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Abstract: A semi-analytic solution for material flow in the cone-and-plate rheometer is presented.
It is assumed that the viscosity is solely a function of the second invariant of the strain rate tensor.
A distinguishing feature of the constitutive equations used is that the viscosity is vanishing as the
shear strain rate approaches infinity. This feature of the constitutive equations affects the qualitative
behavior of the solution. Asymptotic analysis is carried out near the surface of the cone to reveal
these features. It is shown that the regime of sliding must occur and the shear strain rate approaches
infinity under certain conditions. It is also shown that the asymptotic behavior of the viscosity as
the shear strain rate approaches infinity controls these qualitative features of the theoretical solution.
Some of these features are feasible for experimental verification. An interpretation of the theoretical
solution found is proposed.
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1. Introduction

Viscosity, defined as the ratio of the shear stress to shear strain rate in a steady simple shear flow,
usually depends on the shear strain rate. The constitutive equations of many materials including
polymers assume that the viscosity is vanishing as the shear strain rate approaches infinity [1–8].
This feature of the constitutive equations may have a qualitative effect on solution behavior near rough
walls, in particular in the description of material flow in rheometers.

The cone-and-plate rheometer is widely used to determine viscosity [3,4,9–14].
Theoretical descriptions of material flow in this rheometer have been provided in [15,16]. In the
case of small cone angles, the flow in the cone-and-plate rheometer is considered to be ideal in the sense
that it is practically homogeneous [11]. For this reason, a new description of the flow in this rheometer
is proposed in the present paper to show the effect of vanishing viscosity on the interpretation of
experimental data.

It is shown that the qualitative behavior of the solution for the flow in the cone-and-plate
rheometer depends on the asymptotic behavior of the shear stress as the shear strain rate approaches
infinity. In particular, there are such dependencies of the shear stress on the shear strain rate that
no solution at sticking at the cone exists. It is therefore possible to describe the interface behavior
using special constitutive equations in a narrow region near the wall. It is notable that this feature
of the solution is very different from numerous discussions on the slip boundary condition [6,17–29].
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In particular, there is a vast amount of literature on experimental studies related to the wall slip
phenomenon [17–21,23–25]. Many theoretical works are devoted to the apparent slip mechanism,
for example in [27,29]. Another theoretical model for the boundary slip has been proposed in [22]. It is
seen from these papers and from review papers [26,28] that the possibility to describe the occurrence
of slip using appropriate constitutive equations in the vicinity of the wall has not been considered.
In the present paper, it is shown that under certain conditions the transition between the regimes of
sticking and sliding is described by the constitutive equations rather than by the friction law.

The solution neglects normal stress effects. Therefore, its practical use is restricted to materials for
which this assumption is adequate.

The physical components of tensors in a spherical coordinate system are used throughout the paper.

2. Basic Equations and Assumptions for Cone-and-Plate Rheometer

A schematic diagram of cone-and-plate rheometers is shown in Figure 1. The circular disk is
motionless. The cone rotates with angular velocity ω. The process has an axis of symmetry.
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Figure 1. Cone-and-plate rheometer – notation.

End and inertia effects are neglected. Then, the material flow between the disk and cone can be
approximated by the material flow between two coordinate surfaces, θ = π/2 and θ = π/2− β = θ0,
of a spherical coordinate system (r, θ, ϕ) whose axis θ = 0 coincides with the axis of symmetry of the
process (Figure 2). It is evident that the solution is independent of ϕ. Those are typical assumptions
used for describing the flow in the cone-and-plate rheometer [16].Appl. Sci. 2019, 11, x FOR PEER REVIEW  3 of 12 
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Let σrr, σθθ, σϕϕ, σrθ, σrϕ, and σθϕ be the stress components referred to the spherical coordinate
system. It is assumed that

σrr = σθθ = σϕϕ = σ, σrθ = σrϕ = 0. (1)
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This assumption should be verified a posteriori. It is evident that σ is the hydrostatic stress.
Moreover, it is assumed that

ur = uθ = 0, uϕ = u (2)

where ur, uθ and uϕ are the velocity components referred to the spherical coordinate system.
This assumption should also be verified a posteriori. The direction of rotation of the cone
(Figures 1 and 2) demands that

u < 0 and σθϕ > 0. (3)

Under the assumptions above, the equations of equilibrium referred to the spherical coordinate
system read

∂σ
∂r

= 0,
∂σ
∂θ

= 0,
∂σθϕ

∂θ
+ 2σθϕ cotθ = 0. (4)

