocol
based on partially and maximally entangled states, in which a secure and fair reconstruction mechanism
is firstly organized to realize each participant can learn or cannot learn the secret simultaneously. Later,
Maitra et al. [19] proposed a rational secret sharing scheme for the first time, in which the rational
participant tries to maximize his or her utility by obtaining the secret alone, but it is impossible to
occur, because the protocol is usually fair (everyone gets the secret).

The above-mentioned schemes are primarily based on discrete variable quantum entanglement states,
which emerge some choke points as the extreme fragility, the low channel capacity and the difficulty of the
preparation in experiment. So, in this paper, the continuous variable quantum information theory is invited
to distribute shares [20,21]. The two-mode squeezed vacuum state is well done at preparation, operation
and detection [22,23]. What’s more, the modulation performed on the two-mode squeezed vacuum state is
not only binary modulation, but also multiple modulation, which can improve the the channel capacity.
Furthermore, the quantum channel based on two-mode squeezing states provides secure communication,
which is proved that it can send shares successfully, as long as setting proper the squeezing and modulation
parameters according to the quantum channel transmission efficiency and the Shannon information of
shares. In order to ensure every participant learn or do not learn the secret simultaneously without the
simultaneous channel, a fair construction is designed, in which a check sequence is used to hide real secret
sequence, a determine pointer is used to find the hidden secret and a verify sequence is used to verify the
recovered message. Furthermore, this fair protocol can be incorporated with other sharing schemes.

The organization of this paper is as follows. In Section 2, we design the (2, 2)-threshold CVQSS
scheme with fairness. Section 3 explicates the security analysis of the scheme. At last, in Section 4,
the conclusion is given.

2. CVQSS Scheme with Fairness

In this section, the CRT is introduced and a verifying function is defined, which are play an important
role in CVQSS scheme proposed below.

2.1. Chinese Remainder Theorem

Let n ≥ 2, m1, ..., mn ≥ 2 and s1, ..., sn ∈ Z. The system of congruence equations


S ≡ s1 mod m1,

...

S ≡ sn mod mn,

(1)

has solutions in Z, when gcd(mi, mj) = 1, for all i, j ∈ [1, n]. It has been proved that this solution can be
calculated as

S =
n

∑
i=1

siTi Mi mod M, (2)

where M = ∏n
i=1 mi, Mi = M/mi and Ti ×Mi mod mi = 1.

According to the CRT equations described above, secret S can be divided to n shares named si for n
participants and also can be recovered, when shares are all collected, which means the (n, n)-threshold
secret sharing scheme can be achieved. Of course, the (t, n)-threshold scheme also can be similarly
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designed, where n ≥ 2, t ≤ n as long as the moduli mi are prime numbers and secret S ∈ [h, H], where
h = ∏n

i=n−(t−1)+1 mi, H = ∏n
i=1 mi [11]. Thus, whichever threshold scheme is demanded in practice, it can

be designed by the CRT. What’s more, compared with other traditional methods, such as the polynomial
interpolation method of Shamir, whose key recovery interpolation formula requires O(t log2 t) operations,
the CRT-based scheme requires only O(t) operations [24].

2.2. Verifying Function for CVQSS

In order to verify the message, usually the Hash function is utilized to obtain the signature or digest of
the whole message, which almost contains huge information. But, in this thesis, the message X is verified
one number by one number. Therefore, it is obvious that the number is much smaller than the whole
message and the same number recurs many times in the whole message. If the Hash function play on the
numbers directly, the hash values used for verifiction would repeat, which will come up with one serious
problem, that is the number can be derived from its hash value, after several times verifiction. However,
the important character of Hash function is irreversibility. In order to avoid the problem of repetition,
the message X is preprocessed to X′ with X′i 6= X′j | i 6= j as follow

X′i = Xi + i× (L + M). (3)

Here L is the length of the message, i ∈ [1, L], Xi ∈ N and M = max(Xi). It is easily to prove that
X′i 6= X′j | i 6= j, i, j ∈ [1, L]. Setting i > j, X′i −X′j = Xi−Xj +(i− j)(L+ M), where−M ≤ Xi−Xj ≤ M
and (i− j)(L + M) ≥ L + M. So, X′i − X′j ≥ L > 0, which proves X′i 6= X′j is true. Then, Hash function
H(), such as SHA1, is invited to obtain verification information V for verifying. Above all, a modified
Hash function for verifying a sequence X can be concluded as

Vi = H(Xi + i× (L + M)). (4)

2.3. (2, 2)-CVQSS Scheme with Fairness

In what follows, suppose Dealer has a classical secret S to be shared among participants.
Dealer exploits CRT to decompose S and participants can reconstruct S. For simplicity, we consider
the design of (2,2)-CVQSS scheme with fairness.

