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Cameras have changed our way of life in many ways. Billions of images are being sent across the
world every day for leisure or news purposes. Cameras are also well on their way to revolutionize
health care, particularly when combined with artificial intelligence (Al). For example, Esteva et al. [1]
demonstrated that images from consumer level devices combined with Al contained impressive,
if not superior, diagnostic value for skin cancer classification. Topol [2] also acknowledged image
interpretation as one of the three levels where Al is having a major impact on medicine. He also
notes that bias, privacy, and security are important limitations, however. We feel that it is important
to also emphasize the importance of these three factors in our limited sphere of influence as mere
technology developers.

When video streams rather than static images are considered, not only is diagnosis but also
patient monitoring in scope: a large number of vital signs can be measured with consumer level
cameras. With the use of cameras other than conventional color cameras (e.g., thermal or multi-spectral),
the complete pallet of vital signs appears to be within reach. While the sensitivity and accuracy may not
necessarily be superior (yet) when compared to conventional contact probes, the potential advantages
are numerous and diverse. Khanam et al. [3] list these advantages in an excellent review paper in this
Special Issue: “ ... robust, hygienic, reliable, safe, cost effective and suitable for long distance and
long-term monitoring. In addition, video techniques allow measurements from multiple individuals
opportunistically and simultaneously in groups.” Arguably, it is an understatement to say that cameras
will improve healthcare, make it more affordable, and available to more people. Rather than listing all
of the health care settings where cameras will have an impact, we refer to the review paper by Khanam
et al. for a comprehensive overview.

Cameras are likely to change health care beyond replacing conventional medical diagnostics and
the monitoring of vital signs. Patient status beyond traditional vital signs (e.g., delirium detection,
pain) and hospital workflow will also benefit from camera monitors on the work floor. It is conceivable
that even an overall health status will consist less of an array of ‘numbers’ from probes that measure
traditional vital signs, and increasingly of metrics derived from Al

In this Special Issue, however, the focus is on the traditional vital signs (i.e., respiration, heart rate,
oxygen saturation, blood pressure, core temperature), but we also welcomed contributions on adjacent
health parameters measured unobtrusively, ranging from tissue perfusion and hydration to actigraphy
and sleep-staging. Additionally, the sensor does not need to be a camera, as long as the measurement
is fundamentally contactless. We were fortunate to receive many high quality papers, of which 8 made
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the selection for this Special Issue and we are grateful to the authors for submitting their work to
Applied Sciences.

Despite the focus on traditional vital signs, the papers cover a wide range of
topics. Measurement principles include capacitive electro-cardiography (ECG), Doppler radar,
remote photo-plethysmography (PPG), and image-based motion. The number of vital signs addressed
in the papers is largely limited to heart rate and respiration rate, although SpO, and PPG amplitude as
a perfusion parameter are addressed in two papers by van Gastel et al. and Volynsky et al., respectively.
This is possibly driven by the fact that these two parameters are an early indicator of patient/subject
and thus more relevant than SpO,. Moreover, heart and respiration rate may be measured with quite
different technologies including capacitive ECG, radar, image-based motion, and rPPG, which makes
benchmarking these technologies relevant.

Only two may be characterized as at least having an imaging component [4,5]. Most papers aim
at measuring vital signs. This is interesting since the camera by inception, is primarily an imaging
instrument. It is becoming overwhelmingly obvious that cameras should also be seen as sensors where
the imaging capabilities (choosing region of interest, etc.) are only a supporting functionality.

We chose to categorize the papers into three categories: (1) fundamental/new sensors; (2)
applications; and (3) algorithmic.

In the first category, Volynsky et al. [4] report on how the very source of the rPPG signal
(pulsatile dermal blood vessels) can be dramatically influenced by exposing the skin to temperature
changes and envision how this may help patients with increased cardio-metabolic risk. One paper
addresses a fundamental aspect of contactless pulse-oximetry. Measurement of SpO, is arguably more
difficult than heart rate since the relative amplitudes of the rPPG signal need to be measured rather
than the mere periodicities of rPPG signals. Nevertheless, it has been shown to be possible, even during
some patient motion [6]. In their current paper [7], they demonstrate an elegant data-driven way
to perform calibration in a less cumbersome way than earlier calibration efforts [8]. In a pioneering
contribution by Lorato et al. [9] a non-camera sensor, a thermopile array, was demonstrated to be
capable of monitoring respiratory flow. Using smart signal processing, this inexpensive device may be
an attractive, privacy friendly, alternative to thermal cameras.

In the second category, two papers aimed at the robust measurement of heart and/or respiration
rate for automotive applications, with the aim to monitor the well-being of the driver and possibly
predict deterioration to prevent accidents. Castro et al. [10] used non-camera technology: radar sensors
and capacitively coupled ECG. They presented both architectural and signal processing innovations to
separate physiological motion from driving induced motion. Promising experimental results were
reported for real driving conditions on public roads. With the same goal, measuring the bio-signals of
drivers, Lee et al. [11] used rPPG and proposed image and signal processing techniques to deal with
challenges such as ambient light variations, vibrations, and subject motion.

In the third category, it is unsurprising that neural networks have been used to enhance the
information extraction from video images, rather than more classical image and signal processing
techniques. Kwasniewska et al. [5] used deep neural networks to artificially enhance thermal
image sequences with low resolution (40 x 40 pixels) to a higher resolution and showed that
accuracy of the extracted respiration rate was improved. Whether this technique works with the
very low (8 x 8) resolution of the thermopile array proposed by Lorato et al. [9], remains to be seen.
Nevertheless, it is impressive to see how much information can be extracted with very moderate means.
Finally, Bousefsaf [12] et al. showed that 3D convolutional neural networks are in principle capable
of extracting pulse rate from videos of faces as well as identifying the facial regions from which the
signals are extracted. While it is difficult to compare with other methods, which are often designed
to work under specific illumination and motion conditions, a smaller root mean square error was
reported with their method than with other methods (8.64 bpm and 10 bpm, respectively. The power of
the network was relatively small, however, and the authors note that ‘there is room for improvement’.
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With increasing availability of computational power and progress in Al, we realize that contactless
monitoring of vital signs and its revolutionizing role in medicine has only just begun.
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