The first two equations and the independence of the solution of ϕ demand that

σ = σ0 (5)

where σ0 is constant.
Using (2) one can represent the components of the strain rate tensor in the spherical coordinate

system as

ξrr = 0, ξθθ = 0, ξϕϕ = 0, ξrθ = 0, ξrϕ =
1
2

(
∂u
∂r
−

u
r

)
, ξθϕ =

1
2r sinθ

(
sinθ

∂u
∂θ
− u cosθ

)
. (6)

The constitutive equations are the yield criterion

(σrr − σθθ)
2 +

(
σθθ − σϕϕ

)2
+

(
σϕϕ − σrr

)2
+ 6

(
σ2

rθ + σ2
θϕ + σ2

ϕr

)
= 6k2

0Φ2
(
ξeq

ξ0

)
(7)

and its associated flow rule

ξrr = λ
(
2σrr − σθθ − σϕϕ

)
, ξθθ = λ

(
2σθθ − σrr − σϕϕ

)
, ξϕϕ = λ

(
2σrr − σθθ − σϕϕ

)
,

ξrθ = 6λσrθ, ξrϕ = 6λσrϕ, ξθϕ = 6λσθϕ.
(8)

where λ is a non-negative multiplier, ξeq is the equivalent strain rate, and ξ0 is a reference strain rate.
Also, Φ

(
ξeq/ξ0

)
is an arbitrary monotonically increasing function of its argument and k0 is the shear

yield stress at ξeq = 0. The former means that the solution below is restricted to materials whose
response increases as the magnitude of the equivalent strain rate increases. The latter means that
Φ(0) = 1. Both ξ0 and k0 are material constants. It is convenient to define the equivalent strain rate as

ξeq =
1
√

2

√
ξ2

rr + ξ2
θθ

+ ξ2
ϕϕ + 2ξ2

rθ + 2ξ2
θϕ

+ 2ξ2
ϕr. (9)

Substituting (1) into (8) leads to

ξrr = 0, ξθθ = 0, ξϕϕ = 0, ξrθ = 0, and ξrϕ = 0. (10)

The first four equations are compatible with (6). The fifth equation and Equation (6) for ξrϕ

combine to give
u = −ωrw(θ) (11)

where w(θ) is an arbitrary function of θ. It follows from (3) and (11) that w(θ) > 0. The only restriction
on the solution imposed by the last equation in (8) is that the sign of ξθϕ coincides with the sign of σθϕ.
Then, it follows from (3) that

ξθϕ > 0. (12)
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Thus the associated flow rule is satisfied if (12) is satisfied. Substituting (10) into (9), and taking
into account (12), one can get

ξeq = ξθϕ. (13)

Turning to the yield criterion (7), this criterion, (1) and (3) combine to give

σθϕ = k0Φ
(
ξeq

ξ0

)
. (14)

Using (13) this equation can be rewritten as

σθϕ = k0Φ
(
ξθϕ

ξ0

)
(15)

giving the relationship between the shear stress and shear strain rate in the spherical coordinate system.
The viscosity is usually defined as (in our nomenclature)

η =
σθϕ

ξθϕ
. (16)

In the case of materials with vanishing viscosity, η→ 0 as ξθϕ →∞ . Then, it follows from (15)
and (16) that

Φ
(
ξθϕ/ξ0

)
ξθϕ/ξ0

→ 0 (17)

as ξθϕ →∞ . Henceforward, attention is focused on the class of functions that are represented as

Φ
(
ξθϕ

ξ0

)
=

ks

k0
+ A

(
ξθϕ

ξ0

)α
+ o

[(
ξθϕ

ξ0

)α]
(18)

as ξθϕ →∞ . Here ks, A and α are constant. It is evident that this class is large enough for any function
Φ
(
ξeq

)
used in applications. It follows from the representation (18) that (17) is satisfied if

α < 1. (19)

Since Φ is a monotonically increasing function of its argument, A > 0 if α > 0 and A < 0 if α < 0.
The function Φ is independent of the shear strain rate if α = 0. The response of such materials is
independent of the speed of loading. An example is the rigid perfectly plastic material [30]. This special
case is not considered in the present paper. If α > 0, then the term ks/k0 in (18) is negligible as ξθϕ →∞ .
If α < 0, then ks is the maximum possible shear stress that may appear in the material. Equation (18)
can be solved for ξθϕ to give

ξθϕ

ξ0
=


A−1/α

(σθϕ
k0

)1/α
+ o

[(σθϕ
k0

)1/α
]

as σθϕ →∞ if α > 0[
−

1
A

(
ks
k0
−
σθϕ
k0

)]1/α
+ o

[(
ks
k0
−
σθϕ
k0

)1/α
]

as σθϕ → ks if α < 0
(20)