2.3.1. Initialization

I1 Dealer selects any two integers ma, mb ≥ 2, satisfying gcd(ma, mb) = 1, as moduli for CRT, for
example, ma = 2, mb = 3. Then, generates the secret S ∈ {0, 1, ..., M}L, a checking sequence R ∈
{0, 1, ..., M}L1 and a determine pointer P∗ ∈ {0, 1, ..., M}L2 , where M = ma ×mb − 1 and L, L1, L2 are the
lengths of S, R, P∗ respectively.

I2 For security, S is hidden in sequence R to form a new sequence named X, which is shown in
Figure 1 and described as following steps. (1) Add P∗ to the end of S. (2) Insert S and P∗ into R at one
random place. The sequence P∗ has to satisfy its uniqueness in message X, which means P∗ meets the
constraint i.e., define Ti = Xi, Xi+1, . . . , Xi+L2−1, if Tj = P∗, Tk 6= P∗, for all k 6= j, where i, j, k ∈ [1, L + L1].

I3 Dealer calculates the shadows XA = X mod ma and XB = X mod mb, generates the verification
information V of X according to Equation (4) and publishes the parameters i.e., ma, mb, L, L1, L2, P∗, V and
the selected Hash function H().
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Figure 1. The generating of message X using secret S, checking sequence R and determine pointer P∗.

2.3.2. Distribution

Dealer distributes XA, XB to the participants Alice, Bob respectively, via continuous variable quantum
deterministic key distribution based on two-mode squeezed states protocol [21]. In another words, each
communication is from one Sender (Dealer) to one Receiver (Alice or Bob). The communication is briefly
described as follow.

D1 Every Receiver prepares L + L1 + L2 two-mode squeezed vacuum states a1 = x1 + ip1 and
a2 = x2 + ip2 as Figure 2. Here

x1 = [er x̂(0)1 + e−r x̂(0)2 ]/
√

2,

p1 = [e−r p̂(0)1 + er p̂(0)2 ]/
√

2,

x2 = [er x̂(0)1 − e−r x̂(0)2 ]/
√

2,

p2 = [e−r p̂(0)1 − er p̂(0)2 ]/
√

2, (5)

where ain1 = x̂(0)1 + i p̂(0)1 and ain2 = x̂(0)2 + i p̂(0)2 are two vacuum states and x̂(0)1,2 , p̂(0)1,2 ∼ N(0, 1) follow

Gaussian distribution and [x̂(0)1,2 , p̂(0)1,2 ] = 2i. As the squeezed parameter |r| increases, the correlation between
a1 and a2 becomes increasingly perfect, i.e.,

lim
r→+∞

x1 = x2, lim
r→+∞

p1 = −p2. (6)

D2 Receiver keeps a1 at home and sends Sender a2 with some coherent states c = |xc + ipc〉 for
checking eavesdropping. After receiving the whole state a3, Sender sends back an acknowledge. Following
Receiver’s instructions, Sender accurately selects out and measures the coherent states, so as to check
eavesdropping. If the error rate exceeds certain threshold, receiver goes back to D1. In this paper,
the strategy for checking eavesdropping is the same as above, so, it will be written as eavesdropper
detection for short.

D3 According to the message XA/B, Sender modulates a3 by D(αj) to obtain a4. Here α = y + iy,
y ∼ N(XA/B, σ2) follows the Gaussian distribution and σ2 is the variance of message.

D4 Sender sends back a4 to Receiver with some coherent states. After receiving a5, Receiver does
eavesdropper detection under Sender’s help. If the channel is insecure, they give up this communication
and go back to D1.