It remains to solve the third equation in (4) together with (11) and (15). The boundary conditions
are initially imposed on the velocity u and require the regime of sticking at both contact surfaces,
θ = π/2 and θ = θ0 (Figure 2). Using (11), these conditions can be represented in terms of the function
w(θ) as

w = 0 (21)

for θ = π/2 and
w = sinθ0 (22)
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for θ = θ0. However, as it will be seen later, a difficulty is that no solution satisfying the boundary
conditions (21) and (22) may exist. In this case, it is necessary to assume that the regime of sliding
occurs at one of the contact surfaces. Therefore, in contrast to conventional approaches, the transition
between the regimes of sticking and sliding is described by the constitutive equations rather than by
the friction law. Moreover, a rigid region may appear. In this case, one of the boundary conditions,
(21) or (22), should be satisfied at the rigid plastic boundary rather than at the contact surface.

3. Solution

The third equation in (4) can be immediately integrated to give

σθϕ =
C1k0

sin2 θ
(23)

where C1 is constant. It follows from (3) that C1 > 0. Equations (15) and (23) combine to yield

ξθϕ

ξ0
= Λ

(
C1

sin2 θ

)
(24)

where Λ is the function inverse to Φ. Using (6) and (11) the shear strain rate is expressed as

ξθϕ = −
ω
2

(
dw
dθ
−w cotθ

)
. (25)

Eliminating ξθϕ in (24) by means of (25) results in

dw
dθ
−w cotθ = −µΛ

(
C1

sin2 θ

)
(26)

where µ = 2ξ0/ω. The solution of this equation satisfying the boundary condition (21) is

w = µ sinθ

π/2∫
θ

1
sinχ

Λ
(

C1

sin2 χ

)
dχ. (27)

The equation for C1 follows from (22) and (27) in the form

1 = µ

π/2∫
θ0

1
sinθ

Λ
(

C1

sin2 θ

)
dθ. (28)

Equations (27) and (28) are valid if there is no rigid region. It is seen from (23) that if a rigid region
exists then it is adjacent to the contact surface θ = π/2. It is assumed that the rigid/plastic boundary
is determined by the equation θ = θc (Figure 2). In this case, the boundary condition (21) should be
replaced with

w = 0 (29)

for θ = θc. Since σθϕ = k0 at the rigid/plastic boundary, it follows from (23) that

C1 = sin2 θc. (30)
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Then, Equations (27) and (28) become

w = µ sinθ

θc∫
θ

1
sinχ

Λ
(

sin2 θc

sin2 χ

)
dχ (31)

and

1 = µ

θc∫
γ

1
sinθ

Λ
(

sin2 θc

sin2 θ

)
dθ. (32)

Equation (32) serves for determining θc.
It is seen from the definition for µ that µ→ 0 as ω→∞ . Therefore, no solution to

Equation (28) or (32) may exist.

4. Asymptotic Analysis

A necessary condition to satisfy Equation (28) or (32) as µ→ 0 is Λ→∞ at some point of the
interval θ0 ≤ θ ≤ π/2 or θ0 ≤ θ ≤ θc, respectively. By assumption, Φ is a monotonically increasing
function of its argument. It is seen from (23) that the argument is a monotonically decreasing function
of θ. Therefore, Λ may approach infinity only in the vicinity of θ = θ0.

Equation (28) can be rewritten as
1 = µI1 + µI2 (33)

where

I1 =

(1+δ)θ0∫
θ0

1
sinθ

Λ
(

C1

sin2 θ

)
dθ, I2 =

π/2∫
(1+δ)θ0

1
sinθ

Λ
(

C1

sin2 θ

)
dθ (34)

and 0 < δ << 1. If α > 0 then it follows from (20) and (23) that

Λ
(

C1

sin2 θ

)
= A−1/α

(
C1

sin2 θ

)1/α

(35)

in the vicinity of the surface θ = θ0. It is then seen from (34) that I1 →∞ as C1 →∞ .
Therefore, Equation (34) has a solution at any small value of µ and the regime of sticking at the
surface θ = θ0 is always possible.