D5 Receiver plays a gain on a6 before joint Bell Measurement on a1 and a6 to obtain the message
XA/B. From Figure 2, it is shown that the joint Bell measurement consists one balanced beamsplitter (BS)
and two detectors using homodyne measurement.
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Figure 2. Schematic of distribution based on two-mode squeezed vacuum state.

2.3.3. Recovery

When Alice and Bob wants to rebuild secret S, they exchange their own shares. Dishonest one may
refuse to send her or his correct share, after receiving the other one’s. In order to avoid this situation,
this protocol applies some strategies to achieve fairness, in another words, all participants can or cannot
acquire the secret simultaneously.

In this part, firstly, Alice and Bob generate random number sequences A, B ∈ {0, 1, ..., M}(L+L1+L2)

to encrypt their shares as (XA/B
j + Aj/Bj) mod (M + 1), j ∈ [1, L + L1 + L2], respectively. Then Alice and

Bob exchange their encrypted messages as steps (D1) to (D5) and obtain the measurement results MA
e

and MB
e . At last, they decrypt MA

e and MB
e to reconstruct X and verify them one by one number, which is

described below in detail.
V1 Define j is the round of secret reconstruction and the initial value j = 0.
V2 j = j + 1.
V3 Alice and Bob exchange or broadcast the jth key Aj and Bj in classical channel, decrypt MA

ej
and

MB
ej

to obtain XB
j = (MA

ej
− Bj) mod (M + 1) and XA

j = (MB
ej
− Aj) mod (M + 1), recovery Xj according

to Table 1 and calculate its verification information V′j = H(Xj + j(L + M)).

Table 1. An example of splitting based on the CRT.

Xi 0 1 2 3 4 5

XA
i (ma = 2) 0 1 0 1 0 1

XB
i (m

b = 3) 0 1 2 0 1 2

V4 If V′j 6= Vj, return: “Error” and end, otherwise, continues.
V5 If j < (L + L2), go to (v2). Otherwise Tj = Xj−L2+1, Xj−L2 , . . . , Xj. If Tj = P∗,

S = Xj−L−L2+1, Xj−L−L2 , . . . , Xj−L2 , end and return: S, otherwise, go to (v2).
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3. Security Analysis

Figure 2 draws the schematic of CV quantum secure communication used in the progresses of
distribution and recovery. During distribution, Alice and Bob are receivers and Dealer is a sender.
In the stage of recovery, Alice sends her share to Bob and also Bob sends his share to Bob. Therefore,
the security of this protocol is primarily based on security of this communication, which is detailedly
analyzed below.

3.1. No Attack

At first, receiver prepares the initial two-mode squeezed states (a1, a2), then, send mode a2 to sender
through the quantum channel with the additive white Gaussian noise (AWGN), so, a3 can be described as

x3 =
√

η1x2 +
√

1− η1xN1, p3 =
√

η1 p2 +
√

1− η1 pN1. (7)

Here, η1 is the channel transmission efficiency and xN1, pN1 ∼ N(0, Σ2
1) presents the channel noise

from receiver to sender. Next, a3 is modulated by displacement operation according to message XA/B and
turns to a4 expressed as

x4 = x3 + y, p4 = p3 + y. (8)

Then, a4 is sent back to receiver and becomes a5,

x5 =
√

η2x4 +
√

1− η2xN2, p5 =
√

η2 p4 +
√

1− η2 pN2, (9)

where xN2, pN2 ∼ N(0, Σ2
2) and η2 stands for the parameter of the quantum channel from sender to receiver.

In order to compensate a5 for lossy in quantum channel, a5 has to be amplified with gain g before Bell
Measurement, so,

x6 = gx5. (10)

At last, receiver plays a measurement on a1 and a6 for capturing message XA/B and the results
a7, a8 are

x7 =
1√
2
(x6 + x1), p7 =

1√
2
(p6 + p1),

x8 =
1√
2
(x6 − x1), p8 =

1√
2
(p6 − p1).

(11)

If r > 0, using Equations (5), (7)–(11) and setting g =
√

1
η1η2

, we obtain

x8 =
y√
2η1

+

√
1− η1xN1√

2η1
+

√
1− η2xN2√

2η1η2
− e−r x̂0

2. (12)

Obviously, x8 obeys a Gaussian distribution, so, the variance of signal distribution is

Vs =
σ2

2η1
, (13)

and the variance of noise is
Ns =

1− η1

2η1
Σ2

1 +
1− η2

2η1η2
Σ2

2 − e−2r. (14)
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The signal-noise-ratio (SNR) between sender and receiver is

γ =
Vs

Ns
. (15)

According to the Shannon information theory [25], the mutual information is expressed as

I(S, R) =
1
2

log2(1 + γ). (16)

As for the two-mode squeezed state, the amplitude and phase are symmetric and both can be used
to transfer message, so, the total mutual information is 2I(S, R) and the channel capacity is also 2I(S, R),
when there is no attack. But, for describing more briefly, the messages carried on amplitude and phase
are the same in this paper, so, the security is discussed only based on the amplitude, also the channel
capacity is seen as C = I(S, R) accordingly. For satisfying the message transferring successfully, the
channel capacity cannot be less than the information of XA/B

i , expressed as C ≥ H(XA/B
i ). According to

the (2,2)-threshold CVQSS proposed above, suppose Xi is equally distributed in {0, 1, . . . , 5}, so P(Xi =

0) = P(Xi = 1) = · · · = P(Xi = 5) = 1
6 , i = (1, 2, ..., L + L1 + L2), From definition of CRT or Table 1,

the share of Alice is XA
i ∈ {0, 1} and its probability function is

P(XA
i = 0) = P(Xi = 0) + P(Xi = 2) + P(Xi = 4) =

1
2

,

P(XA
i = 1) = P(Xi = 1) + P(Xi = 3) + P(Xi = 5) =

1
2

.
(17)

Similarly, the share of Bob is XB
i ∈ {0, 1, 2} and its probability function is

P(XA
i = 0) = P(Xi = 0) + P(Xi = 3) =

1
3

,

P(XA
i = 1) = P(Xi = 1) + P(Xi = 4) =

1
3

,

P(XA
i = 2) = P(Xi = 2) + P(Xi = 5) =

1
3

.

(18)

Therefore, the information entropy of Xi, XA
i and XB are H(Xi) = log26 bit, H(XA

i ) = 1 bit and
H(XB

i ) = log2 3 bit. Hence, the channel can succeed to send XA and XB, when C = I(S, R) ≥ log2 3 bit ≈
1.6 bit. Suppose the two quantum channels are the same with η1 = η2 = η and Σ1 = Σ2 = Σ,
the information rate I(S, R) is depicted in Figure 3 which shows that the increment of squeezed parameter r
and the variance of message σ2 can improve I(S, R), especially, the growth of σ2 can enhance the tolerance
of low channel transmission efficiency. Under condition I(S, R) = log2 3 bit, the relation between r and σ2

is drawn in Figure 4. It is shown that the σ2 decreases to a fixed value, when r increases to 3 from 1, under
the conditions of η = {1, 0.9, 0.6}. To come over more loss in quantum channel, the more energy has to be
afforded by increasing σ2 in modulation.
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3.2. Internal Attack

Generally, there are two kinds of attack considered in the QSS scheme. One is eavesdropping of
Eve from outside, the other one is the dishonest participant attack from inside. However the dishonest
participant has more superiorities to steal the secret than Eve from outside. Therefore, the scheme is secure
with Eve’s attack, so long as the protocol can resist inner attack. Consequently, the following security
analysis primarily focuses on inner attack in noisy channel.

For curiousness, Alice and Bob may guess the original key S, which is hiden in X. Although each
participant has one share XA/B, they have no idea about the position of S in X, which means they should
guess the right P∗ at first, then recover S by guess. According to the Equation (2) or Table 1, the authorized
set XA ∪ XB can recover the message X and from above caculations, H(Xi) = H(XA

i ) + H(XB
i ), which

means the unauthorized sets XA
i and XB

i are independent to each other. Apparently, H(Xi) > H(XB
i ) >

H(XA
i ) > 0, so, curious member cannot deduce Xi from unauthorized set XA

i or XB
i , alone. Furthermore,

from Table 1 and Equations (17) and (18), the conditional probabilities P(Xi | XA
i ) and P(Xi | XB

i ) can be
concluded as Tables 2 and 3. Thus, according to Alice’s share XA

i , the successful probabilities of guessing
P∗ and S are ( 1

3 )
L2 and ( 1

3 )
L, which approaches to zero, when L, L2 > 3. Similarly, Bob can successfully

guess P∗ and S with probabilities ( 1
2 )

L2 and ( 1
2 )

L. So, it is hardly to accurately locate S in X and then
recover it for Alice and Bob. Therefore, dishonest participant has to perform attacks to acquire more
information for secret recovery.