If α < 0, then it follows from (20) and (23) that

Λ
(

C1

sin2 θ

)
=

[
−

1
A

(
ks

k0
−

C1

sin2 θ

)]1/α

(36)

in the vicinity of the surface θ = θ0. It is seen from this equation that the maximum possible value of
C1 is

Cm =
ks sin2 θ0

k0
. (37)

Therefore, the integral I2 is bounded at any value of C1. Using (36) and (37) the integral I1 at
C1 = Cm can be written as

I1 =

(
−

1
A

ks

k0

)1/α
(1+δ)θ0∫
θ0

1
sinθ

[(
1−

sin2 θ0

sin2 θ

)]1/α

dθ. (38)
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The integrand is represented as

1
sinθ

[(
1−

sin2 θ0

sin2 θ

)]1/α

= B(θ− θ0)
1/α + o

[
(θ− θ0)

1/α
]

(39)

as θ→ θ0 . Here B is a function of θ0. It is evident from (38) and (39) that the integral I1 is divergent if

1
α
+ 1 ≤ 0 (40)

and convergent if
1
α
+ 1 > 0 (41)

Therefore, the regime of sticking at the surface θ = θ0 is always possible if inequality (40) is
satisfied. On the other hand, the regime of sliding occurs at C1 = Cm if inequality (41) is satisfied. It will
be seen later that this qualitative difference in solution behavior predicts the qualitative difference in
the dependence between two measurable quantities, ω and the torque.

It is seen from (25) and (26) that ξθϕ is proportional to Λ. Then, it follows from (39) that

ξθϕ = O
[
(θ− θ0)

1/α
]

(42)

as θ→ θ0 if C1 = Cm. It is seen from this equation that the velocity gradient approaches infinity near
the friction surface if α < 0. On the other hand, the shear stress is bounded everywhere, as follows
from (18). Then, it is evident from (42) that the plastic work rate is given by

E = ξθϕσθϕ = O
[
(θ− θ0)

1/α
]

(43)

as θ→ θ0 . Then, the inequality (41) and (43) ensure that the triple integral
t

V
EdV converges.

Here, V is the volume of the sample.
The case corresponding to Equation (32) can be treated in a similar manner.

5. Interpretation of the Solution and Discussion

Using the geometry of Figure 1, the torque is found as

T =
2πτR3

3 cos β
. (44)

It has been taken into account here that σθϕ is independent of r, as follows from (23). Moreover, τ is
the value of σθϕ at θ = θ0. If the regime of sticking occurs then the value of τ depends on ω (or µ).
In particular, using (23), Equation (44) can be rewritten as

t =
3T

2πR3k0
=

C1

cos3 β
(45)

where t is the dimensionless torque. It has been taken into account here that θ0 = π/2− β, as it is seen
from Figures 1 and 2. The value of C1 is determined from (28) if there is no rigid region. If there is
a rigid region then (3) should be used to transform (45) to

t =
sin2 θc

cos3 β
(46)

where θc is determined from (32).
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If α satisfies the inequality (41) and C1 attains the value of Cm, then Equations (37) and (45)
combine to give

tm =
ks

k0 cos β
. (47)

It is evident that the value of tm is independent of µ and is described by material properties
and geometry.

If α satisfies the inequality (40) then C1 →∞ as ω→∞ . Therefore, it is seen from Equation (45)
that t→∞ as ω→∞ .

The dependence of t on ω that follows from the discussion above is shown schematically in
Figure 3 where curve 1 corresponds to a value of α satisfying the inequality (41) and curve 2 to a value
of α satisfying the inequality (40). The qualitative behavior of these curves is independent of the
function Φ

(
ξeq/ξ0

)
over any finite interval 0 ≤ ξeq/ξ0 ≤ ξm/ξ0 < ∞. In general, for some materials,

experimental observations confirm the general features of the dependence between the torque and
µ illustrated in Figure 3 by curve 1 (see, for example, Figure 8 in [26]). In particular, the torque is
practically independent of ω in the range ω ≥ ωm where ωm = 2ξ0/µm.
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The value of µm is determined from (28) at C1 = Cm. Then, using (37) one gets the following
equation for µm:

1 = µm

π/2∫
θ0

1
sinθ

Λ
(

ks

k0

sin2 θ0

sin2 θ

)
dθ.

A conventional interpretation of the dependence between the torque and ω illustrated in Figure 3
by curve 1 is that there is a transition region between weak and strong slip regions. The main result of
the present paper provides another interpretation that the finite value of ks exists and that the value of
α satisfies (41). In this case, experimental results similar to that illustrated in Figure 8 in [26] allow for
the value of ks/k0 to be determined using Equation (47). All other parameters of the material model
can be determined using any available method, for example [31].

In some cases, rough surfaces are intentionally used for suppressing slip in rheometers [32].
This method has no effect of material flow in the vicinity of interfaces if the material satisfies the
constitutive Equations (18) and (41). This is because the regime of flow at the interface is completely
described by the constitutive equations. This feature of solutions is typical for several rigid plastic
models [33].