Table 2. The conditional probability of P(Xi | XA
i ).

P(Xi | X A
i ) Xi = 0 Xi = 1 Xi = 2 Xi = 3 Xi = 4 Xi = 5

X A
i = 0 1/3 0 1/3 0 1/3 0

X A
i = 1 0 1/3 0 1/3 0 1/3

Table 3. The conditional probability of P(Xi | XB
i ).

P(Xi | XB
i ) Xi = 0 Xi = 1 Xi = 2 Xi = 3 Xi = 4 Xi = 5

XB
i = 0 1/2 0 0 1/2 0 0

XB
i = 1 0 1/2 0 0 1/2 0

XB
i = 2 0 0 1/2 0 0 1/2

In this protocol, the usage of coherent states can resist intercepting and re-sending attack, so, dishonest
participant named Eve plays BS attack strategy [21,26], which is shown in Figure 2. To avoid being
detected, Eve modulates the parameters of beam splitters to imitate the noisy quantum channels,
i.e., the transmission coefficient of BS equals to the transmission efficiency of noisy quantum channel.
In this way, the communicant may regard this attack as quantum channel lossy and noise. So, the mutual
information between sender and receiver can be calculated as Equation (16). As for Eve, passing through
the first BS, Eve can get

xE1 =
√

η1xN1 −
√

1− η1x2, pE1 =
√

η1 pN1 −
√

1− η1 p2, (19)

where η1 is the transmission coefficient of BS, aN1 = (xN1, pN1) is a vacuum state and xN1, pN1 ∼ N(0, Σ2
1).

Similarly, using the second BS, Eve can obtain

xE2 =
√

η2xN2 −
√

1− η2x4, pE2 =
√

η2 pN2 −
√

1− η2 p4, (20)
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where η2 is the transmission coefficient of BS, aN2 = (xN2, pN2) is a vacuum state and xN2, pN2 ∼ N(0, Σ2
2).

Then, Eve performs a gain amplification on them to obtain

a′E1 = gE1aE1, a′E2 = gE2aE2, (21)

where gE1 = 1√
1−η1

and gE2 = 1
η1(
√

1−η2)
. At last, Eve measures a′E1 and a′E2 and gets

aE =
1√
2
(a′E1 − a′E2). (22)

According to the equations before, xE can be expressed as

xE =
1√
2
(

√
η1√

1− η2
xN1 −

√
η2√

η1(1− η2)
xN2 −

√
1− η1√

η1
xN2 +

1
η1

y). (23)

So, the signal variance of xE is

VE =
σ2

2η1
(24)

and the noise variance of xE is

NE =
1
2
(

η1

1− η2
Σ2

1 +
η2

η1(1− η2)
Σ2

2 +
1− η1

η1
)Σ2

2. (25)

So, the SNR of xE is

γE =
VE
NE

(26)

and the mutual information between sender and Eve is

I(S, E) =
1
2

log2(1 + γE). (27)

Therefore, the channel capacity C or the information rate ∆I is

C = ∆I = I(S, R)− I(S, E). (28)

Suppose the two quantum channels are the same with η1 = η2 = η and Σ1 = Σ2 = Σ. According to
the analysis above, the mutual information between sender and Eve is draw in Figure 5. It is obvious that
setting lower noise variance of aN1 and aN2, Σ2

2, Eve can obtain more information. Moreover, the growth
of σ2 also can increase I(S, E), but r has little effect on it.
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Figure 5. The mutual information of Eve.

Then, when Σ2 = 1, the relationship between information rate ∆I and transmission efficiency η is
exhibited in Figure 6. Under different conditions, such as σ2 = 1, r = 1, σ2 = 1, r = 5, σ2 = 28, r = 1 and
σ2 = 28, r = 5, it is clear that the positions of ∆I = 0 are all very closed to (0.43, 0). When η < 0.43, ∆I < 0
and Eve can acquire more information than legal communicators, so, the communication is insecure. When
η > 0.43, ∆I > 0 and ∆I increases with the growth of σ2 or r, especially σ2 can invite lots of improvement
on ∆I. In order to transfer the secret shares successfully (∆I ≥ log2 3 ≈ 1.6), the requirement is rather more
stringent, for example, when σ2 = 28, r = 5, η need be greater than 0.79. Furthermore, Figure 7 depicts
the relation between the squeezed parameter r and the variance of message σ2 for satisfying ∆I = log2 3,
under conditions η = {1, 0.9, 0.8}. Obviously, when r > 3, the demand of σ2 approaches to a stable value,
which is seriously related with η of BSs. Compared with Figure 3, the requirement of σ2 an r is much
rougher. Because the loss of information is collected and used by Eve, rather than lost merely. Although the
loss of channel is inevitable and Eve always exists, some strategies can be adopted to avoid Eve utilizing
the lost or stolen information to infer the real secret. For example, encrypt the secret with one time pad
generated by CVQKD [9], which is discussed in Ref. [26]. In this way, the I(S, E) would be the same, but
Eve can not exact any useful information about secret, which means no secret information leakage. So,
the protocol would be feasible and secure under the low quantum channel transmission efficiency, only if
the requirement of σ2 an r can be achieved.
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∆I = log2 3 bit.



Appl. Sci. 2020, 10, 189 13 of 15

3.3. Fairness Property

In this protocol, the fairness property means Alice and Bob both can reconstruct the secret S or neither
can recover it. According to the steps in recovery, the following situations would occur. (1) Suppose the
position of the last secret SL in message X is k. If Alice and Bob are both honest and follow the recovery
steps to exchange their shares or the fake shares released at jth round, j > k + L2. After (k + L2)th round,
the determine pointer P∗ appears, which means the secret S is recovered and can be picked out in front of
P∗ with length L. (2) If the fake shares released at jth round, 1 ≤ j < k, the dishonest participant would be
detected by message verification and the secret S has not been reconstructed before termination. (3) If the
fake shares released at jth round, k < j < k + L2, the dishonest participant is checked out. At this moment,
the secret S has been reconstructed and P∗ does not appear completely. So, they both has possibility to
guess right position and picks out S. (4) If the fake shares released at kth round with probability 1/L1,
dishonest participant he or she would reconstruct S and other participants are failed, but he or she can not
assure this is the secret, because the right position is unknown. After this round, dishonest participant
would be found. (5) If the fake shares released at (k + L2)th round, dishonest participant, he or she, would
reconstruct S and P∗, also honest participant would guess the position of S and pick it out correctly
with great probability. Above all situations, both participants can recover or cannot recover the secret
simultaneously, except in situation (4), dishonest participant may have little more advantage to acquire the
whole secret, but, when the length of checking sequence R, L1, is great enough, the probability of situation
(4) is close to zero.

4. Conclusions

We have suggested a CVQSS scheme with fairness to resist dishonest participants keeping silence or
returning error shares after receiving other ones’ shares, which would be detected in verifying process.
The participants release their shares interactively without simultaneity, but they can or can not reconstruct
secret simultaneously. The above perspectives can be concluded from the discussion on fairness property,
in which all five cases are enumerated and analyzed in detail. Of course, without loss of generality,
participants cannot deduce the secret from their own shares independently.

The two-mode squeezed states are indispensable in our scheme and are exploited to transmit
deterministic shares. As proved, this communication can send shares successfully, as long as setting proper
the squeezing and modulation parameters according to the quantum channel transmission efficiency
and the Shannon information of shares. Although, there must be eavesdropping in the channels, owing
to the communication based on the two-mode squeezed states, legal communicators can detect the
eavesdropper. In order to ensure the message directly transmitted succesfully, the channel transmission
efficiency should be greater than 0.79. But, if the encrypted message is sent in the quantum channel,
the infomation leakage of shares can be neglected, so that the demand of channel transmission efficiency
can be regard as the conditon under no attack, that is lower to 0.08. However the increment of participants
in the quantum network would greatly add the times of communication in this protocol. With the rapid
development of n-particle CV entanglement, the CV GHZ can be invited to distribute shares which will
make our scheme higher efficiency and more practical.
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