It is, in general, assumed that the shear stress is approximately constant inside the sample if the
angle β (Figure 1) is small enough [4,11]. A consequent conclusion is that the shear strain rate is also
approximately constant. This conclusion is not valid for the material models satisfying (18) at α < 0.
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Indeed, in this case the shear strain rate may approach infinity at one of the contact surfaces, as it is
seen from (39).

The models that do not satisfy (17) have not been considered in the present paper.
However, such models are widely used in applications, for example, the Herschel-Bulkley model [34].
It has been shown in [35] that it is always possible to find a solution satisfying the regime of sticking
for such models. Therefore, the qualitative behavior of solution for the models that do not satisfy (17)
is similar to that for the models satisfying (18) if the inequality in (40) is valid. It is believed that this
qualitative difference provides a means for testing different models experimentally. However, it is
necessary to design a special experimental program. The function introduced in (18) does not affect the
behavior of solutions outside a very narrow layer near the friction surface and this function cannot be
determined from standard tests. This is because the strain rate is bounded in any test. Let ξmax be the
maximum possible shear strain rate in experiment. Then, Equation (15) can be rewritten as

σθϕ

k0
=

 Φ
(
ξθϕ
ξ0

)
if ξθϕ ≥ ξmax

Φ0

(
ξθϕ
ξ0

)
if ξθϕ ≤ ξmax

(48)

where Φ0
(
ξθϕ/ξ0

)
is an arbitrary function of its argument. This function can be chosen to approximate

the actual experimental data in the range 0 < ξθϕ/ξ0 < ξmax/ξ0 with any desirable/optimal accuracy.
Then, the function Φ

(
ξθϕ/ξ0

)
can be chosen to satisfy (18) with any value of α. It is also possible to

choose this function such that (17) is not satisfied. A requirement is that Φ(ξmax/ξ0) = Φ0(ξmax/ξ0)

and Φ′(ξmax/ξ0) = Φ′0(ξmax/ξ0). It is also possible to require that higher derivatives are continuous.
The choice of the function Φ

(
ξθϕ/ξ0

)
does not affect the accuracy of approximation of the actual

experimental data but affects the qualitative features of the theoretical solution. Some of these features
are feasible for experimental verification using indirect methods. In metal plasticity, it has been already
recognized that standard tests cannot be used to identify the constitutive equations in a narrow layer
near frictional interfaces [36].

6. Conclusions

Presented herein is a general semi-analytic solution for material flow in the cone-and-plate
rheometer assuming quite a general constitutive equation that connects the shear stress and shear strain
rate. This equation involves quite an arbitrary function Φ

(
ξeq/ξ0

)
, as shown in (7). Then, attention is

focused on a class of the functions satisfying (18). The asymptotic analysis carried out has demonstrated
that the qualitative behavior of the solution essentially depends on the parameter α. In particular,
if this parameter satisfies the inequality (41) that the regime of sliding occurs at some angular velocity
independently of the quality of the surface and other conditions. This property of the solution can
be used for experimental verification that the material satisfies the constitutive Equation (18) with
α satisfying (41). Moreover, it is seen from (39) that if α < 0 then the shear strain rate approaches
infinity in the vicinity of the surface θ = θ0 (Figure 2). This mathematical property of the solution is
not feasible for direct experimental verification. However, it is well known that a narrow layer with
vanishing viscosity is usually generated near rigid walls [28]. This is an indirect confirmation that
the shear strain rate is very high within this layer and that the gradient of the shear strain rate in the
direction normal to the wall is also high.

The solution is based on typical assumptions adopted in theoretical analyses of rheometers. It is
known that these assumptions are not always adequate [3,37]. A numerical technique is required
to find a solution without the assumptions. However, this possible numerical solution may be
quantitatively different from the semi-analytic solution found but the main qualitative features of
the semi-analytic solution near the rigid wall are independent of other boundary conditions and
assumptions. Therefore, any numerical solution should have all qualitative features inherent to the
semi-analytic solution. In particular, the regime of sliding should occur at some value of the angular
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velocity of the cone. Moreover, the solution should be singular at the rigid wall if the regime of sliding
occurs. The latter greatly adds to the difficulties of numerical solutions. In particular, traditional finite
element methods are not capable of dealing with this kind of problem.

The solution found is for the cone-and-plate rheometer. It is evident from the method of finding
the solution that it can be easily extended to the cone-and-cone rheometer, which is also often used for
determining the properties of viscoplastic materials [4,38].
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